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ABSTRACT

Methods for measuring the impulse response of a linear
transmission system and system identification algorithms in
general must be robust against noise in the measured system
response. To handle the noise it is of great advantage to
know the instantaneous signal-to-noise ratio (SNR), espe-
cially in situations with changing noise conditions. In this
paper we present a new approach for estimating the SNR
during an impulse response measurement by means of the
so-called sliding window correlation (SWiC) as introduced
in this paper. The performance of the proposed method is
evaluated by means of simulation results.

1. INTRODUCTION

In many applications such as room or loudspeaker equal-
ization [1] the knowledge of the impulse response of a
transmission system is of great importance. Most of these
applications have in common, that one has to deal with dis-
turbing noise. As a consequence the methods for evaluating
the system impulse response have to be robust against such
noise.

When the system under test is time-invariant, one way
to deal with noise is to use a periodic signal to excite
the transmission system and average suitably over a long
time, e.g., by taking the mean of successive periods of the
measured signal [2]. One question here is for the necessary
averaging time to gain a system impulse response with a
desired SNR. For this purpose, one has to know the SNR
in the measured system response as precisely as possible.

In this paper, we propose a new method for estimating
the instantaneous SNR during the measurement of a linear
time-invariant system where the measured system response
is disturbed by additive white noise with time-variant power.
This new approach is based on the correlation features of
the input and the error signal of the normalized least mean
square algorithm (NLMS). For exploiting these features,
a sliding window correlation (SWiC) is introduced in this
paper.

First, in Section 2 we will characterize the class of signals
we use to excite the system under test, the so-called perfect
sequences. The utilized NLMS algorithm is summarized
and the properties of the input and the error signal needed
later on are presented in Section 3. In Sections 4 and
5 we introduce the SWiC and describe the new method
for estimating the SNR by means of this measure. Finally
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we present simulation results and draw the conclusions in
Sections 6 and 7, respectively.

2. PERFECT SEQUENCES

Perfect sequences ([3], [4]) have shown to be advantages for
performing system identification, especially in combination
with the NLMS algorithm [5], [6], [7]. The main property
of a sequence that makes it perfect is that all out-of-phase
values of its periodic autocorrelation function must be equal
to zero. Let p(n) be a perfect sequence of length N, with
n being the time index, and p(n) its periodic repetition with
period N,,. The periodic autocorrelation function r,,(\) is
then given by

Np—1
rop(N) = Y Bi) - Bli+ )
i=0
_ JEp, Amod N, =0 0
10,  Amod N, #0
with F, being the energy of the sequence p(n)
Np—1
E,= Y p*(i). 2)
i=0

It can be shown that the magnitude of the discrete Fourier
transform (DFT) of length N,, of a perfect sequence is a
constant (with k£ being the frequency index)

IDFT{p(n)}| = |Pt| = \/E,. 3)

According to (3) a real-valued, perfect sequence can
easily be constructed in the frequency domain by combining
a constant magnitude with any odd-symmetrical phase [3].
In many applications it is advantageous to use a sequence
with a low crest factor (ratio of peak to root-mean-square),
i.e., with high energy efficiency. The so-called odd-perfect
sequences fulfill this requirement and methods exist to
construct them for many signal lengths [3], [4].

3. NLMS ALGORITHM

Due to its simplicity and good stability features the normal-
ized least mean square (NLMS) algorithm [8] has gained
widespread use in various kinds of signal processing ap-
plications. Figure 1 shows the basic setup of the NLMS
for estimating the impulse response of a system under test.
The possibly noisy system response §(n) is compared to
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Figure 1: NLMS algorithm with the excitation signal z(n),
the system impulse response h(n), the system response
y(n), the noise signal r(n), the measured system response
g(n) = y(n) + r(n), the error signal e(n) = g(n) — §(n),
and the adaptive filter vector w(n).

the arbitrary excitation signal x(n) filtered with the current
state of the adaptive filter with the coefficients w(n). The
error signal e(n) is then used to adapt the filter coefficients
for the next time step in a gradient descent approach.

The time-recursive adaptation rule of the NLMS is de-
fined as

_ z(n)
w(n+1) =w(n) +a~e(n)EI(n) “)
with the step size factor a, 0 < o < 2, and
z(n) = (z(n),z(n—1),...,z(n— Ny +1))7 (5
w(n) = (wo(n), wr(n),...,wy, 1(n))" (6)
e(n) = G(n) = §(n) = §(n) —w’ (n) - z(n) )

where NN, is the length of the adaptive filter. The fastest
convergence is gained, when the step size is o = 1. With
a periodic perfect sequence as excitation it can be shown
that after an initialization phase of one period w(n) is fully
adapted within exactly one period after a system change
([51, [7]) if N,, is greater than or equal to the length of the
impulse response of the system under test. For any periodic
excitation signal the energy in (4) becomes a constant
E.(n) = E,.

As will be shown later, the relation between the noise
signal r(n), the NLMS input signal §(n) and the NLMS
error signal e(n) in the case of a periodic perfect sequence
used as excitation signal 2(n) = p(n) are of interest for the
SNR estimation proposed in this paper. Thus, the properties
of these signals are described in more details.

When the system under test, which is assumed to be
linear and time-invariant, is excited with a periodic perfect
sequence with a period length of NN, the system response
y(n) must also be periodic, i.e.,

y(n) = y(n — Np). ®)
Thus, for the noisy NLMS input signal g(n) the following
relations are valid:
(n) +r(n)

Y
y(n) +r(n = Np). ©)

Figure 2: Illustration of the relation between r(n), §(n),
§(n) and e(n) for the special case of h(n) = 0 for all n,
w(ng) = 0 at time instance ng and r(n) = §(ng). A period
length N, = 4 of the excitation signal is assumed.

The step size is now chosen to be o = 1. As will be
shown in the appendix the recursive formula for the adaptive
filter can then be reformulated as

Zy (n—1)

Substituting (10) into (7) and taking the orthogonality
features of the perfect sequence excitation x(n) into account
yields

n—z) (10)

. :
o) =it~ | St~ ) wto)
=g(n) —y(n — Np). an
With (9) we get
e(n) = r(n) —r(n — N,). (12)

As a consequence, the error signal e(n) can be calculated
from the noisy NLMS input signal only. Thus, it is not nec-
essary to actually calculate the NLMS recursion equations
if only the error signal is of interest.

The relation between r(n), g(n) and e(n) is illustrated
in Figure 2 for the special case of h(n) = 0 for all n,
w(ng) = 0 at time instance ng and r(n) = d(ng), ie., a
dirac pulse at n = ng. As h(n) = 0 the measured system
response is equal to the noise signal for all n. The error
signal in the first period then is equal to the noise signal.
In the second period it is equal to the sign inverted noise
signal of the first period. This relation can be proved for an
arbitrary but fixed h(n).

4. SLIDING WINDOW CORRELATION

The new measure used later for estimating the SNR is called
sliding window correlation (SWiC). For an arbitrarily long
signal x(n) the SWiC WD) (n) at time index n is given
by the correlation between two segments of length W and a
displacement D, i.e., with the first segment starting at time
index n and the second starting at time index n + D:

W-—-1
D) = o S alnt i) w(ntie D). (13

Thus, the SWiC characterizes the correlation between two
segments of the given signal with a fixed distance D as a
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function of time. For a perfect sequence p(n) with a period
length N, the SWiC with W = N,, results in

(14)

C(NP’D)(TL> _ Ep, D mod Np =0
g ; Oa D mod Np 7é 0

5. SNR ESTIMATION

For estimating the SNR we make the following assumptions:

o The excitation signal is a periodic perfect sequence
with period V,,.

o The length of the adaptive filter is equal to N, with
N, being equal to or greater than the length of the
impulse response of the system under test.

o The system under test is linear and time-invariant.

o The noise signal is white. Its power may change over
time.

We define the signal power S to be the power of the

system response y(n)

S =E{y*(n)}
and the noise power NV to be the power of the noise signal

r(n)

15)

N =E{r?*(n)}. (16)

For a non-stationary signal the power of this signal can
be approximated by its short-term power averaged over IV,

samples
N Z

Thus, we define the time-variant noise power N(n) as
the short-term power of the noise signal r(n)

*Z

and the signal power to be the short—term power of the
system response. This yields the approximated SNR at time
index n:

B{=2(n (17)

N(n) = E{r¥( (n+i)  (18)

Nyl _
By _ & U
r<(n Np_1 ’
B0l o

=0

SNR(n) ~ (19)

which is used as the reference SNR for the rest of this paper.

As the signals r(n) and y(n) normally cannot be mea-
sured directly in a real system, they have to be estimated.
A common assumption is, that the misadjustment of the
adaptive filter is sufficiently small, so that after an initializa-
tion phase the signals 7(n) and y(n) can be approximated
by e(n) and §(n), respectively. This yields the following
estimated SNR

N—1

X P(n+i)
e
> e2(n+1)

=0

SNR’Ramadan(n) = (20)

As this approach is used by Ramadan and Poularikas [9]
to estimate the SNR, in this paper this method is called the
Ramadan-method.

To derive an alternative more accurate method for esti-
mating the SNR we recall the property (12) of the NLMS
error signal e(n) found in Section 3 for the excitation signal
x(n) = p(n) being a periodic perfect sequence:

e(n) =r(n) —r(n—N,).

This relation shows that in the case of a linear time-
invariant system excited with a perfect sequence and the
step size of the NLMS being set to o = 1, the error signal
of the NLMS is equal to the sum of the original and the
shifted and sign inverted noise signal. The shift is exactly
one period. Thus, the expectation of the product of the error
signal and a shifted version of it with the displacement being
D = N, yields

E{e(n)-e(n+ Np)} =
=E{(r(n) —r(n—Np)) - (r(n+ Np) —r(n))}
= —E{r*(n)} + E{r(n) - r(n+ N,)} @1

+E{r(n) - r(n—Np)}
—E{r(n+ N,)-r(n—Np)}.

For a stationary white noise signal all terms but the first
become zero and we get

Efe(n) - e(n + Np)} = —E{r*(n)}

This relation is also valid — at least approximately — if
the noise signal is sufficiently stationary for the duration
of three periods. In this case (22) is (approximately) equal
to (18) with a minus sign. Thus, (22) can be calculated
by means of the SWiC of the NLMS error signal with a
window length W = N,, and a displacement D = N,

*Z

For a time-invariant system we know that in the case of
a periodic excitation signal the output of the system must
also be periodic:

(22)

(Np,N )

(n+1i)-e(n+i+Np). (23)

y(n) =y(n — Np). (24)

Thus, the expectation of the NLMS input signal g(n)
multiplied by a shifted version of it with a displacement of
D = N, results in

E{g(n) - g(n + Np)} =
= E{(y(n) +7r(n)) - (y(n + Np) +7r(n+ Np))}
=E{y’(n)} + E{y(n) - r(n)}
+E{y(n) - r(n+ Np)}
—E{r(n) -r(n+ N,)}.
If the noise signal is white and not correlated to the

system output y(n) all terms but the first become zero and
(25) yields the power of the system output. Analog to the

(25)
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Figure 3: System impulse response b of length N}, = N, =

500. It is a random signal with an exponential envelope.

noise power, this can be calculated by means of the SWiC
of the NLMS input signal g(n)

N,—1
(vaNP) — 1 ~ ; ~ ;
¢y (n)—ﬁp ; gn+1i)-gn+i+ Ny,) (26)

With (23) and (26) the SNR can be estimated as
/ C?(JNP’NP)(H)
SNRswic(n) = —m 7y 27)
—Ce (n)
6. SIMULATION AND RESULTS

To compare the proposed method with the Ramadan-method
described above a linear time-invariant system with additive
white Gaussian noise was simulated. The system was mod-
eled by an FIR filter of length N; = 500. The impulse
response of this filter was chosen to be a random but
fixed sequence with an exponentially falling envelope (see
Figure 3).

As excitation signal an odd-perfect sequence with a
period length of N, = N; = 500 was chosen. The
additive white Gaussian noise signal was multiplied by an
envelope function to simulate changing noise (see Figure 4).
The noise was added to the system response y(n). The
simulation is run for 6000 samples, i.e., 12 periods.

The results of the simulation are shown in Figure 5. This
comparison shows clearly, that the SNR estimate of the
proposed method is much closer to the real SNR than the
estimate of the method used by Ramadan and Poularikas.

7. CONCLUSION

In this paper a new method for estimating the SNR dur-
ing impulse response measurements with periodic perfect
sequences was introduced. It is based on the correlation
features of the measured system response. It was shown, that
the true energy of the wanted as well as the noise signal can
be approximated from the measured signal quite accurately
by means of the SWiC.

As two periods of the input signal are needed to calculate
the SNR, the use in applications with the demand for very
low delay is limited. If, however, a delay of two periods is

4| — Noise signal I
= = = Envelope function
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Figure 4: Noise signal and the multiplied envelope function.
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Figure 5: Results of the simulation. The figure shows the
real SNR and the SNR estimates for the two compared
methods. The y-axis goes only up to 5000 because a block
of two periods, i.e., 1000 samples, is needed to estimate the
SNR.

tolerable the proposed method delivers an accurate estimate
of the current SNR.

It is of special interest that the proposed method is
not only accurate but is also completely independent of
the actual system identification algorithm, i.e., any suitable
algorithm can be chosen while the results of the SNR
estimation are not influenced by that choice or the accuracy
of the estimated system impulse responses.

A typical szenario for the application of the proposed
method is the measurement of a room impulse response.
After having measured the response of the room, the SNR
during the measurement can be estimated and the parts
of the system response with low SNR, e.g., when a door
was slammed, can be weighted differently to minimize the
impact on the resulting impulse response.

The proposed approach for estimating the SNR opens
up new perspectives for improving system identification

methods in many applications that need an accurate estimate
of the current SNR.
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8. APPENDIX

To show that

Jr x(n —1i)
wim = gm0

we write down the recursion equation (4) explicitly for IV,
recursion. The filter state at time instance ng shall be

w(ng) = wo
and the step size factor is set to o = 1.

x(no)

w(ng+1) 5
xT

= wy + e(no)

= wo + (§(no) — wg -

w(ng+2) =
x(ng + 1)
E;

() 22+ (0 + 1)

T
x(n x(ng+1
— (wo + e(no) ;}LO)> :l?(’no + 1)) (2}7L)
With the orthogonality properties of the perfect sequence
this can be reduced to

=w(no+1)+e(ng+1)

= wo + (§(no) — wg

. x(n
wlng +2) = w + (7(ng) — w] - 2(ng) e
- k x(ng +1
+ (G(no +1) — w(n0+1))%
Continuing the recursion up to ng + IV, we get
N,—1 ,
. L x(ng + 1)
N = —_—
w(ng + Np) = wy + iz% 7(no + 17) o
x(no + i)
Z wq - a(ng + 1) .

Taking the orthogonality feature of the perfect sequence
into account and using that wl - x(ng + i) is a scalar, we
can rewrite the second sum in the following way

Np711

2w (vl

i 1 -
:E—- Zazmﬁ—z

x(ng + z)) ~x(ng + 1)

(wT(no) - @(no + i))

@‘Zﬂ
o

- E% » (sc(no +i) -2 (ng +i)) ~w(no)

s
I
o

Np—1

1 .
£, -w” (ng) - ; x(no + 1) -
1
— - wT(ng) - E, - TWe) — w(no)
L,

o’ (no + 1)

with T(™») being the identity matrix of dimension Np.
Substituting this into the equation for w(no — N,) and
substituting ng by n results in

w(n, + Np) = Z

TLQ+Z (n0+Z)

g.e.d.
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