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ABSTRACT
This paper concerns the optimal weighting factors for mul-
tiple window spectrogram estimation of different stationary
and non-stationary processes. The choice of windows are of
course important but the weighting factors in the average of
the different spectrograms are as important. The criterionfor
optimization is the normalized mean square error where the
normalization factor is the spectrogram estimate. This means
that the unknown weighting factors will be present in the nu-
merator as well as in the denominator. A quasi-Newton al-
gorithm is used for the estimation. The optimization is com-
pared for a number of well known sets of multiple windows
and the results show that the number as well as the shape of
the windows are important factors for a small mean square
error.

1. INTRODUCTION

The idea of multiple windows or multitapering were intro-
duced by Thomson, [1], and in the last decades the Thom-
son method has been used in many different application ar-
eas. It has been shown to outperform the Welch method, [2],
in terms of leakage, resolution and variance for a station-
ary spectrally smooth process, [3]. For non-smooth spectra,
however, the performance of the Thomson method degrades
due to cross-correlation between spectra, [4]. Other appro-
priate choices are then e.g., [5, 6, 7]. A comparison of Her-
mite and Slepian functions (the Thomson method) has shown
that in the case of time-varying signals and spectrogram esti-
mation, Hermite functions are a better choice, [8].

The choice of windows are of course important but
the weighting factors in the average of the different spec-
tra/spectrograms are as important. In [9], the weighting fac-
tors are optimized for the Peak Matched Multiple Windows,
[6]. A criterion is used where normalized bias, variance and
mean square error is optimized for the predefined peaked
spectrum. In the non-stationary case, different approaches
to approximate a time-varying spectrum with a few multiple
window spectrograms have been taken, e.g., [10, 11, 12, 13].

In this paper, the optimization method in [9] is used to
find the weighting factors for non-stationary processes us-
ing predefined windows. We compare the Hermite functions,
the Thomson windows, the Peak Matched Multiple Windows
and the Welch windows and compute the performance with
optimal weighting factors for different processes.

The paper is organized as follows: Section 2 presents the
optimized weighting factors and in Section 3 the evaluation
for different stationary and non-stationary processes arepre-
sented. Section 4 concludes the paper.
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2. OPTIMIZATION OF WEIGHTING FACTORS

The Multiple Window Spectrogram̂Sx(n,k) of the zero mean
real valued random processx(n), n = 0, . . . ,N0−1 is defined
by

Ŝx(n,k) =
I

∑
j=1

α j

∣

∣

∣

∣

∣

N−1

∑
m=0

x(m+ nL)h j(m)e−i2π k
K m

∣

∣

∣

∣

∣

2
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for k = 0 . . . K − 1 and 0≤ n ≤ N0−N
L , where the as-

sumption is that the data is stationary for theN samples
x(nL) . . . x(N − 1+ nL). Equation (1) is a weighted sum
of spectrograms obtained by using the data windowsh j =
[h j(0) . . . h j(N − 1)]T , and the weighting factorsα j, j =
1 . . . I. The parameterL is the step size andK the number
of values in the DFT.

With one window,I = 1, the spectrogram has too large
variance to be useful in the analysis of stochastic processes,
as the variance is approximatelySx(n,k)2.

2.1 Mean Square Error Optimization

The mean square error (MSE) is computed in the time inter-
val [−T ·L . . .T ·L] and in the frequency interval[−M

K . . . M
K ]

as the average of a number of 2M + 1× 2T + 1 time-
frequency values,

ξ =
1

(2M +1)(2T +1)

T

∑
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M

∑
k=−M

ε(n,k)

E2[Ŝx(n,k)]
, (2)

where the mean square error for each time and frequency
value is defined

ε(n,k) = Variance[Ŝx(n,k)]+Bias2[Ŝx(n,k)]. (3)

The variance is

Variance[Ŝx(n,k)] =

I

∑
j=1

I

∑
g=1

α jαgcov[Ŝ j(n,k), Ŝg(n,k)] ≈
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2, (4)

where the covariance matrix R
n
X = E[xx

T ]
with x = [x(nL) . . .x(nL + N − 1)]T and Φ(k) =
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diag[1 e−i2πk/K . . . e−i2π(N−1)k/K] and the superscript
H denotes conjugate transpose, according to [4]. Reduction
of the variance is established if the correlation between the
windowed periodogram (subspectra),

S j(n,k) =
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,

from the windowsh j andhg, j 6= g, is small for all frequency
valuesk.

The bias is

Bias[Ŝx(n,k)] = E[Ŝx(n,k)]−Sx(n,k)

=
I

∑
j=1

α jh
T
j Φ

H(k)Rn
XΦ(k)h j −Sx(n,k), (5)

whereSx(n,k) is the Wigner-Ville spectrum. The optimiza-
tion criterion of Eq. (2) includes the expressions of Eqs. (4,5)
whereh j, j = 1, . . . , I are known windows andRn

X is the
time-variable covariance matrix. The unknown variables are
α j, j = 1, . . . , I which appear both in the numerator and the
denominator of Eq. (2). The minimization of the criterion
is therefore done iteratively with a quasi-Newton algorithm,
[14]. The criterion and its derivative are used in the algo-
rithm. The algorithm is described in [9]. Using these weights
in the multiple window spectrogram estimate is referred to as
OPTWEI.

2.2 Averaging and Scale Optimization

Usually, the spectrograms from different windows are
equally weighted and averaged in the final estimate, i.e.,

α j =
1
I
, j = 1. . . I. (6)

Using equal weights according to Eq. (6) is referred to as
EQWEI. The mean square error could be optimized using
equal weights scaled with a constant factor, i.e.,

αc
j =

c
I

j = 1. . . I,

where a closed form expression for the factorc is found from

c =
∑T

n=−T ∑M
k=−M

S2
x(n,k)

E2[Ŝx(n,k)]

∑T
n=−T ∑M

k=−M
Sx(n,k)

E[Ŝx(n,k)]

,

which is referred to as SCWEI.

3. RESULTS

3.1 Band-limited white noise process

The evaluation is done for different stationary and non-
stationary processes. The band-limited white noise process
with the covariance function

rw(n−m) = B
sin(πB(n−m))

πB(n−m)
, (7)

generates a Toeplitz covariance matrixRstat(n,m), which is
shown in Figure 1a) as Case 1 forB = (8+ 3)/128≈ 0.08.

The locally stationary process approach, [15, 16], where the
covariance function of a non-stationary process is defined by

rns(n,m) = rw(n−m)e−((n−m)/(Fs))
2
e−((n+m)/(Fs))

2
, (8)

gives a time-variable band-limited spectrum where the
time-variable power of the bandlimited white-noise process
changes with a Gaussian envelope. Two examples are seen in
Figure 1b) and c) as a more slowly varying process, Case 2,
(Fs = 120), and a faster varying process, Case 3, (Fs = 60).
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Figure 1: The three different test covariance matrices for
band-limited white noise processes, a) Stationary process,
B = 0.08, b) Slowly time-varying non-stationary process,
Fs = 120, c) Time-varying non-stationary process,Fs = 60.

The weighting factors are optimized using four different
sets of multiple windows. The Thomson multiple windows
(TH), [1], give uncorrelated subspectra and thereby low vari-
ance for a stationary white noise process. The TH windows
h j are given by the solution of an eigenvalue problem and
the number of windows relates to the bandwidth as
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I ≈ B ·N−3. (9)

The Peak Matched multiple windows, (PM), [6], are de-
signed to give small correlation between subspectra when
the spectrum of the stationary process includes peaks and
notches. The windows are given by the solution of the gen-
eralized eigenvalue problem where the number of windows
satisfies Eq. (9). Other parameter choices are peak height
C = 20 dB and sidelobe suppressionK = 30 dB, [6].

The Welch method (WO), [2], utilizes time-shifted equal
windows. In this paper we use a Hanning window of appro-
priate length so that the number of windows,I, is fitted into
the total window lengthN with 50 % overlap.

A set of Hermite functions (HE) is computed as

h1(t) = e−t2/2,

h2(t) = 2t e−t2/2,

h j(t) = 2t h j−1(t)−2( j−2)h j−2(t), j = 3 . . . I,

with t = n
FH

s
for n = −N/2. . .N/2− 1. The parameterFH

s

is chosen so that the first Hermite function is approximately
equal to the first Slepian function of the Thomson method in
each case (similar approach as in [8]).

The number of windows are chosen asI = 8 for all differ-
ent methods and the window length is in all casesN = 128.
For TH and PM the number of windows are then chosen in
concordance with the recommendation of Eq. (9). For Case 1
(stationary process), the MSE is computed and optimized for
the frequency interval±M/K =±8/256 (2∗M+1= 17 val-
ues) and forT = 0. For the non-stationary cases,M = 8
andT ·L = 64 with T = 8, (17×17 values) for Case 2 and
T ·L = 16 with T = 8, (17×17 values) for Case 3.

The MSE for Case 1 are shown in Figure 2a), for the
different window setups (methods), where the MSE from
EQWEI is shown with circles, the SCWEI with pluses
and OPTWEI with stars. The TH and HE are optimal
for the stationary bandlimited white-noise process using the
EQWEI and thereby the optimization of the weighting fac-
tors (SCWEI and OPTWEI) do not give any improvement of
the MSE. The PM, does not give a small error using EQWEI
but using SCWEI and also OPTWEI, the MSE decreases.
The overall smallest error however, is given by the TH and
HE as expected, as these two window setups are optimal for
a stationary bandlimited process.

In Case 2, Figure 2b), the slowly varying non-stationary
process shows the importance of using SCWEI (pluses) and
OPTWEI (stars) compared to the EQWEI (circles). The dif-
ference of these two weightings are, however, not that large.
It could also be noted that the HE is now slightly better than
the TH, which is in concordance with the study in [8]. The
weighting factors,α j are depicted in Figure 4a) for the Her-
mite functions. The level of EQWEI (circles) is increased for
SCWEI (pluses) and for OPTWEI the further change is not
that severe which also is the reason for the small change in
the mean square error estimate.

In Case 3, Figure 2c), using EQWEI on the faster vary-
ing non-stationary process gives a very large error. Using
SCWEI and OPTWEI gives a much lower MSE. The weight-
ing factors,α j are depicted in Figure 4b) for the Hermite
functions and the difference between EQWEI and SCWEI is
larger in than for Case 2.

3.2 Band-limited peaked spectrum process

Instead of using a bandlimited white noise process the sta-
tionary covariance function in Eq. (7) is replaced with the
covariance functionrx(n−m) of a band-limited peaked spec-
trum according to,

Sx( f ) =

{

e
−2C| f |

10Blog10(e) | f | ≤ B/2
0 | f | > B/2.

(10)

In Eq. (10),Sx( f ) is a peaked spectrum withSx(0) = 1, B =
0.08 andSx(B/2)=−C dB, whereC = 20 dB throughout this
paper. The non-stationary processes are found from Eq. (8)
with rw(n−m) replaced withrx(n−m).

The results from these processes are presented in Fig-
ure 3. In Case 1, Figure 3a), for the stationary peaked spec-
trum process, the optimized weighting factors of the PM
gives the smallest MSE, which is concordance with [6, 9],
where these windows and optimized weighting factors are
shown to be optimal for this process. In Case 2, Figure 3b),
for the slowly time-varying process, the benefit in using these
windows and optimizing the weighting factors clearly shows
up as the lowest MSE is given from the combination PM and
OPTWEI.

In Case 3, we also see that this is the same result is given
for the more time-varying process. The different weighting
factors are depicted in Figure 5 for Case 2 and Case 3 where
we see that the optimized weighting factors (stars) are very
different compared to the usual averaging (circles) and scaled
equal weights (pluses).

4. CONCLUSION

We compare the Hermite functions, the Thomson windows,
the Peak Matched Multiple Windows and the Welch win-
dows and compute the performance with optimal weighting
factors for different stationary and non-stationary processes.
A quasi-Newton algorithm is used for the estimation. The
results show that the number as well as the shape of the win-
dows are important factors for a small mean square error. It is
also shown that a scaling optimization of the usual averaging
could give almost as small mean square error as an optimiza-
tion of the individual weighting factors in case of a smooth
spectrum but for a peaked spectrum, a reduction of the mean
square error is achieved using individual optimization of the
weights.
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Figure 2: The mean square error for the three bandlim-
ited white noise processes with EQWEI (circles), SCWEI
(pluses) and OPTWEI (stars) for different window sets of
TH, PM, WO and HE, a) Stationary process, b) Slowly
time-varying non-stationary process, c) Time-varying non-
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Figure 4: The different weighting factors for the Hermite
functions in a) Case 2, b) Case 3, for the band-limited white
noise process.
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Figure 5: The different weighting factors for the Peak
Matched Multiple Windows in a) Case 2, b) Case 3 for the
band-limited peaked spectrum process.
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