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ABSTRACT 

This paper introduces a new approach for implementing 

GF(2
m
) multiplication using Polynomial Residue Number 

Systems (PRNS). Irreducible trinomials are selected as the 

generating polynomials for the PRNS channels to enable 

conversion to-and-from PRNS to be implemented using sim-

ple XOR networks. A novel approach for modular reduction 

over GF(2
m
) is also presented for the PRNS architecture to 

achieve better performance.   

1. INTRODUCTION 

Many researchers have been encouraged by the escalating 

use of Galois fields GF(2
m
) arithmetic in digital signal proc-

essing, cryptography, coding theory and computer algebra to 

investigate different architectures and novel algorithms to 

advance Galois field circuits.  

In the Polynomial Residue Number System (PRNS), each 

channel is generated by a polynomial instead of a prime 

number as in the typical RNS. The Chinese Remainder 

Theorem (CRT), which is valid in RNS, can also be applied 

to PRNS [3]. Two main advantages of using RNS architec-

tures are it uses less time and power consumption relative to 

traditional systems due to smaller operands and simpler cir-

cuits [19]. PRNS has also been used to implement fault tol-

erance in DSP and communication systems [12].  

Due to the nature of independence between RNS channels 

and scope for randomisation, RNS architectures have also 

been advocated for improving side-channel resistance in 

cryptosystems [4]. For example, the same data can be repre-

sented and processed differently by using different PRNS 

sets, which can be used as an attractive randomization gener-

ating method to against Differential Power Analysis (DPA). 

Also, thanks to its parallelism, distributed architecture and 

data independency between channels, it is quite useful to 

against Electromagnetic Attacks. In addition, PRNS is also 

capable of tolerance faults by using extended bases, so that it 

can also be applied to countermeasure Fault Attacks. 

PRNS shares most of the attractive properties with RNS; it 

has been adapted to build fast FIR filters in [1] [2] and pro-

posed for computing large polynomial products in [13]. In 

[24], PRNS has been chosen to simplify GF(p
m
) computa-

tions and in [7], PRNS has been proposed to achieve parallel 

multiplication over binary fields. In a recent paper [23], we 

reported the first hardware implementation of a PRNS multi-

plier over binary fields and its application in cryptography. 

In this paper, the work in [23] is further improved by adopt-

ing trinomial irreducible polynomials for the PRNS channels 

to simplify the modular reduction and conversion operations 

thereby resulting in significant improvement in speed and 

area. An FPGA implementation is presented which shows a 

47 times’ speed*area product improvement over [23] for a 

Galois Field GF(2
163

) multiplier. 

The following paper is structured as: In Section 2, back-

ground knowledge is given in terms of Galois fields arith-

metic, PRNS representation of GF(2
m
) elements, the poly-

nomial residue arithmetic (PRA), according to which the 

multiplier is built and the proposed PRNS modular reduc-

tion method is introduced. In Section 3, the proposed PRNS 

GF(2
m
) multiplier is introduced, including the selection of 

channel generating polynomials, simplified PRNS conver-

sion and reduction. In Section 4, FPGA implementations 

synthesis results are given and comparisons with previous 

work are made. The paper is concluded in Section 5. 

2. BACKGROUND 

2.1 Galois field arithmetic 

In this paper, polynomial basis representation is used (other 

representations may be found in [5]). A field element is writ-

ten as: 

a(x)=am-1x
m-1

+am-2x
m-2

…a2x
2
+a1x+a0, where ai=1 or 0 

or , in binary vector format as: (am-1am-2…a2a1a0). 

The modular 2 additions and subtractions can be imple-

mented using bitwise XOR, so the channel modular adder 

and subtracter circuits can be much easier implemented com-

pared with normal RNS [6].   

The multiplication is demonstrated as follows:  

Let A, B ∈GF(2
m
), then their product C=AB mod f(x), 

where f(x) is the field generating polynomial. f(x) is used to 

perform degree reduction to ensure that C is also in GF(2
m
) 

and the multiplication is closed [19]. 

The Galois field arithmetic is also adopted in each channel 

of the proposed PRNS architectures. 

2.2 PRNS representation of GF(2
m

) elements 

A list of irreducible polynomials over binary field is selected 

as the generating polynomials for PRNS channels. They are 

written as: m1, m2… mN, where N is the number of channels. 
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The degree of each mi is d. To cover the whole dynamic 

range of a GF(2
m
) multiplication, the degree D of the product 

polynomial M(x)= ∏ ��(�)�
�  should be no smaller than 2m 

( 	 × � ≥ 2� ). 

A polynomial basis field element �(�) can be represented in 

PRNS format using the remainders, when the 	 × � ≥ 2� 

equation is satisfied: 

�� = (�� , �� … ��) 

Where �� = �(�) ��	 ��(�) for i = 1, 2, …, N. [7] 

2.3 Polynomial Residue Arithmetic (PRA) 

PRA is very similar to RNS arithmetic. In furthermore, be-

cause addition and subtraction operations are performed by 

bitwise XOR in GF(2), it does not encounter overflow prob-

lems. In another word, modular reduction is not necessary for 

addition and subtraction operations. However, the modular 

reduction is still needed for multiplications to ensure all op-

erations are closed. The main arithmetic operations in PRA 

can be performed as following: 

� ± � = (��� ��� ��� �, … , ��� ��� ��� !
) 

� × � = (��� ×  ��� �, … , ���  ×  ��� !
) 

The reason that the magnitude determination cannot be per-

formed directly from RNS [8], and in order to prevent over-

flow, a conversion back to polynomial representation is nec-

essary before performing the original GF(2
m
) modular reduc-

tion. 

In this work, the conversion from PRNS format to weighted 

polynomial representation is based on the extension of the 

CRT to polynomials [3] [20]. Single Radix Conversion (SRC) 

algorithm is used to perform the conversion. It is described as 

[7]: 

�(�) = ∑ (�� ∙ $�  ��	 ��) ∙ %�
�
�&�  (1) 

Where %�(�) =
'(()

 )(()
= �� … ∙ ��*� ∙ ��+� … ∙ �� 

$� = %�
*�(��	 ��) 

2.4 Modular Reduction over GF(2
m

) using PRNS Archi-

tecture 

Galois Field arithmetic required the multiplication to be 

closed, to prevent overflow, modular reduction is performed 

following the calculation of the intermediate product using 

the field generating polynomial f(x), whose degree is equal to 

m. 

Focusing on polynomial basis multiplications over GF(2
m
),  

several approaches have been reported for the modular re-

duction, such as “shift-and-add” algorithms [14][15][16], 

look-up-table (LUT) based algorithms [17][18], Itoh-Tsujii 

algorithm based reduction method [10], etc. 

In our proposed multiplier architecture, a novel modular re-

duction method for PRNS is derived as follows: 

Over GF(2
m
), which is generated by f(x), the multiplication 

can be expressed as: 

�	,(�) = �(�) ∙ �(�) mod 0(�)  (2) 

The intermediate product, �(�) ∙ �(�)can be expressed in 

polynomial forms as  

c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
+ cm-1x

m-1
+…+ c1x+c0 

So, equation (2) can be written as  

(c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
+ cm-1x

m-1
+…+ c1x+c0)  mod 

f(x)=(c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (cm-1x

m-1
+ 

…+ c1x+c0) mod f(x)   (3) 

Since f(x) is a polynomial with degree m, 

(3)= (c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (cm-1x

m-

1
+…+ c1x+c0)    (4) 

In GF(2), 1+1=0, so (c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) can be 

added to (4) twice without changing the equation’s value. 

(4)= (c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (cm-1x

m-

1
+…+ c1x+c0) + (c2m-2x

2m-2
+ c2m-3x

2m-3
+...+ cmx

m
)+(c2m-2x

2m-

2
+ c2m-3x

2m-3
+...+ cmx

m
)   (5) 

Rearranging (5): 

�	,(�)=(c2m-2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) mod f(x) + (c2m-

2x
2m-2

+ c2m-3x
2m-3

+...+ cmx
m
) + (c2m-2x

2m-2
+c2m-3x

2m-3
+...+ cmx

m 

+ cm-1x
m-1

+…+ c1x+c0)   

Rewrite it in binary vector format: 

�	,(�)=(c2m-2,c2m-3,…cm,0,…0) mod f(x) + (c2m-2,c2m-3, 

...cm0,…0) + (c2m-2, c2m-3,...cm,cm-1,…c1,c0) (6) 

After mod mod f(x) operation, the result can be expressed as 

(c’m-1,…c’1,c’0), so 

�	,(�) =(c’m-1,…c’1,c’0) + (c2m-2,c2m-3,...cm0,…0) + (c2m-2, 

c2m-3,...cm,cm-1,…c1,c0) 

=(c2m-2,c2m-3,...cm,c’m-1,…c’1,c’0) + (c2m-2,c2m-3,...cm, 

cm-1,…c1,c0)    (7) 

Both components in (7) can be expressed using PRNS repre-

sentation. The modular reduction over GF(2
m
) can be finally 

performed by PRNS addition. 

To implement the modular reduction, it is required to par-

tially convert the intermediate product’s most significant m-1 

bits from PRNS to normal polynomial representation to gen-

erate  (c2m-2,c2m-3,...cm,0,…0) component. And a modular re-

duction operation using f(x) to get (c’m-1,…c’1,c’0) compo-

nent. In addition, a to-PRNS converter is needed to convert 

the (c2m-2,c2m-3,...cm,c’m-1,…c’1,c’0) component to PRNS for-

mat to perform the final PRNS addition. 

Due to the fact that partial conversion and a PRNS architec-

ture are adopted, this design is effective in preventing leaking 

information while performing the conversion and modular 

reduction. 

The detailed implementation information is described in part 

3. 
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3. THE PROPOSED PRNS GF(2
M

) MULTIPLIER 

Consider the example application of the proposed multiplier 

in the context of public key cryptosystems, in particular ellip-

tic curve cryptography (ECC) where the required large oper-

ands impose many design challenges. The curve K-163 pre-

sented in Fips-186 [11] is chosen as a standardized curve for 

ECC over the binary field. It uses the field generating poly-

nomial 0(�) = ��12+�4 + �1 + �2 + 1  over GF(2
163

). A 

GF(2
163

) multiplier is constructed to demonstrate the pro-

posed PRNS architecture. 

To cover the whole dynamic range, four 84-degree irreduci-

ble trinomials are selected as the PRNS channels. This satis-

fies the dynamic range  	 × � ≥ 2� equation, where d=84, 

N=4, m=163. There are two main reasons why trinomials are 

chosen. Firstly, in Galois field multiplications, using trinomi-

als achieves the lowest hardware complexity in modular re-

duction, especially when the trinomials are of the form  

� + �6 + 1, where 7 ≤
 

�
 [21]. This property of trinomials 

is also attractive when building the PRNS converter. Sec-

ondly, in equation (1), it can be seen that Mi, which is a con-

stant value in the determined PRNS, is the product of several 

channel generating polynomials. To make the multiplying by 

Mi operation simple, it is required that Mi should have a 

smaller number of ‘1’s and this can be best achieved by using 

trinomials, because they are the irreducible polynomials with 

the fewest ‘1’s over binary field.  

However, trade-offs are required between the channel length 

and the channel number for an optimised design. To cover 

the same dynamic range, shorter channel lengths require 

more channels, which may lead to consuming more hardware 

resources and to more complex converter design. In addition, 

irreducible trinomials only appear in certain degrees and the 

number of trinomials, which satisfy  7 ≤
 

�
 , is even smaller. 

That is the reason why four 84-degree irreducible trinomials 

are selected for this design. 

3.1 Channel Multiplier Design 

There are several approaches for implementing the PRNS 

channel multipliers, such as bit-serial architecture [14] [15] 

[16], bit-parallel architecture [21] [22] and digital se-

rial/parallel architecture [9]. Since the selected field length 

for PRNS channels is quite large, which is degree of 84, the 

bit-serial architecture is adopted here in order to achieve the 

lowest hardware complexity.  Figure 1 illustrates an MSB-

first bit-serial multiplier over GF(2
4
) generated by trinomial 

x
4
+x+1. In addition, such multiplier is not only suitable for 

performing channel multiplication, but also for calculating 

(�� ∙ $�  ��	 ��) in equation (1).  

 

3.2 Multiplying by Mi Operation 

Consider the following example where M1 is written in poly-

nomial form as: 

x
252

+x
181

+x
179

+x
177

+x
168

+x
108

+x
106

+x
104

+x
84

+x
33

+x
24

+x
22

+x
20

+x
13

+x
11

+x
9
+1   (8) 

(It is a product of all channels generating polynomials except 

the one for Channel 1. Those polynomials are 1+X
9
+X

84
, 

1+X
11

+X
84

, 1+X
13

+X
84

) 

According to equation (6), since a partial conversion is per-

formed to calculate the most significant 162 bits of the in-

termediate product, the component with the degree smaller 

than 84 can be ignored in (8), because they do not contribute 

to the final partial conversion result. So multiplying M1 can 

be done by multiplying by the following polynomial instead: 

x
252

+x
181

+x
179

+x
177

+x
168

+x
108

+x
106

+x
104

+x
84

 

It is assumed that the multiplicand is a(x) which is in a PB 

representation. The multiplication is as follows: 

a(x) •(x252
+x

181
+x

179
+x

177
+x

168
+x

108
+x

106
+x

104
+x

84
) 

= a(x) •x252
+ a(x) •x

181
+ a(x) •x179

+ a(x) •x
177

+ a(x) •x
168

+ 

a(x) •x
108

+ a(x) •x
106

+ a(x) •x104
+ a(x) •x84

  (9) 

It is simple to implement (9) by using an XOR network and 

routing a(x) in the correct position as illustrated by Figure 2. 

0a(x) Ignore
252 84 0

0a(x) Ignore
181 84 0

0

0a(x) Ignore
179 84 0

0

0a(x) Ignore
104 84 0

0

0 a(x) Ignore
84 0

XOR

XOR

XOR

XOR

Results Ignore
163

•x252•x181•x179•x104•x84
 

Figure 2 Multiplying by M1 

3.3 GF(2
m
) Modular Reduction and to_PRNS Converter 

A bit-parallel modular reduction method is adopted to per-

form the field modular reduction to reduce (c2m-2,c2m-

3,...cm,0,…0) components to a degree smaller than m, the 

result is written in binary vector format as (c’m-1,…c’1,c’0), 

which implements the calculation of the first components in 

equation (7).  

The to-PRNS converter is implemented by simple modular 

reduction using the selected trinomials. The detailed imple-

mentation approach can be found in [21]. 

Both modular reduction and conversion are implemented 

using a simple XOR network.  
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3.4 Architecture of the Proposed PRNS Multiplier 

Figure 3 shows the full architecture of the proposed PRNS 

multiplier over GF(2
163

). It is assumed that the input and the 

output of the multiplier are all in PRNS representation. 

The GF(2
84

) multipliers on the left hand side perform PRNS 

channel modular multiplication, the one on the right performs 

part of SRC algorithm which is (�� ∙ $�  ��	 ��) operation in 

equation (1). Ii are pre-calculated and stored into the shift 

registers. When there is a valid signal on Shift-reg-enable, 

the shift register starts to forward Ii bit by bit to the second 

GF(2
84

) multiplier acting as a bit-serial input.  

The module Mul Mi, Partial Reduction and To PRNS Con-

verter are constructed using pure XORs. According to equa-

tion (7), the output of To PRNS Converter is the PRNS rep-

resentation of (c2m-2,c2m-3,...cm,c’m-1,…c’1,c’0), the output of 

the first registers is the PRNS representation of (c2m-2,c2m-

3,...cm,cm-1,…c1,c0). The final product after GF(2
163

) modular 

reduction is generated by a PRNS addition operation, which 

is implemented as bitwise XORs. 

It takes 168 clock cycles to finish a multiplication operation. 

This includes 83 clock cycles performing channel multiplica-

tion, another 83 clock cycles performing multiplication by Ii 

and 2 clock cycles on the data propagating through two regis-

ters. 

As it can be seen from Figure 3, all channels are separate, 

similar and their operations are performed in parallel hence 

offering an inherent mechanism for masking, randomisation 

and fault tolerance which could help improve protection 

against any potential side channel leakage or analysis [4]. 

4.  HARDWARE RESULTS AND COMPARISONS 

Xilinx Spartan 3-3s1500lfg320-4 FPGA is used for synthesis 

and implementation to enable a fair comparison. 

Table 1 shows the synthesis results of the proposed multipli-

ers compared with our previous work in [23] which to our 

knowledge is the only other reported implementation of a 

PRNS multiplier over binary fields.  

From the results, the work in this paper shows significant 

improvements both in hardware consumption and speed 

compared with our previous work.  

The figures indicate that this work consumes half and one 

third slices compared with the channel-serial and channel-

parallel architecture respectively. The highest operating fre-

quency is improved by over 30 times. The total delay is im-

proved by 25 times over the channel-serial architecture and 

by 17 times over the channel-parallel architecture. This fig-

ures also show a 47 times’ Time-Area Product improvement 

over the channel-serial architecture, a 57 times’ improvement 

over the channel-parallel architecture.  

Table 1 Synthesis Results 

 

 
Channel-

serial [23] 

Channel-

Parallel[23] 
This work 

FF 1010 1350 1691 

LUT 5274 8675 2588 

Slices 2752 4625 1429 

Frequency 

(MHz) 
5.179 5.119 164.015 

Cycles 130 93 168 

Delay (ms) 25.1*10-3
 18.2*10-3

 1.024*10-3 
Time-Area 

Product 

(Slices*second) 

69*10-3
 84*10-3

 1.463*10-3
 

Mul

I1

Shift-reg
en

MulReg
en

Reg
en

Mul
M1

XOR
Mul

I2

MulReg
en

Reg
en

Mul
M2

Mul

I3

MulReg
en

Reg
en

Mul
M3

Mul

I4

MulReg
en

Reg
en

Mul
M4

Partial 
Reduction

To PRNS 
ConverterXOR XOR XOR XOR

84 84 84 84 173 173 173 163 84Channel_1a

Channel_2a

Channel_3a

Channel_4a

Channel_1b

Channel_2b

Channel_3b

Channel_4b

84 c1

c2

c3

c4

Control
Reg1 enable

Reg2 enable

Shift-reg 
enable

clk

Start84

Figure 3 Architecture of PRNS Multiplier
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As mentioned in Section 3, using trinomials simplifies the 

modular reduction and To PRNS conversion operations.  

Furthermore, together with the partial conversion method, 

using trinomials breaks down the bottleneck in multiplying 

by Mi operation; hence it achieves higher speed and less re-

source.  

Table 2 Comparisons to non-PRNS works 

Table 2 shows the comparisons with some other 163 bits 

parallel GF(2
m
) multipliers. The figures indicate that this 

work shows great improvements both in area and speed than 

the ones in the table. Though this multiplier is neither forcing 

on high speed nor on low area, it provides the potential to 

countermeasure side-channel-attacks as well as a feasible 

option to implement parallel architecture. 

5. CONCLUSIONS 

In this paper, irreducible trinomials are adopted in the design 

and implementation of a novel PRNS multiplication architec-

ture over GF(2
m
) . This architecture is shown to exhibit im-

proved overall hardware performance in both speed and area 

as confirmed by FPGA results. Such multipliers are particu-

larly useful in fault tolerant DSP application [12] and side-

channel resistant cryptographic implementations [4].  
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