
POLYNOMIAL RESIDUE NUMBER SYSTEM GF(2
M

) MULTIPLIER USING

TRINOMIALS

Junfeng Chu, Mohammed Benaissa

Department of Electronic and Electrical Engineering, the University of Sheffield

Email: j.chu@sheffield.ac.uk, m.benaissa@sheffield.ac.uk

ABSTRACT

This paper introduces a new approach for implementing

GF(2
m
) multiplication using Polynomial Residue Number

Systems (PRNS). Irreducible trinomials are selected as the

generating polynomials for the PRNS channels to enable

conversion to-and-from PRNS to be implemented using sim-

ple XOR networks. A novel approach for modular reduction

over GF(2
m
) is also presented for the PRNS architecture to

achieve better performance.

1. INTRODUCTION

Many researchers have been encouraged by the escalating

use of Galois fields GF(2
m
) arithmetic in digital signal proc-

essing, cryptography, coding theory and computer algebra to

investigate different architectures and novel algorithms to

advance Galois field circuits.

In the Polynomial Residue Number System (PRNS), each

channel is generated by a polynomial instead of a prime

number as in the typical RNS. The Chinese Remainder

Theorem (CRT), which is valid in RNS, can also be applied

to PRNS [3]. Two main advantages of using RNS architec-

tures are it uses less time and power consumption relative to

traditional systems due to smaller operands and simpler cir-

cuits [19]. PRNS has also been used to implement fault tol-

erance in DSP and communication systems [12].

Due to the nature of independence between RNS channels

and scope for randomisation, RNS architectures have also

been advocated for improving side-channel resistance in

cryptosystems [4]. For example, the same data can be repre-

sented and processed differently by using different PRNS

sets, which can be used as an attractive randomization gener-

ating method to against Differential Power Analysis (DPA).

Also, thanks to its parallelism, distributed architecture and

data independency between channels, it is quite useful to

against Electromagnetic Attacks. In addition, PRNS is also

capable of tolerance faults by using extended bases, so that it

can also be applied to countermeasure Fault Attacks.

PRNS shares most of the attractive properties with RNS; it

has been adapted to build fast FIR filters in [1] [2] and pro-

posed for computing large polynomial products in [13]. In

[24], PRNS has been chosen to simplify GF(p
m
) computa-

tions and in [7], PRNS has been proposed to achieve parallel

multiplication over binary fields. In a recent paper [23], we

reported the first hardware implementation of a PRNS multi-

plier over binary fields and its application in cryptography.

In this paper, the work in [23] is further improved by adopt-

ing trinomial irreducible polynomials for the PRNS channels

to simplify the modular reduction and conversion operations

thereby resulting in significant improvement in speed and

area. An FPGA implementation is presented which shows a

47 times’ speed*area product improvement over [23] for a

Galois Field GF(2
163

) multiplier.

The following paper is structured as: In Section 2, back-

ground knowledge is given in terms of Galois fields arith-

metic, PRNS representation of GF(2
m
) elements, the poly-

nomial residue arithmetic (PRA), according to which the

multiplier is built and the proposed PRNS modular reduc-

tion method is introduced. In Section 3, the proposed PRNS

GF(2
m
) multiplier is introduced, including the selection of

channel generating polynomials, simplified PRNS conver-

sion and reduction. In Section 4, FPGA implementations

synthesis results are given and comparisons with previous

work are made. The paper is concluded in Section 5.

2. BACKGROUND

2.1 Galois field arithmetic

In this paper, polynomial basis representation is used (other

representations may be found in [5]). A field element is writ-

ten as:

a(x)=am-1x
m-1

+am-2x
m-2

…a2x
2
+a1x+a0, where ai=1 or 0

or , in binary vector format as: (am-1am-2…a2a1a0).

The modular 2 additions and subtractions can be imple-

mented using bitwise XOR, so the channel modular adder

and subtracter circuits can be much easier implemented com-

pared with normal RNS [6].

The multiplication is demonstrated as follows:

Let A, B ∈GF(2
m
), then their product C=AB mod f(x),

where f(x) is the field generating polynomial. f(x) is used to

perform degree reduction to ensure that C is also in GF(2
m
)

and the multiplication is closed [19].

The Galois field arithmetic is also adopted in each channel

of the proposed PRNS architectures.

2.2 PRNS representation of GF(2
m

) elements

A list of irreducible polynomials over binary field is selected

as the generating polynomials for PRNS channels. They are

written as: m1, m2… mN, where N is the number of channels.

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 958

The degree of each mi is d. To cover the whole dynamic

range of a GF(2
m
) multiplication, the degree D of the product

polynomial M(x)= ∏ ��(�)�
� should be no smaller than 2m

(× � ≥ 2�).

A polynomial basis field element �(�) can be represented in

PRNS format using the remainders, when the 	 × � ≥ 2�

equation is satisfied:

�� = (�� , �� … ��)

Where �� = �(�) ��	 ��(�) for i = 1, 2, …, N. [7]

2.3 Polynomial Residue Arithmetic (PRA)

PRA is very similar to RNS arithmetic. In furthermore, be-

cause addition and subtraction operations are performed by

bitwise XOR in GF(2), it does not encounter overflow prob-

lems. In another word, modular reduction is not necessary for

addition and subtraction operations. However, the modular

reduction is still needed for multiplications to ensure all op-

erations are closed. The main arithmetic operations in PRA

can be performed as following:

� ± � = (��� ��� ��� �, … , ��� ��� ��� !
)

� × � = (��� × ��� �, … , ��� × ��� !
)

The reason that the magnitude determination cannot be per-

formed directly from RNS [8], and in order to prevent over-

flow, a conversion back to polynomial representation is nec-

essary before performing the original GF(2
m
) modular reduc-

tion.

In this work, the conversion from PRNS format to weighted

polynomial representation is based on the extension of the

CRT to polynomials [3] [20]. Single Radix Conversion (SRC)

algorithm is used to perform the conversion. It is described as

[7]:

�(�) = ∑ (�� ∙ $� ��	 ��) ∙ %�
�
�&� (1)

Where %�(�) =
'(()

)(()
= �� … ∙ ��*� ∙ ��+� … ∙ ��

$� = %�
*�(��	 ��)

2.4 Modular Reduction over GF(2
m

) using PRNS Archi-

tecture

Galois Field arithmetic required the multiplication to be

closed, to prevent overflow, modular reduction is performed

following the calculation of the intermediate product using

the field generating polynomial f(x), whose degree is equal to

m.

Focusing on polynomial basis multiplications over GF(2
m
),

several approaches have been reported for the modular re-

duction, such as “shift-and-add” algorithms [14][15][16],

look-up-table (LUT) based algorithms [17][18], Itoh-Tsujii

algorithm based reduction method [10], etc.

In our proposed multiplier architecture, a novel modular re-

duction method for PRNS is derived as follows:

Over GF(2
m
), which is generated by f(x), the multiplication

can be expressed as:

�	,(�) = �(�) ∙ �(�) mod 0(�) (2)

The intermediate product, �(�) ∙ �(�)can be expressed in

polynomial forms as

c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
+ cm-1x

m-1
+…+ c1x+c0

So, equation (2) can be written as

(c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
+ cm-1x

m-1
+…+ c1x+c0) mod

f(x)=(c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (cm-1x

m-1
+

…+ c1x+c0) mod f(x) (3)

Since f(x) is a polynomial with degree m,

(3)= (c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (cm-1x

m-

1
+…+ c1x+c0) (4)

In GF(2), 1+1=0, so (c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) can be

added to (4) twice without changing the equation’s value.

(4)= (c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (cm-1x

m-

1
+…+ c1x+c0) + (c2m-2x

2m-2
+ c2m-3x

2m-3
+...+ cmx

m
)+(c2m-2x

2m-

2
+ c2m-3x

2m-3
+...+ cmx

m
) (5)

Rearranging (5):

�	,(�)=(c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (c2m-

2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) + (c2m-2x

2m-2
+c2m-3x

2m-3
+...+ cmx

m

+ cm-1x
m-1

+…+ c1x+c0)

Rewrite it in binary vector format:

�	,(�)=(c2m-2,c2m-3,…cm,0,…0) mod f(x) + (c2m-2,c2m-3,

...cm0,…0) + (c2m-2, c2m-3,...cm,cm-1,…c1,c0) (6)

After mod mod f(x) operation, the result can be expressed as

(c’m-1,…c’1,c’0), so

�	,(�) =(c’m-1,…c’1,c’0) + (c2m-2,c2m-3,...cm0,…0) + (c2m-2,

c2m-3,...cm,cm-1,…c1,c0)

=(c2m-2,c2m-3,...cm,c’m-1,…c’1,c’0) + (c2m-2,c2m-3,...cm,

cm-1,…c1,c0) (7)

Both components in (7) can be expressed using PRNS repre-

sentation. The modular reduction over GF(2
m
) can be finally

performed by PRNS addition.

To implement the modular reduction, it is required to par-

tially convert the intermediate product’s most significant m-1

bits from PRNS to normal polynomial representation to gen-

erate (c2m-2,c2m-3,...cm,0,…0) component. And a modular re-

duction operation using f(x) to get (c’m-1,…c’1,c’0) compo-

nent. In addition, a to-PRNS converter is needed to convert

the (c2m-2,c2m-3,...cm,c’m-1,…c’1,c’0) component to PRNS for-

mat to perform the final PRNS addition.

Due to the fact that partial conversion and a PRNS architec-

ture are adopted, this design is effective in preventing leaking

information while performing the conversion and modular

reduction.

The detailed implementation information is described in part

3.

959

3. THE PROPOSED PRNS GF(2
M

) MULTIPLIER

Consider the example application of the proposed multiplier

in the context of public key cryptosystems, in particular ellip-

tic curve cryptography (ECC) where the required large oper-

ands impose many design challenges. The curve K-163 pre-

sented in Fips-186 [11] is chosen as a standardized curve for

ECC over the binary field. It uses the field generating poly-

nomial 0(�) = ��12+�4 + �1 + �2 + 1 over GF(2
163

). A

GF(2
163

) multiplier is constructed to demonstrate the pro-

posed PRNS architecture.

To cover the whole dynamic range, four 84-degree irreduci-

ble trinomials are selected as the PRNS channels. This satis-

fies the dynamic range 	 × � ≥ 2� equation, where d=84,

N=4, m=163. There are two main reasons why trinomials are

chosen. Firstly, in Galois field multiplications, using trinomi-

als achieves the lowest hardware complexity in modular re-

duction, especially when the trinomials are of the form

� + �6 + 1, where 7 ≤

�
 [21]. This property of trinomials

is also attractive when building the PRNS converter. Sec-

ondly, in equation (1), it can be seen that Mi, which is a con-

stant value in the determined PRNS, is the product of several

channel generating polynomials. To make the multiplying by

Mi operation simple, it is required that Mi should have a

smaller number of ‘1’s and this can be best achieved by using

trinomials, because they are the irreducible polynomials with

the fewest ‘1’s over binary field.

However, trade-offs are required between the channel length

and the channel number for an optimised design. To cover

the same dynamic range, shorter channel lengths require

more channels, which may lead to consuming more hardware

resources and to more complex converter design. In addition,

irreducible trinomials only appear in certain degrees and the

number of trinomials, which satisfy 7 ≤

�
 , is even smaller.

That is the reason why four 84-degree irreducible trinomials

are selected for this design.

3.1 Channel Multiplier Design

There are several approaches for implementing the PRNS

channel multipliers, such as bit-serial architecture [14] [15]

[16], bit-parallel architecture [21] [22] and digital se-

rial/parallel architecture [9]. Since the selected field length

for PRNS channels is quite large, which is degree of 84, the

bit-serial architecture is adopted here in order to achieve the

lowest hardware complexity. Figure 1 illustrates an MSB-

first bit-serial multiplier over GF(2
4
) generated by trinomial

x
4
+x+1. In addition, such multiplier is not only suitable for

performing channel multiplication, but also for calculating

(�� ∙ $� ��	 ��) in equation (1).

3.2 Multiplying by Mi Operation

Consider the following example where M1 is written in poly-

nomial form as:

x
252

+x
181

+x
179

+x
177

+x
168

+x
108

+x
106

+x
104

+x
84

+x
33

+x
24

+x
22

+x
20

+x
13

+x
11

+x
9
+1 (8)

(It is a product of all channels generating polynomials except

the one for Channel 1. Those polynomials are 1+X
9
+X

84
,

1+X
11

+X
84

, 1+X
13

+X
84

)

According to equation (6), since a partial conversion is per-

formed to calculate the most significant 162 bits of the in-

termediate product, the component with the degree smaller

than 84 can be ignored in (8), because they do not contribute

to the final partial conversion result. So multiplying M1 can

be done by multiplying by the following polynomial instead:

x
252

+x
181

+x
179

+x
177

+x
168

+x
108

+x
106

+x
104

+x
84

It is assumed that the multiplicand is a(x) which is in a PB

representation. The multiplication is as follows:

a(x) •(x252
+x

181
+x

179
+x

177
+x

168
+x

108
+x

106
+x

104
+x

84
)

= a(x) •x252
+ a(x) •x

181
+ a(x) •x179

+ a(x) •x
177

+ a(x) •x
168

+

a(x) •x
108

+ a(x) •x
106

+ a(x) •x104
+ a(x) •x84

 (9)

It is simple to implement (9) by using an XOR network and

routing a(x) in the correct position as illustrated by Figure 2.

0a(x) Ignore
252 84 0

0a(x) Ignore
181 84 0

0

0a(x) Ignore
179 84 0

0

0a(x) Ignore
104 84 0

0

0 a(x) Ignore
84 0

XOR

XOR

XOR

XOR

Results Ignore
163

•x252•x181•x179•x104•x84

Figure 2 Multiplying by M1

3.3 GF(2
m
) Modular Reduction and to_PRNS Converter

A bit-parallel modular reduction method is adopted to per-

form the field modular reduction to reduce (c2m-2,c2m-

3,...cm,0,…0) components to a degree smaller than m, the

result is written in binary vector format as (c’m-1,…c’1,c’0),

which implements the calculation of the first components in

equation (7).

The to-PRNS converter is implemented by simple modular

reduction using the selected trinomials. The detailed imple-

mentation approach can be found in [21].

Both modular reduction and conversion are implemented

using a simple XOR network.

960

3.4 Architecture of the Proposed PRNS Multiplier

Figure 3 shows the full architecture of the proposed PRNS

multiplier over GF(2
163

). It is assumed that the input and the

output of the multiplier are all in PRNS representation.

The GF(2
84

) multipliers on the left hand side perform PRNS

channel modular multiplication, the one on the right performs

part of SRC algorithm which is (�� ∙ $� ��	 ��) operation in

equation (1). Ii are pre-calculated and stored into the shift

registers. When there is a valid signal on Shift-reg-enable,

the shift register starts to forward Ii bit by bit to the second

GF(2
84

) multiplier acting as a bit-serial input.

The module Mul Mi, Partial Reduction and To PRNS Con-

verter are constructed using pure XORs. According to equa-

tion (7), the output of To PRNS Converter is the PRNS rep-

resentation of (c2m-2,c2m-3,...cm,c’m-1,…c’1,c’0), the output of

the first registers is the PRNS representation of (c2m-2,c2m-

3,...cm,cm-1,…c1,c0). The final product after GF(2
163

) modular

reduction is generated by a PRNS addition operation, which

is implemented as bitwise XORs.

It takes 168 clock cycles to finish a multiplication operation.

This includes 83 clock cycles performing channel multiplica-

tion, another 83 clock cycles performing multiplication by Ii

and 2 clock cycles on the data propagating through two regis-

ters.

As it can be seen from Figure 3, all channels are separate,

similar and their operations are performed in parallel hence

offering an inherent mechanism for masking, randomisation

and fault tolerance which could help improve protection

against any potential side channel leakage or analysis [4].

4. HARDWARE RESULTS AND COMPARISONS

Xilinx Spartan 3-3s1500lfg320-4 FPGA is used for synthesis

and implementation to enable a fair comparison.

Table 1 shows the synthesis results of the proposed multipli-

ers compared with our previous work in [23] which to our

knowledge is the only other reported implementation of a

PRNS multiplier over binary fields.

From the results, the work in this paper shows significant

improvements both in hardware consumption and speed

compared with our previous work.

The figures indicate that this work consumes half and one

third slices compared with the channel-serial and channel-

parallel architecture respectively. The highest operating fre-

quency is improved by over 30 times. The total delay is im-

proved by 25 times over the channel-serial architecture and

by 17 times over the channel-parallel architecture. This fig-

ures also show a 47 times’ Time-Area Product improvement

over the channel-serial architecture, a 57 times’ improvement

over the channel-parallel architecture.

Table 1 Synthesis Results

Channel-

serial [23]

Channel-

Parallel[23]
This work

FF 1010 1350 1691

LUT 5274 8675 2588

Slices 2752 4625 1429

Frequency

(MHz)
5.179 5.119 164.015

Cycles 130 93 168

Delay (ms) 25.1*10-3
 18.2*10-3

 1.024*10-3
Time-Area

Product

(Slices*second)

69*10-3
 84*10-3

 1.463*10-3

Mul

I1

Shift-reg
en

MulReg
en

Reg
en

Mul
M1

XOR
Mul

I2

MulReg
en

Reg
en

Mul
M2

Mul

I3

MulReg
en

Reg
en

Mul
M3

Mul

I4

MulReg
en

Reg
en

Mul
M4

Partial
Reduction

To PRNS
ConverterXOR XOR XOR XOR

84 84 84 84 173 173 173 163 84Channel_1a

Channel_2a

Channel_3a

Channel_4a

Channel_1b

Channel_2b

Channel_3b

Channel_4b

84 c1

c2

c3

c4

Control
Reg1 enable

Reg2 enable

Shift-reg
enable

clk

Start84

Figure 3 Architecture of PRNS Multiplier

961

As mentioned in Section 3, using trinomials simplifies the

modular reduction and To PRNS conversion operations.

Furthermore, together with the partial conversion method,

using trinomials breaks down the bottleneck in multiplying

by Mi operation; hence it achieves higher speed and less re-

source.

Table 2 Comparisons to non-PRNS works

Table 2 shows the comparisons with some other 163 bits

parallel GF(2
m
) multipliers. The figures indicate that this

work shows great improvements both in area and speed than

the ones in the table. Though this multiplier is neither forcing

on high speed nor on low area, it provides the potential to

countermeasure side-channel-attacks as well as a feasible

option to implement parallel architecture.

5. CONCLUSIONS

In this paper, irreducible trinomials are adopted in the design

and implementation of a novel PRNS multiplication architec-

ture over GF(2
m
) . This architecture is shown to exhibit im-

proved overall hardware performance in both speed and area

as confirmed by FPGA results. Such multipliers are particu-

larly useful in fault tolerant DSP application [12] and side-

channel resistant cryptographic implementations [4].

REFERENCES

[1] S. Alexander, A.Jorge and G. Suhas. PRNS Approach To Fast FIR

Filtering. IEEE Proceedings, Southeastcon, 1990.

[2] M. Abdallah,A. Skavantzos. The Multipolynomial Channel Polyno-

mial Residue Arithmetic System. IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS, II: ANALOG AND DIGITAL

SIGNAL PROCESSING, VOL. 46, NO. 2, FEBRUARY 1999.

[3] M.C. Yang and J.L.Wu. A New Interpretation of “Polynomial Residue

Number System”. IEEE Transactions on Signal Processing.

Vol.42,No.8,August 1994.

[4] M. Ciet, M. Neve1, E. Peeters1, J. Quisquater., “Parallel FPGA im-

plementation of RSA with Residue Number Systems: can side-

channel threats be avoided?” IEEE Midwest Symposium on Circuits

and Systems, Dec. 2003, Egypt.

[5] L. Batina, S.B. Őrs, B. Preneel, J. Vandewalle. “Hardware architec-

tures for public key cryptography,” Elsevier Integration, the VLSI

Journal, special issue on Embedded Cryptographic Hardware 34(1-2),

pp. 1-64, 2003.

[6] W.N.Chelton and M.Benaissa, Fast Elliptic Curve Cryptography on

FPGA, IEEE Transactions on VLSI Systems, Vol.16,No.2, February

2008.

[7] A. Halbutoğullari, “Parallel multiplication in GF(2k) using polyno-

mial residue arithmetic,” Designs, Codes and Cryptography, Vol.20

No.2, pp. 155–173, June 2000.

[8] Riyaz Aziz Patel, "A study and implementation of parallel-prefix

modular adder architechtures for the Residue Number System," Ph.D.

dissertation, The University of Sheffield, Sheffield, The UK, 2006.

[9] M.Hütter, J.Groβschädl and G.A.Kamendje, A Versatile and Scable

Digit-Serial/Parallel Multiplier Architecture for Finite Field GF(2m),

The International Conference on Information Technology: Computers

and Communications,2003.

[10] Bharathwaj, S.V., Narasimhan, K.L., “An alternate approach to modu-

lar multiplication for finite fields [GF (2m)] using Itoh Tsujii algo-

rithm,” IEEE-NEWCAS Conference, pp.103–105, June 2005.

[11] FIPS 186-2, Digital Signature Standard,2000.

[12] M.G.Parker and M.Benaissa, Fault-Tolerant Linear Convolution using

Residue Number Systems. Proc of ISCAS '94, London, Vol 2, pp 441-

445, May 1994.

[13] A.Skavantzos, N. Mitash.Computing Large Polynomial Products

using Modular Arithmetic. IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL

PROCESSING, VOL. 39, NO. 4, APRIL 1992.

[14] Y. Han, P.-C. Leong, P.-C. Tan, and J. Zhang. Fast algorithms for

elliptic curve cryptosystems over binary finite field. In Advances in

Cryptology — ASIACRYPT ’99, LNCS 1716, pp. 75–85. Springer

Verlag, 1999.

[15] M. A. Hasan. Look-up table-based large finite field multiplication in

memory constrained cryptosystems. IEEE Transactions on Computers,

49(7):749–758, July 2000.

[16] J. C. L´opez Hern´andez and R. Dahab. High-speed software multipli-

cation in IF2m. In Progress in Cryptology — INDOCRYPT 2000,

LNCS 1977 pp. 203–212. Springer Verlag, 2000.

[17] C. K. Koc¸ and T. Acar. Montgomery multiplication in GF(2k). De-

signs, Codes and Cryptography, 14(1):57–69, Apr. 1998.

[18] N. P. Smart. A comparison of different finite fields for elliptic curve

cryptosystems. Computers and Mathematics with Applications, 42(1-

2):91–100, July 2001.

[19] J. Chu, "Public Key Cryptography using Residue Number Systems on

FPGA" MSc dissertation, The University of Sheffield, Sheffield, UK,

2007.

[20] D. E. Knuth. The Art of Computer Programming, Volume 2, Semi-

numerical Algorithms. Reading,MA: Addison-Wesley, Third edition,

1998.

[21] H. Wu. Bit-Parallel Finite Field Multiplier and Squarer Using Poly-

nomial Basis. IEEE Transactions on Computers, Vol.51, No.7, July

2002.

[22] Mastrovito Edoardo, "VLSI Architectures for Computations in Galois

Fields," Ph.D. dissertation, Linkoeping University, Linkoeping, Swe-

den, 1991.

[23] J. Chu, M.Benaissa, GF(2m) Multiplier using Polynomial Residue

Number System. IEEE APCCAS 2008, 30 Nov-4 Dec, Macao, China.

[24] M.G.Parker and M.Benaissa, GF(p^m) Multiplication Using Polyno-

mial Residue Number Systems. IEEE Trans on Circuits and Systems

II, Vol 42, No 11, pp 718-721, Nov 1995.

[25] N. S. Chang, C. H. Kim, Y. H. Park, and J. Lim. A Non-Redundant

and Efficient Architecture for Karatsuba-Ofman Algorithm. In Infor-

mation Security, 8th International Conference, ISC 2005, Singapore,

September 20-23, 2005, Proceedings, volume 3650 of Lecture Notes

in Computer Science, pages 288–299. Springer, 2005

[26] S. Erdem and C ̧. K. Ko¸c. A Less Recursive Variant of Karatsuba-

Ofman Algorithm for Multiplying Operands of Size a Power of Two.

In 16th IEEE Symposium on Computer Arithmetic (Arith-16 2003),

15-18 June 2003, Santiago de Compostela, Spain, pages 28–35. IEEE

Computer Society, 2003.

[27] F. Rodr´ıguez-Henr´ıquez and C.K. KoC ̧. Parallel Multipliers Based

on Special Irreducible Pentanomials. IEEE Trans. Computers,

52(12):1535–1542, 2003.

[28] V. Serrano-Hern´andez and F. Rodr´ıguez-Henr´ıquez. An FPGA

Evaluation of Karatusba-Ofman Multiplier Variants (in spanish).

Technical Report CINVESTAV_COMP 2006-2, 12 pages, Computer

Science Department CINVESTAVIPN, Mexico, May 2006.

Work imple-

mented by [28]
Platform Slices Delay

Proposed by [25] Virtex 2 5307 12.56µs

Proposed by [26] Virtex 2 5409 13.37µs

Proposed by [27] Virtex 2 5840 14.73µs

This work Spartan 3 1429 1.024µs

962

