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ABSTRACT

To capture the dispersive effect of reverberation by Hidden
Markov Model (HMM)-based distant-talking speech recog-
nition systems, adapting the means of the current HMM state
based on the means of the preceding states has been sug-
gested in [1]. In this contribution, we propose to incorpo-
rate the reverberation models of [2] into the adaptation ap-
proach to describe the effect of reverberation with higher
accuracy. Connected-digit recognition experiments in three
different rooms confirm that the suggested more accurate re-
verberation representation leads to a significant performance
increase in all investigated environments.

1. INTRODUCTION

Robust distant-talking Automatic Speech Recognition (ASR)
is desirable for many applications, like seamless hu-
man/machine interfaces, speech dialogue systems, and au-
tomatic meeting transcription. However, the reverberation
caused by multi-path propagation of sound waves from the
source to the distant microphone leads to a mismatch be-
tween the input utterances and the acoustic model of the rec-
ognizer, usually trained on close-talking speech. Therefore,
the performance of ASR systems is significantly reduced [3]
if no countermeasures are taken.

Reverberant speech can be described by a convolution of
clean speech with the Room Impulse Response (RIR) char-
acterizing the acoustic path from the speaker to the micro-
phone. The length of the RIR, typically ranging from 200 ms
to 1000 ms, significantly exceeds the length of the analysis
window used for feature extraction in ASR systems, typically
ranging from 10 ms to 40 ms. Therefore, the time-domain
convolution is not transformed into a simple multiplication in
the short-time frequency transform (STFT) domain. Instead,
reverberation still has a dispersive effect in the STFT domain
and also in STFT-based feature domains so that the current
feature vector contains a superposition of multiple delayed
and attenuated versions of the previous feature vectors. The
effect of reverberation on speech feature sequences can be
captured approximately by a convolution in the melspectral
(melspec) (see Figure 1) domain [4] as given by

xmel(l,k) ≈
M−1

∑
m=0

hmel(l,m) smel(l,k−m) , (1)

where xmel(l,k), hmel(l,m), and smel(l,k−m) denote the mel-
spec representations of channel l and frame k for the rever-
berant speech, the RIR, and the clean speech, respectively.

The dispersion of feature vectors is illustrated for the ut-
terance ”four, two, seven” in Figure 2. While the clean se-
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Figure 1: Processing scheme for the calculation of MFCCs.
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Figure 2: Melspec feature sequences of utterance ”four, two,
seven” in dB color scale a) clean utterance (close-talking
recording), b) reverberant utterance (distant-talking record-
ing), c) approximation of reverberant utterance by (1).

quence a) exhibits a short period of silence before the plosive
/t/ in ”two” (around frame 52) and a region of low energy for
the lower frequencies at the fricative /s/ in ”seven” (around
frame 78), these low-energy regions are filled with energy
from the preceding frames in the reverberant case shown in
subfigure b). The melspec convolution according to (1) cap-
tures the envelope of the reverberant feature sequence very
well as shown in subfigure c). The smearing of the features
along the time axis causes the current feature vector to de-
pend strongly on the previous feature vectors. Therefore, the
previous feature vectors have to be taken into account for
HMM adaptation so that the performance gain of traditional
’intra-frame’ model adaptation techniques is limited.

Different approaches have been proposed to obtain
acoustic models capturing the dispersive effect. Possibly the
most straightforward way is to use reverberant training data
to train HMMs. To reduce the effort for data collection, clean
training data can be convolved with RIRs to obtain the rever-
berated data as suggested in [5]. Instead of performing a
complete training on reverberated data, the mean vectors of
clean HMMs can be adapted to the reverberation conditions
of a certain room by taking the means of the preceding states
into account [1, 6].
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Since the feature-domain RIR representation used in [1]
is based on a frequency-independent strictly exponential de-
cay, only the model reverberation time T60M has to be esti-
mated for the adaptation. Therefore, the adaptation can be
performed during recognition as described in [1]. However,
the relatively simple RIR representation captures the true re-
verberation characteristics only with relatively low accuracy.

To increase the accuracy of the reverberation capture, us-
ing the reverberation models according to [2] as RIR repre-
sentation for the adaptation approach of [1] is proposed in
this contribution. The remainder of the paper is structured
as follows: The adaptation algorithm proposed in [1] and the
reverberation models of [2] are concisely reviewed in Sec-
tion 2. The proposed adaptation algorithm is introduced in
Section 3 and its performance is compared to reverberant
training and to [1] using a connected digit recognition task
in Section 4. In Section 5, the paper is summarized and con-
clusions are drawn.

2. REVIEW OF UNDERLYING ALGORITHMS

2.1 Adaptation Algorithm

The adaptation algorithm according to [1] adjusts the param-
eters of an HMM λS trained on clean speech to obtain an
adapted HMM λX capturing the characteristics of reverber-
ant feature vector sequences in a certain room. An HMM
is defined by the matrix of state transition probabilities, the
vector of initial state occupation probabilities, and the output
densities for each state [7]. Usually Gaussian mixture densi-
ties, completely described by a set of mean vectors, a set of
diagonal covariance matrices, and a set of mixture weights,
are used to model the output densities in the MFCC domain.
Since, according to [8], the adaptation of the covariance ma-
trices has only a minor effect on the recognition performance,
only the mean vectors of the HMMs are adapted in [1].

Since the adaptation is performed in the melspec domain,
the means of the HMMs are transformed from the MFCC to
the melspec domain by a multiplication with an inverse Dis-
crete Cosine Transform (DCT) matrix and an element-wise
exponential function. To simplify the adaptation for Gaus-
sian mixture densities, cepstral averages µ̄

Scep
(i) across the

means µ
Scep

(i,r) of all R mixtures in the MFCC domain are

obtained according to

µ̄
Scep

(i) =
R

∑
r=1

w(i,r)µ
Scep

(i,r) , (2)

where i and r are the state and mixture indices, respec-
tively, the subscript cep denotes cepstral (MFCC) domain,
and w(i,r) is the weight of mixture r in state i. The adapted
mean vector µ

X
mel

( j,r) of the static features for state j and

mixture r in the melspec domain is obtained by a weighted
sum over the melspec representation µ̄

Smel
(i) of the cepstral

averages from (2) for the preceding states i according to

µ
Xmel

( j,r) = α( j, j) µ
Smel

( j,r)+
j−1

∑
i=1

α( j, i)µ̄
Smel

(i) , (3)

where the subscript mel denotes melspec domain. The
adapted mean vector µ

Xcep
( j,r) in the MFCC domain is ob-

tained by applying an element-wise logarithm and a DCT to
µ
X

mel
( j,r).

t

state 1 state 2 state 3

h2(t)

tstart(2,1) tend(2,1)

Figure 3: Strictly exponential energy decay used for the cal-
culation of α( j, i = 1) according to [1].

reverberation frame m

mel channel l

Figure 4: Reverberation model η for observation frame k.

The calculation of the state-level reverberation represen-
tation α( j, i), describing the energy dispersion of state i to
state j, is based on the assumption of a continuous-time
RIR h(t) with strictly exponentially decaying power h2(t)
and unit energy

∫ ∞
0 h2(t)dt = 1 as depicted in Figure 3. In

this case, the melspec RIR representation hmel(l,m) is inde-
pendent of the channel l and also exponentially decaying.
Therefore, the state-level reverberation representation α( j, i)
is also channel-independent and can be calculated by inte-
grating over the squared RIR according to

α( j, i) =
∫ tend( j,i)

tstart( j,i)
h2(t) dt . (4)

The average start time tstart( j, i) and end time tend( j, i) of state
j for determining the energy dispersion from state i are cal-
culated based on the average duration of state j and its pre-
ceding states as illustrated in Figure 3. (See [8] for details on
the start and end time calculation as well as on the adaptation
procedure for dynamic features.)

2.2 Reverberation Model

A statistical ReVerberation Model (RVM) η is used in [2] for
robust distant-talking ASR. This RVM can be considered as
a feature-domain representation of all possible RIRs for ar-
bitrary speaker and microphone positions in a certain room.
The RVM exhibits a matrix structure where each row corre-
sponds to a certain mel channel and each column to a certain
frame as shown in Figure 4. Each matrix element is mod-
eled by a Gaussian Independent Identically Distributed (IID)
random process. For simplicity, the elements are assumed to
be mutually statistically independent [2]. Thus, the RVM is
completely described by its mean matrix µ

Hmel
and its vari-

ance matrix σ2
H

mel
.

3. THE PROPOSED ADAPTATION ALGORITHM

Since the mean adaptation according to [1] is based on a very
simple reverberation representation with the model reverber-
ation time T60M as the only parameter, the reverberation rep-
resentation can be estimated during recognition. However,
the strictly exponentially decaying RIR captures the effect of
reverberation relatively inaccurately because of two reasons:
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Figure 5: a) Exponential model in the melspec domain (dB
color scale) b) melspec representation of measured RIR (dB
color scale) c) comparison between the decays of a measured
RIR and the exponential model for different model reverber-
ation times T60M for mel channel l = 18.

1) The frequency-dependence of the reverberation is not
taken into account. Due to room resonances and
frequency-dependent absorption coefficients, the acous-
tic path between speaker and microphone varies strongly
with frequency. Therefore, the melspec RIR representa-
tion hmel(l,m) strongly depends on the mel channel l as
depicted in Figure 5 b). The exponential model depicted
in subfigure a) does not capture this channel dependency.

2) Since real-world RIRs typically exhibit a two-sloped de-
cay with a rapid initial and a slow late decay [9] as de-
picted in Figure 5 c), the strictly exponential decay can
either capture the initial or the late decay with high accu-
racy. But it is not able to capture the two-sloped behavior.

To tackle these modeling inaccuracies, a combination of the
adaptation algorithm [1] and the reverberation model ac-
cording to [2] is proposed in this contribution. The means
µHmel

(l,m) of the reverberation model η are used directly as

feature domain representation hmel(l,m) of the RIR. By lin-
ear interpolation, a discrete-time version hmel(l, t) of the mel-
spec RIR representation is obtained and is used for the calcu-
lation of the state-level reverberation representation α( j, i, l)
according to

α( j, i, l) =
∫ tend( j,i)

tstart( j,i)
hmel(l, t) dt . (5)

capturing the energy dispersion from state i to state j in mel
channel l. Since hmel(l, t) captures the frequency depen-
dence of the reverberation, the resulting weights α( j, i, l) are
channel-dependent.

To adjust the HMM to reverberation, the means in the
MFCC domain are transformed to the melspec domain.
Based on the state-level reverberation representation α( j, i, l)
the mean adaptation is performed according to

µXmel
( j,r, l) = α( j, j, l) µSmel

( j,r, l)+
j−1

∑
i=1

α( j, i, l)µ̄Smel
(i, l) (6)

for all mel channels l = 1 . . .L. Finally µXcep
( j,r,c) is ob-

tained by transforming µX
mel

( j,r, l) to the cepstral domain.

Room A Room B Room C

Type lab studio lecture room

T60 300 ms 700 ms 900 ms

d 2.0 m 4.1 m 4.0 m

Table 1: Summary of room characteristics: T60 is the rever-
beration time measured according to [9], d is the distance
between speaker and microphone.

The adaptation of the dynamic features is performed accord-
ing to [1]. Since the adaptation of the ∆-coefficients in [1] is
based on the adapted output pdfs for the static features, the
adaptation of the ∆-coefficients indirectly benefits from the
more accurate reverberation capture of the RVM.

4. EXPERIMENTS

Connected-digit recognition experiments are carried out to
compare the performance of the proposed approach to the
original adaptation algorithm of [1] and to HMMs trained on
reverberant data.

4.1 Experimental Setup

To calculate the MFCC features used for recognition, a DFT
length of 512, a window length of 25 ms and a frame shift
of 10 ms are used. The 12 MFCC coefficients, including
the 0-th coefficient, are augmented by their first derivate cal-
culated according to the HTK [10] defaults. 16-state word-
level HMMs with mixtures of three Gaussians serve as clean
speech models.

To get the reverberated test data (and the reverberated
training data for the training of reverberant HMMs used for
comparison), the clean speech TI digits [11] data are con-
volved with different RIRs measured at different loudspeaker
and microphone positions in three rooms with the character-
istics given in Table 1. Each test utterance is convolved with
an RIR selected randomly from a number of measured RIRs
in order to simulate changes of the RIR during the test.

For the adaptation of the HMMs according to the pro-
posed approach, RVMs trained by averaging over RIRs mea-
sured at different positions in the target room – different from
each other and different form the positions used for the gen-
eration of the test data – according to [2] are used to adapt
both the static and the dynamic features. Thus, a strict sepa-
ration of test and training data is maintained.

4.2 Experimental Results

For a deeper understanding of the original algorithm ac-
cording to [1], a first experiment, investigating the recog-
nition rate as a function of the model reverberation time
T60M , is performed in room C. Figure 6 shows the result-
ing word accuracy. With increasing T60M , the recogni-
tion rate increases rapidly until it reaches its maximum at
T60M ≈ 325ms. Further increasing T60M leads to a slow
decrease of the word accuracy. Note that the model re-
verberation time T60M ≈ 325ms achieving the best recogni-
tion rate is much lower than the actual reverberation time
T60 = 900ms of room C measured according to [9]. The
difference between T60 and T60M arises because the strictly
exponential RIR cannot model the two-sloped decay of real-
world RIRs with high accuracy. The exponential model can
only find a compromise between capturing the rapid initial
decay or the slower late decay as illustrated in Figure 5 c).
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Figure 6: Word accuracy of the original adaptation algorithm
according to [1] as a function of the model reverberation time
T60M in room C.

For the investigated scenario, a value of T60M ≈ 325ms,
which is fairly close to the rapid initial decay, yields the best
recognition results. Since the above example indicates that
T60M achieving the best recognition results and T60 can be
very different, conventional methods for estimating the rever-
beration time T60 cannot be used for estimating T60M . There-
fore, an online estimation method for T60M is used in [1].
The advantage of the online method is that it can estimate
and track T60M without the need of calibration utterances or
RIR measurements in the target room. However, the online
estimation also increases the decoding complexity.

In a second experiment, the performance of the adap-
tation algorithms according to [1] and of the proposed ap-
proach according to Section 3 is compared to HMMs trained
on clean and matched reverberant data in rooms A, B, and C.
As shown in Figure 7, the adaptation according to [1] yields a
significant improvement over the clean HMMs in all rooms.
A further significant improvement over [1] is achieved in all
rooms by the proposed adaptation algorithm. This improve-
ment confirms that using the RVM according to [2], the rever-
berant feature sequences can be described much more accu-
rately. In room B, the proposed adaptation algorithm is even
approaching the accuracy of the HMMs trained on matched
reverberant data. Since training on reverberant data allows to
adjust all HMM parameters (not just the means) to capture
the reverberant feature sequence as closely as possible, the
reverberantly trained HMMs can be considered as an upper
bound for mean adaptation algorithms.

Furthermore, the RVMs used in the proposed approach
can be estimated prior to the recognition either by measuring
RIRs in the target environment [2] or by using a few cali-
bration utterances [12]. Since the RVMs can be estimated
completely independently of the HMMs and the complex-
ity of the adaptation is very low, the proposed approach is
extremely flexible. Moreover, the offline estimation of the
RVMs ensures that the low decoding complexity of conven-
tional HMMs is maintained, making the proposed approach
very attractive for real-time applications.

5. SUMMARY AND CONCLUSIONS

A combination of the reverberation models according to [2]
with the adaptation approach of [1] has been proposed in this
contribution. By taking the frequency-dependence and the
exact energy decay into account, the reverberation models
capture the effect of reverberation more accurately than the
strictly exponentially decaying RIR used in [1]. Connected
digit recognition experiments confirm that the more accurate
reverberation description leads to a significant improvement
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Figure 7: ASR accuracy of clean HMMs, HMMs adapted
according to [1] using the model reverberation time T60M
achieving the best performance, HMMs adapted according to
Section 3, and HMMs trained on matched reverberant data.

in word accuracy in all investigated scenarios. Thus, in some
environments, the proposed adaptation concept approaches
the performance of HMMs trained on matched reverberant
data. Since the effort for estimating the reverberation model
and adapting the HMMs is significantly lower than reverber-
ant training, the proposed approach can be used much more
flexibly. Future work will include tests with large-vocabulary
tasks and a combination with adaptation schemes for additive
distortions.
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