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ABSTRACT 2. OPTIMIZATION OF WEIGHTING FACTORS

This paper concerns the optimal weighting factors for mul-the Multiple Window Spectrograr(n, k) of the zero mean
tiple window spectrogram estimation of different statigna rea| valued random proces&), n=0,...,No — 1 is defined
and non-stationary processes. The choice of windows are ¢ T

course important but the weighting factors in the average of
the different spectrograms are as important. The critddon

optimization is the normalized mean square error where the [ N—1 . 2
normalization factor is the spectrogram estimate. Thismaea S(n,k) = Z aj z X(m-+nL)hj(m)e 2TkM (1)
that the unknown weighting factors will be present in the nu- =1 |m=0

merator as well as in the denominator. A quasi-Newton al-

gorithm is used for the estimation. The optimization is comfor k = 0...K — 1 and 0< n < YN where the as-

pared for a number of well known sets of multiple windowssumption is that the data is stationary for tNesamples

and the results show that the number as well as the shapexfL) ... x(N—1+nL). Equation (1) is a weighted sum

the windows are important factors for a small mean squaref spectrograms obtained by using the data windays-

error. [hj(0) ... hj(N—1)]T, and the weighting factorgj, j =
1...1. The parametek is the step size and the number
1. INTRODUCTION of values in the DFT.

The idea of multiple windows or multitapering were intro- __With one window,| = 1, the spectrogram has too large
duced by Thomson, [1], and in the last decades the Thom2riance to be useful in the analysis gf stochastic prosesse
son method has been used in many different application afS the variance is approximatedy(n, k)*.
eas. It has been shown to outperform the Welch method, [2% 1M E Obtimizati
in terms of leakage, resolution and variance for a stations-1 Meéan Square Error Optimization
ary spectrally smooth process, [3]. For non-smooth spectrdhe mean square error (MSE) is computed in the time inter-
however, the performance of the Thomson method degradeal [T -L...T -L] and in the frequency interv{}L% s %]
due to cross-correlation between spectra, [4]. Other appras the average of a number oM2- 1 x 2T + 1 time-
priate choices are then e.g., [5, 6, 7]. A comparison of Herfrequency values,
mite and Slepian functions (the Thomson method) has shown
that in the case of time-varying signals and spectrograim est
mation, Hermite functions are a better choice, [8]. 1 LI e(n,k)

The choice of windows are of course important but {= Z Z S - (@

- G . . (M +1)(2T +1) \ &3 Ly E2[Sd(n,K)]

the weighting factors in the average of the different spec-
tra/spectrograms are as important. In [9], the weightirg fa \here the mean square error for each time and frequency
tors are optimized for the Peak Matched Multiple Windows,yg,e is defined
[6]. A criterion is used where normalized bias, variance and
mean square error is optimized for the predefined peaked
spectrum. In the non-stationary case, different appraache g(n,k) = Varianc@(n’ k)] + Biasz[éx(n, K)]. (3)
to approximate a time-varying spectrum with a few multiple
window spectrograms have been taken, e.g., [10, 11, 12, 13The variance is

In this paper, the optimization method in [9] is used to .
find the weighting factors for non-stationary processes us- VariancéS(n, k)| =
ing predefined windows. We compare the Hermite functions,
the Thomson windows, the Peak Matched Multiple Windows
and the Welch windows and compute the performance with
optimal weighting factors for different processes.

The paper is organized as follows: Section 2 presents the I
optimized weighting factors and in Section 3 the evaluation Z Z aj ag|hJ-T<I>H(k)R§‘(<I>(k)hg|2, (4)
for different stationary and non-stationary processepege 1=1g=1
sented. Section 4 concludes the paper.

laj agcov[éj (na k)a %(nv k)] ~

1g

where the covariance matrix R} = E[xx'
Thanks to the Swedish Research Council for funding. with x = [x(nL)...x(nL + N — 1T and ®(Kk) =
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diagl e 2/K g 2mN-1k/K] and the superscript The locally stationary process approach, [15, 16], wheee th
H denotes conjugate transpose, according to [4]. Reductiorovariance function of a non-stationary process is defilyed b
of the variance is established if the correlation between th
windowed periodogram (subspectra),
5 rns(n,m) — rw(n_ m)e_((n_m)/(FS))Ze_((n‘Hn)/(FS))Z7 (8)
N—-1
Si(n,k) = Z X(m+ nL)hj(m)e*'Z"%m , gives a time-variable band-limited spectrum where the
m=0 time-variable power of the bandlimited white-noise praces
changes with a Gaussian envelope. Two examples are seen in
Figure 1b) and c) as a more slowly varying process, Case 2,
(Fs=120), and a faster varying process, Casd-360).

from the windowsh; andhyg, j # g, is small for all frequency
valuesk.
The bias is

a) Case 1

Biasi&(n k)] = E[S(n.k)] - S(n.k)

|
= Y ajh] " (RE®(K)hj —S¢(n k), ()
j=1

whereSi(n,k) is the Wigner-Ville spectrum. The optimiza-
tion criterion of Eq. (2) includes the expressions of EqH)4

wherehj, j =1, ... ,| are known windows an® is the
time-variable covariance matrix. The unknown variables ar
aj, j =1,...,1 which appear both in the numerator and the

denominator of Eq. (2). The minimization of the criterion
is therefore done iteratively with a quasi-Newton algarith
[14]. The criterion and its derivative are used in the algo-
rithm. The algorithm is described in [9]. Using these wegght
in the multiple window spectrogram estimate is referredsto a
OPTWEIL.

2.2 Averaging and Scale Optimization

Usually, the spectrograms from different windows are
equally weighted and averaged in the final estimate, i.e.,

1 .
aj:I—, j=1...1. (6)
Using equal weights according to Eq. (6) is referred to as
EQWEI. The mean square error could be optimized using o) case 3

equal weights scaled with a constant factor, i.e.,

c .
af==j=1...1
F=1 :

where a closed form expression for the faat@ found from

S(nk)

T M
B an—T Zk=—M E_Z[m

Ci
T v S(nk) ’
2n=-T 2k=—M EZnK)]

which is referred to as SCWEL.

3. RESULTS Figure 1: The three different test covariance matrices for
3.1 Band-limited white noise process band-limited white noise processes, a) Stationary process
B = 0.08, b) Slowly time-varying non-stationary process,

The evaluation is done for different stationary and non s — 120, c) Time-varying non-stationary proceBs= 60.

stationary processes. The band-limited white noise peoces

with the covariance function The weighting factors are optimized using four different

sin(mB(n—m)) sets of multiple windows. The Thomson multiple windows
—m (7)  (TH), [1], give uncorrelated subspectra and thereby lovirvar
B(n—m) / ¢ s \
ance for a stationary white noise process. The TH windows
generates a Toeplitz covariance mafy (n,m), which is  h; are given by the solution of an eigenvalue problem and
shown in Figure 1a) as Case 1 Br= (8+3)/128~ 0.08.  the number of windows relates to the bandwidth as

rw(n—m)=B
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3.2 Band-limited peaked spectrum process

| ~B-N-3. ©) Instead of using a bandlimited white noise process the sta-
The Peak Matched multiple windows, (PM), [6], are de-tionary covariance function in Eq. (7) is replaced with the
signed to give small correlation between subspectra whecovariance functions(n—m) of a band-limited peaked spec-
the spectrum of the stationary process includes peaks amidim according to,
notches. The windows are given by the solution of the gen-
eralized eigenvalue problem where the number of windows eﬁgro‘(e) f<B/2
satisfies Eq. (9). Other parameter choices are peak height S(f) = 0 H N B;Z (10)
C =20 dB and sidelobe suppressikn= 30 dB, [6]. :

The Welch method (WO), [2], utilizes time-shifted equal In Eq. (10),S((f) is a peaked spectrum wi(0) =1,B =
windows. In this paper we use a Hanning window of appro-0.08 andS,(B/2) = —C dB, whereC = 20 dB throughout this
priate length so that the number of windowsis fitted into  paper. The non-stationary processes are found from Eq. (8)
the total window lengtiN with 50 % overlap. with ry(n—m) replaced withry(n — m).

A set of Hermite functions (HE) is computed as The results from these processes are presented in Fig-

ure 3. In Case 1, Figure 3a), for the stationary peaked spec-
trum process, the optimized weighting factors of the PM

2
h(t) = e'/? gives the smallest MSE, which is concordance with [6, 9],
hot) = 2t e t?/2 where these windows and optimized weighting factors are
’ , , shown to be optimal for this process. In Case 2, Figure 3b),
hj(t) = 2thja(t)—-2(j—2)hjat), j=3...1, for the slowly time-varying process, the benefitin usingthe

. windows and optimizing the weighting factors clearly shows

with t = g for n= —N/2...N/2—1. The parametefy' ) as'the lowest MSE is given from the combination PM and

is chosen so that the first Hermite function is approximateN\OPTWEI.

equal to the first Slepian function of the Thomson method in  |n Case 3, we also see that this is the same result is given

each case (similar approach as in [8]). for the more time-varying process. The different weighting
The number of windows are chosenlas 8 for all differ-  factors are depicted in Figure 5 for Case 2 and Case 3 where

ent methods and the window length is in all calles 128.  we see that the optimized weighting factors (stars) are very

For TH and PM the number of windows are then chosen injifferent compared to the usual averaging (circles) ankkdca

concordance with the recommendation of Eq. (9). For Case dqual weights (pluses).

(stationary process), the MSE is computed and optimized for

the frequency intervatM /K = +8/256 (2«M + 1 =17 val- 4. CONCLUSION

ues) and forT = 0. For the non-stationary casdd, = 8 . . .
andT -L =64 with T = 8, (17x 17 values) for Case 2 and e compare the Hermite functions, the Thomson windows,

T-L=16withT =8, (17x 17 values) for Case 3. the Peak Matched Multiple Windows and th_e Welch wi_n-
The MSE for Case 1 are shown in Figure 2a), for thedows and compute the performance with optimal weighting
different window setups (methods), where the MSE fromfactors for different stationary and non-stationary peses.
EQWEI is shown with circles, the SCWEI with pluses A quasi-Newton algorithm is used for the estimation. The
and OPTWEI with stars. The TH and HE are Optima|results show that the number as well as the shape of the win-
for the stationary bandlimited white-noise process usire t dows are important factors for a small mean square erra. Iti
EQWEI and thereby the optimization of the weighting fac-alS0 shown that a scaling optimization of the usual avetagin
tors (SCWEI and OPTWEI) do not give any improvement ofcould give aimost as small mean square error as an optimiza-
the MSE. The PM, does not give a small error using EQWEfion of the individual weighting factors in case of a smooth
but using SCWEI and also OPTWEI, the MSE decreasesPectrum but for a peaked spectrum, a reduction of the mean

The overall smallest error however, is given by the TH andduare error is achieved using individual optimizationhaf t

HE as expected, as these two window setups are optimal f¥feights.
a stationary bandlimited process.
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Figure 2: The mean square error for the three bandlim-
ited white noise processes with EQWEI (circles), SCWEI
(pluses) and OPTWEI (stars) for different window sets of
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Figure 4. The different weighting factors for the Hermite
functions in a) Case 2, b) Case 3, for the band-limited white
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Figure 5: The different weighting factors for the Peak
Matched Multiple Windows in a) Case 2, b) Case 3 for the
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