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ABSTRACT
In this paper, a dual-tree complex wavelet transform domain
image resolution enhancement method is proposed. The
method estimates detail wavelet coefficients for the input
low-resolution (LR) image using different types of deforma-
tions on the initial estimate of high-resolution (HR) image.
Edge preserving smoothing filtering with different param-
eters is used in deformations. Decomposition of each de-
formed HR image results in a different set of detail wavelet
coefficients for LR image, and the resultant HR image is
computed by averaging the different reconstructions from
LR image using different detail wavelet coefficient sets. The
perceptual and objective quality of resolution enhanced im-
ages compare favorably with recently emerged methods in
the field.

1. INTRODUCTION

Discrete wavelet transform (DWT) based techniques have
been widely used for performing image interpolation. A
common assumption of these techniques is the assumption
that the image to be enhanced is the low-pass filtered sub-
band of a wavelet-transformed high-resolution image. This
type of approach requires the estimation of detail wavelet co-
efficients in subbands containing high-pass spatial frequency
information. In order to estimate those detail wavelet coeffi-
cients more sophisticated methods have been applied.

DWT extreme evolution was employed in [1]. Only coef-
ficients with significant magnitudes are estimated as the evo-
lution of the wavelet coefficients among the scales. The per-
formance is mainly affected from the fact that the signs of
estimated coefficients are copied directly from parent coeffi-
cients without any attempt being made to estimate the actual
signs. This is contradictory to the fact that there is very lit-
tle correlation between the signs of the parent coefficients
and their descendants. As a result, the signs of the coeffi-
cients estimated using extreme evolution techniques cannot
be relied upon. Hidden Markov Tree (HMT) based method
in [2] models the unknown wavelet coefficients as belong-
ing to mixed Gaussian distributions which are symmetrical
around the zero mean. HMT models are used to find out
the most probable state for the coefficients to be estimated.
The performance is mainly suffered from the sign changes
between the scales.

The decimated wavelet transform is not shift-invariant
and, as a result, suppression of wavelet coefficients, such
as quantization of coefficients during the compression pro-
cess or non-exact estimation of high-frequency subband co-
efficients, introduces cyclostationarity into the image which

manifests itself as ringing in the neighbourhood of discon-
tinuities [3]. In order to combat this drawback in image in-
terpolation, cycle-spinning methodology was adopted in [3].
The perceptual and objective quality of the resolution en-
hanced images by their method compare favorably with re-
cently emerged methods in the field [1, 2].

Standard DWTs suffer from several disadvantages that
undermine its usage in many other applications. The most
important drawbacks of the standard DWTs are: 1) lack of
shift invariance; 2) limited directionality when extended to
higher dimensions; and 3) lack of phase information. One of
the most promising decomposition that removes the above
drawbacks satisfactorily is the dual-tree complex wavelet
transform (CWT) [4]. Two classical wavelet trees (with real
filters) are developed in parallel, with the wavelets form-
ing (approximate) Hilbert pairs. One can then interpret the
wavelets in the two trees of the CWT as the real and imagi-
nary parts of some complex wavelet.

In this paper, we employ the CWT for image resolution
enhancement. We propose a sample based wavelet coeffi-
cient estimation technique in the CWT domain. The wavelet
coefficients of the LR image is estimated from the CWT de-
composition of deformed initial estimate of the HR image.
The initial estimate of the HR image is reconstructed from
the LR image and zero padding of wavelet coefficients using
the inverse CWT (ICWT). We also adopt the technique given
in [3] to the CWT domain.

The paper is organized as follows. Section 2 gives a brief
review of the CWT. Section 3 describes the proposed CWT
domain image resolution enhancement algorithm. Section 4
provides some experimental results of the proposed approach
and comparisons with the other approaches in the literature.
Section 5 concludes the paper.

2. COMPLEX WAVELETS

The ordinary DWT is not shift invariant because of the dec-
imation operation exploited in the transform. As a result,
a small shift in the input signal can cause a very different
set of output wavelet coefficients. For that, Kingsbury [4]
introduced a new kind of wavelet transform, CWT, that ex-
hibits approximate shift invariant property and improved di-
rectional resolution when compared that of the DWT.

The CWT also yields perfect reconstruction by using
two parallel decimated trees with real coefficients. The one-
dimensional (1-D) CWT decomposes a signal f (x) in terms
of a complex shifted and dilated mother wavelet ψ(x) and
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Figure 1: Two-level 1-D dual-tree complex wavelet trans-
form (CWT).

scaling function φ(x), i.e.,

f (x) = ∑
l∈Z

s j0,lφ j0,l(x)+ ∑
j≥ j0

∑
l∈Z

c j,lψ j,l(x), (1)

where Z is the set of all integers, j and l refer to the shifts and
dilations respectively, s j0,l is the scaling coefficient and c j,l
is the complex wavelet coefficient with φ j0,l(x) = φ r

j0,l(x)+√−1φ i
j0,l(x), and ψ j,l(x) = ψr

j,l(x)+
√−1ψ i

j,l(x). The com-
plex wavelet transform is a combination of two real-valued
wavelet transforms; in 1-D, the set {φ r

j0,l ,φ
i
j0,l ,ψ

r
j0,l ,ψ

i
j0,l}

forms a tight wavelet frame with two times of redundancy.
The real and imaginary parts of the 1-D CWT are computed
using separate filter banks with wavelet filters h0 and h1 for
the real part, and g0 and g1 for the imaginary part, as illus-
trated in Figure 1 [4]. The outputs from the two trees in Fig-
ure 1 are interpreted as the real and imaginary parts of the
complex coefficients.

Similar to the 1-D CWT, the two-dimensional (2-D)
CWT decomposes an 2-D image f (x,y) through a series of
dilations and translations of a complex scaling function and
six complex wavelet functions ψθ

j,l , i.e.,

f (x,y) = ∑
l∈Z2

s j0,lφ j0,l(x,y)+ ∑
θ∈Θ

∑
j≥ j0

∑
l∈Z2

cθ
j,lψ

θ
j,l(x,y). (2)

where θ ∈ Θ = {±15◦,±45◦,±75◦} refers to the direction-
ality of the complex wavelet function. The impulse response
of six complex wavelets associated with the 2-D complex
wavelet transform is illustrated in Figure 2. The complex
wavelet transform can discriminate between features at posi-
tive and negative frequencies. Hence, there are six subbands
capturing features along the lines with angles of θ ∈ Θ, re-
spectively.

3. THE PROPOSED METHOD

Let us assume that the one-level CWT decomposition of an
W×H image I results in a matrix of CWT(I) = [LPI HPI],
and inverse CWT (ICWT) of [LPI HPI] reconstructs the
signal I, i.e., ICWT([LPI HPI]) = I. LPI is a matrix of
size W

2 × H
2 which is the complex-valued low-pass subband

resulting from the one-level CWT decomposition of image I,
and HPI is a matrix of size W

2 × H
2 ×6 which is the collection

of all complex-valued high-pass subbands resulting from the
one-level CWT decomposition of image I. The simplified

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: The real (R) and imaginary (I) parts of the impulse
responses of the 2-D CWT filters for the 6 directional sub-
bands: (a) R−15◦ ; (b) R−45◦ ; (c) R−75◦ ; (d) R+75◦ ; (e) R+45◦ ;
(f) R+15◦ ; (g) I−15◦ ; (h) I−45◦ ; (i) I−75◦ ; (j) I+75◦ ; (k) I+45◦ ; (l)
I+15◦ .

Figure 3: Block diagram of proposed method where BF is
Bilateral Filtering, ZP is Zero Padding, and SP is Subband
Padding.

block diagram of the proposed method is shown in Figure 3
and explained as follows.

Using a given LR image X of size W ×H, initial approx-
imation Y0 to the unknown HR image Y is reconstructed
using zero padding of high-frequency subbands (i.e. setting
all elements of these subbands to zeros) followed by ICWT,
i.e.,

Y0 = ICWT([X 0]) . (3)

where 0 is an all-zero matrix of size W ×H× 6. Y0 can be
used to make a better estimations to high-pass coefficients
in (3). Deformations to initial estimation Y0 are applied
using edge preserving smoothing filtering (EPSF). Tomasi
and Manduchi’s bilateral filter [5] is the state of the art for
edge-preserving smoothing. The filter combines grey levels
or colours of pixels based on both their geometric closeness
and their photometric similarity. The filter needs parame-
ters for domain filtering (σd) and range filtering (σr). It also
necessary to specify the bilateral filter half-width (w). Differ-
ent parameters generate different filtering results. In this pa-
per, we apply two realizations of EPSF, i.e., (w = 5, σd = 3,
σr = 0.1) (BF1 in Figure 3), (w = 5, σd = 5, σr = 0.1) (BF2
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(a) (b) (c) εR = 4.38

(d) (e) εR = 2.69

Figure 4: Extracts from original and reconstructed Lena im-
ages: (a) Original image; (b)-(c) Reconstructed and residual
images using bilinear interpolation; and (d-e) Reconstructed
and residual images using the proposed method.

in Figure 3) to generate two filtered versions of Y0. Different
set of realizations can be applied. Then the CWT decomposi-
tion of the two filtered HR images results in [LP1 HP1] and
[LP2 HP2]. This brings a better approximation to high-pass
coefficients than all-zero matrix in (3). Two HR images are
generated, i.e.,

Y1 = ICWT([X HP1]) , (4)
Y2 = ICWT([X HP2]) .

Finally, the resultant HR image Y of size 2W × 2H is the
average of Y1 and Y2, i.e.,

Y =
Y1 +Y2

2
. (5)

The residual image (IE ) between the original HR image
(I) and reconstructed HR image (̂I) is defined as IE = |I− Î|.
The quantitative measure of the reconstruction error (εR) is
computed using the average error, i.e.,

εR =
1

H×W

H

∑
i=1

W

∑
j=1

IE (i, j) (6)

Figure 3 shows HR image reconstruction together with
the residual images when the bilinear interpolation (see Fig-
ures 3 (b) and (c)) and the proposed method (see Figures 3 (d)
and (e)) are used. The residual image are inverted in intensity
for display purposes. It is clear from the residual images and
corresponding reconstruction errors that the performance of
the proposed method is much better than the performance of
the widely used bilinear interpolation type HR image recon-
struction.

4. EXPERIMENTAL RESULTS

Experiments are conducted using six test images, as shown in
Figure 5. In our simulations, the observed LR images are in-
dependently generated by convolving each ground-truth im-

(a) Bridge (b) Lena (c) Peppers (d) Barbara (e) Boat (f) Elaine

Figure 5: Test images used in experiments.

(a) εR = 6.79 (b) εR = 6.63 (c) εR = 4.40

(d) εR = 2.77 (e) εR = 2.46

Figure 6: Comparisons of the resultant residual images be-
tween ground-truth Lena image and reconstructed HR image
from LR image which is constructed from the ground-truth
Lena image using the nearest-neighbor interpolation as PSF:
(a) The method of [7]; (b) The method of [8]; (c) The method
of [3]; (d) The method of [3] using CWT; and (e) The pro-
posed method.

age with a point spread function (PSF), followed by a down-
sampling operation with a ratio 2 in both horizontal and ver-
tical directions, respectively. The HR image, which is esti-
mated version of ground-truth image, is reconstructed from
the LR image.

To provide the objective performance comparisons be-
tween the ground-truth image I of size H ×W and and the
reconstructed image Î, two image quality measurements are
used in this paper: PSNR, i.e.,

PSNR = 10log10
H×W

∑H
i=1 ∑W

j=1(I(i, j)− Î(i, j))2
, (7)

and universal image quality index (Q) [6]. The dynamic
range of Q is [−1,1], the best value 1 is achieved if and only
if I = Î, and the lowest value is -1. The universal image qual-
ity index models any distortion as a combination of three dif-
ferent factors: loss of correlation, luminance distortion, and
contrast distortion [6].

Experiments are conducted to compare the performance
of the proposed approach with that of recently proposed
methods in [7], [8], and [3]. The implementations of the
methods in [7] and [8] are received from the authors own im-
plementations, on the other hand we implement the method
in [3], and also we modify it to perform with the CWT in-
stead of the DWT.

The performance of the image resolution enhancement
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Table 1: The PSNR and Q performance comparisons when
LR image is created from the ground-truth image using the
nearest-neighbor interpolation as PSF.

Method Method Method Method [3] Proposed
in [7] in [8] in [3] with CWT Method

Test PSNR Q PSNR Q PSNR Q PSNR Q PSNR Q
Image (dB) (dB) (dB) (dB) (dB)

Bridge 21.62 0.50 21.73 0.52 24.04 0.71 25.64 0.77 25.82 0.80
Lena 25.76 0.55 26.12 0.57 29.80 0.72 33.53 0.77 33.98 0.79
Peppers 26.39 0.55 26.55 0.55 29.79 0.65 32.65 0.68 32.90 0.70
Barbara 20.20 0.50 21.52 0.51 22.97 0.66 24.15 0.69 24.52 0.74
Boat 23.59 0.47 23.86 0.49 26.73 0.65 28.87 0.70 29.18 0.72
Elaine 27.47 0.51 27.55 0.52 29.66 0.60 31.56 0.64 31.57 0.65

(a) εR = 5.93 (b) εR = 5.94 (c) εR = 4.60

(d) εR = 3.97 (e) εR = 3.82

Figure 7: Comparisons of the resultant residual images be-
tween ground-truth Elaine image and reconstructed HR im-
age from LR image which is constructed from the ground-
truth Elaine image using average low-pass filter with a size
of 3×3 as PSF: (a) The method of [7]; (b) The method of [8];
(c) The method of [3]; (d) The method of [3] using CWT; and
(e) The proposed method.

method depends on the point spread function of the camera
that maps HR image to LR image. Table 1 shows the perfor-
mance of the different techniques when LR image is created
from the ground-truth Lena image using the nearest-neighbor
interpolation as the PSF. The reconstructed HR images from
different techniques are compared with the ground-truth im-
age. It is clear that the proposed method achieves the best
performance. The performances of the methods are visual-
ized in Figure 4 by showing the residual images between the
ground-truth image and reconstructed HR image. It is clear
that the minimum difference from the ground-truth image
is achieved using the HR image resulted from the proposed
method.

Table 2 shows the performance comparisons when the
LR image is created by the PSF of an average low-pass filter
with a size of 3×3. Similar to the Table 1, the performance
of the proposed method is better than the other methods when
PSF is a low-pass average filter. The resultant residual im-
ages between the ground-truth Elaine test image, and its re-
constructed HR image for different methods are shown in
Figure 4. It is clear from Figure 4 that, the numerical values
shown in Table 1 are supported by the visual quality.

Table 2: The PSNR and Q performance comparisons when
LR image is created from the ground-truth image using an
average low-pass filter with a size of 3×3 as PSF.

Method Method Method Method [3] Proposed
in [7] in [8] in [3] with CWT Method

Test PSNR Q PSNR Q PSNR Q PSNR Q PSNR Q
Image (dB) (dB) (dB) (dB) (dB)

Bridge 22.50 0.54 22.58 0.56 25.01 0.73 26.09 0.76 26.60 0.79
Lena 26.43 0.59 26.63 0.61 30.33 0.74 33.23 0.77 33.93 0.79
Peppers 26.99 0.59 27.09 0.60 30.56 0.70 33.11 0.72 33.75 0.73
Barbara 22.33 0.54 22.67 0.54 24.17 0.66 24.72 0.68 25.13 0.71
Boat 24.42 0.51 24.58 0.53 27.59 0.67 29.23 0.71 29.80 0.73
Elaine 28.32 0.57 28.39 0.57 31.06 0.66 32.71 0.67 33.00 0.69

Figure 8 presents various image results of the above five
methods. As seen from the above Tables 1 and 2 and Fig-
ure 8, the proposed method always yields the best perfor-
mance among the above-mentioned four methods.

5. CONCLUSION

A method for image resolution enhancement in the dual-tree
complex wavelet domain is presented. Initial estimate of HR
image is deformed using EPSF with different parameters.
Deformed HR images are used to estimate complex wavelet
coefficients for the input LR image. Estimated wavelet co-
efficients are used in parallel with the input LR image to es-
timate the resultant HR image. Intensive tests and compar-
isons with the techniques from the literature has shown the
superiority of the proposed method.
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(a) (b) PSNR=26.35 dB, Q = 0.57 (c) PSNR=26.43 dB, Q = 0.58

(d) PSNR=30.08 dB, Q = 0.73 (e) PSNR=32.60 dB, Q = 0.76 (f) PSNR=33.28 dB, Q = 0.78

(g) (h) PSNR=20.48 dB, Q = 0.45 (i) PSNR=20.59 dB, Q = 0.46

(j) PSNR=22.31 dB, Q = 0.63 (k) PSNR=22.86 dB, Q = 0.65 (l) PSNR=23.27 dB, Q = 0.68

Figure 8: The subjective and quantitative performance comparisons: (a,g) The original images; (b,h) The results of [7]; (c,i)
The results of [8]; (d,j) The results of [3]; (e,k) The results of [3] using CWT; and (f,l) The results of the proposed method.
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