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ABSTRACT

This paper deals with the analysis of the non-stationary be-
havior of scatterers in polarimetric SAR imaging . A method
based on continuous wavelet and incoherent polarimetric de-
compositions is proposed to extract the polarimetric time-
frequency signatures of scatterers. These signatures charac-
terize scatterers according to their polarimetric /or energetic
behavior versus the emitted frequency and the observation
angle. Then, signatures from reference targets are used to
train a multi-layer perceptron (MLP). All in all, SAR imag-
ing data are classified by the MLP. The efficiency of this
method is demonstrated, for the deterministic targets (man-
made targets). It can be explained by the fact that the man-
made targets present a strong non-stationary behavior. But
for the vegetation and canopy the results are not convincing.
It can be interpreted by the fact that the behavior of vegeta-
tion is stationary.

1. INTRODUCTION

This paper suggests a classification based on polarimetric
time-frequency signatures for wideband and strong angular
excursion SAR imaging. Indeed, in this case the model of
bright point is not valid. Time-frequency analysis allows to
build HyperImages [1], [2], [3] to correct this main draw-
back. Polarimetry is another information source to charac-
terize scatterers. The aim of this paper is to use jointly time-
frequency analysis and polarimetry incoherent decomposi-
tion to extract polarimetric time-frequency signatures and use
them in a neural network to classify scatterers.

2. CONSTRUCTION OF THE
HYPER-SCATTERING MATRIX BASED ON THE
CONTINUOUS WAVELET

2.1 Classical radar imaging

The model usually used in radar imaging is the model of
bright points [4]. The object under analysis can be seen as
a set of bright points, i.e. a set of independent sources that
reflect in the same way for all frequencies (white points) and
all directions of presentation (isotropic points). Let S(r) be
the complex amplitude of the bright point response located
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at r = (x,y)” in a set of cartesian axes related to the ob-
ject. Under far field conditions (decomposition into planes
waves), the complex backscattering coefficient for the whole
object is then given by the in-phase summation of each re-
flector contribution:

H(k) = / S(r) e 2 g, (1

After a Fourier Transform of (1), one can obtain the spa-
tial distribution /(r) of the reflectors complex amplitude for a
mean frequency (the center frequency) and for a mean angle
of presentation:

S(r) = / H (k) &2k dk. 2)
The spatial distribution of the scatterers energy will be
denoted in the following by:

(©))

A full polarimetric radar is generally designed to transmit
and receive microwave radiations horizontally () or verti-
cally (v) polarized. The polarimetric generalization of the
scattering coefficient is called the scattering matrix [S] or
Sinclair matrix:

Spn(r)

Sn(r) @

swl=| ) 0 .

Sw(r)

When a target is illuminated by a broad-band signal
and/or for a large angular extent, it is realistic to consider
that the spatial distribution I(r) of the reflectors energy (or
the Sinclair complex image S(r)) depends on frequency f
and on illumination angle 6. These two amplitude and en-
ergy distributions depending on the vector k, they will be
denoted respectively by S(r, k) and I(r,k) in the sequel.

2.2 Extended radar imaging

Let ¢ (k) be a mother wavelet supposed to represent the sig-
nal reflected by a reference target. This target is supposed
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located around r = 0 and backscatters the energy in the di-
rection 8 = 0 and at the frequency f given by k = % =1A

family of function is built ¥y, i, from ¢ (k) by the similarity
group S [1], [2]:

1 ; 1
ki 67]271'k.l‘g¢ (k%a’l k) (5)
0 0

1 k
= e /Ao (k, 06— 90) . (6
0 0

\Pro;ko (k)

The wavelet coefficient S,.(r,, k, ) is defined as the scalar
product between the complex backscattering coefficient Hy,
and the wavelet ¥,y :

Sxx(roako) =< HxxalPr,,,k,, > (7)
The scalar product is defined following [5]:
—+o0
Sex(ro, k) = / do [k Hu(k,0) —
0 0 ko

. k
e+j27[k.rg¢* (7 6 _ 60) dk (8)

ko

The scalogram which is the square modulus of the wavelet
coefficients defines the hyperlmage I(r, k).
2.3 Properties

The continuous wavelet transform has two interesting prop-
erties. The first is the reconstruction: it is possible to re-
build the complex backscattering coefficient Hy, (k) from the
wavelet coefficient Sy (r,, k,):

xx Kq) /dro/sxx ro.k o r(,,

with Ky defined as the admissibility coefficient of the

K (k) dk, (9)

mother wavelet which must, to build Hy(k) from the
wavelet coefficients, check:
Ky = / lo(k)|© — < o0 (10)
The second property is the isometry:
1
Ki /dr()/|Sxx(ro7ko)|2 dko = ||Hxx||2 (11)
o JS

2.4 Limitations

The continuous wavelet is limited by the Heisenberg princi-
ple. Indeed, this concept tells that we cannot obtain a spa-
tial good resolution with a good resolution in the frequency
domain and reciprocally. However, the continuous wavelet
offers a resolution which changes with the frequency and the
spatial domain. It allows multiresolution analysis [6].

2.5 Hyper-Scattering matrix definition and extended
Span

The wavelet transform is applied on each of the four polari-
metric channels. The resulting Sinclair scattering matrix now

depends on the frequency and on the illumination angle and
is called hyper-scattering matrix:

Shh(l‘, k)
Svh(l‘, k)
The span is generally defined as the sum of the squared mod-
ulus of each element of the matrix (4). The extended span

is now defined as the sum of the squared modulus of each
element of the hyper-scattering matrix (12).

P(r,k) =

S;w(r,k)

[S](r,k) = Sy(r, k)

12)

|Shh(r7 k) |2 + ‘Shv(ra k) |2 + |Svh(r» k) |2
+|Su(r, k)|

13)

The extended span provides a first polarimetric time-
frequency signatures. Indeed, if one scatterer is selected at
the position rg, P(rp, k) describes the polarimetric energetic
behavior of this scatterer versus the emitted frequency and
the observation angle.

3. CONSTRUCTION OF THE INCOHERENT
POLARIMETRIC TIME-FREQUENCY SIGNATURES

3.1 Definition of the covariance and coherency matrix

A scattering vector can be obtained by the projection of the
Sinclair matrix on an orthogonal basis of special unitary
group [7]. The two bases which are the most used, are the
the lexicographic basis and the Pauli basis. In monostatic
scenario, the reciprocity theorem holds and hence: Sy, = S,;.
So, by projecting the hyper-scattering matrix on the two
bases, two hyper-scattering vectors which contain all polari-
metric information can be obtained:

ki (r,k) = [Sp(r, k), V285 (. k), Sw (v, k)] (14)
kp(I‘,k) \[[Shh(l‘ k) +SW(I‘ k) (15)
Shh(I‘ k) W(r,k),ZShV(r,k)]T
where 7 is the transpose operator.

From these targets vectors, the covariance hyper-matrix
[C(r,k)] and the coherency hyper-matrix [T (r, k)] can be de-

fined:
[C(r,k)] = (k(r.k)k; (r,k)) (16)
[T (r,k)] = (kp(r,K)k; (r,k)) (17)

where * and () are respectively the conjugate and the
statistical mean operators.

The aim of this part is to use incoherent decompositions
to obtain polarimetric time-frequency signatures. Hence, The
objective of the incoherent decompositions is to separate the
covariance or coherency matrices as the combination of sec-
ond order descriptors corresponding to simpler or canonical
objects, presenting an easier physical interpretation [8].

-

Il
—

[C(r, k)] = ) pi(r,K)[C(r,K)]; (18)

Mw-

[T (r, k)] =

qi(r, K)[T (r, k)]; (19)

1
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where the canonical responses are represented by
C[(r,k)]; and T[(r,k)];, and p;(r,k) and g;(r,k) denote the
coefficients of these components.

3.2 The Freeman-Durden Decomposition

3.2.1 Construction of the polarimetric time-frequency sig-
natures

By applying the Freeman-Durden decomposition [9] on the
covariance hyper-matrix, we obtain the three components
scattering mechanism model:

k)] = A+ £ ) [Cr k),
+ £, (r,k)[C(r, k)], (20)

where fi(r,k)[C(r,k)]; represents the single scatter-
ing, fy(r,k)[C(r,k)]; is the double scattering and
fo(r,k)[C(r,k)], the volume scattering.  To calculate
the different parameters, there are four observed equations
for five unknown real coefficients:

CEX)], = fEK)Brk)?+ fulrk)a(r k)
+£(r,k)

[C(I‘,k)]13 = fs(rak)ﬁ(rak)7fd(rak)a(rvk)
fo(r,k)
* 3

Clraly, = 2T

[[C(I’, )31 = fs(r,k)ﬁ(r,k)—fd(r,k)oc(r,k)
+fv(;,k)

[C(r,k)55 = file.k)+fa(r,k)+filr,k) 2D

So, an assumption is made [9]:
o if Ze{(S(r,k)S(r,k);) — EERY 5 0 (e k) = 1

o if Ze{ (S (r,k)S(r,k);,) — LERY <0 — Br,k) = 1
Consequently the different parameters can be processed.

3.2.2 Interpretation of the polarimetric time-frequency sig-
natures

The term f,(r,k) corresponds to the contribution of the vol-
ume scattering of the final hyper-covariance matrix. Hence,
the scattered power by this component can be written as fol-

lows: g K
P ) = LA
The power scattered by the double-bounce component of the

hyper-covariance matrix has the expression:
Pd(rak) = fd(r7k)(1 + |(X(I‘7k)‘2)

Finally, the power scattered by the surface-like component

' Py(r,k) = £(r, k) (1+]B(x,k)P) (24)

For a scatterer located at ro, P,(ro,k) (respectively,
Py(ro,k), and P;(ro,k)) represents the polarimetric behav-
ior of volume scattering (respectively double scattering and
simple scattering) versus the emitted frequency and the ob-
servation angle. These representations are called polarimet-
ric time-frequency signatures.

(22)

(23)

3.3 The H/A/Alpha decomposition

3.3.1 Construction of the polarimetric time-frequency sig-
natures

An Hermitian matrix 3 x 3 can be factorized according to [7],
[10]:

T(r,k) = P(r,k)D(r,k)P(r, k) ! (25)

The matrix D(r,k) is diagonal with three real eigenvalues
Ai(r,k) > Aa(r,k) > A3(r,k) The unitary matrix is com-
posed with eigenvectors whose the form is:

P(r,k) = [cos(oy(r,k)),sin( oy (r,k)) cos(Bi(r, k))
exp(j5k (I‘, k))a Sil’l((Xk(I‘, k)) COS(ﬁk(I‘, k)) €Xp(j’)/k (I‘, k))]T

So, the decomposition can be written according to:
3
[T(r.k)] =Y A(r,K)P(r,k)P(r,k)*" (26)
k=1

From these eigenvectors and eigenvalues, secondary charac-
teristics parameters can be extracted. Indeed, the eigenvalues
show the power of each mechanism of the decomposition.
The eigenvalues can be normalized following [8]:

Ax(r, k)

pilr ) = A5
Z A(r,k)
k=1

27

So, the entropy can be processed to determine the degree
of randomness of the scattering process, which can be also
interpreted as the degree of statistical disorder:

3
H(rk) = —k): pi(r,k)logs (pi(r,k)) (28)
=1

The anisotropy can be defined to describe the secondary
mechanisms:

_ p2(r, k) —p3(r k)
p2(r.k) + p3(r,k)

A(r,k) (29)

The last parameter of the decomposition indicates the na-
ture of the mechanism:

3

a(r,k) = kZ’ pr(r, k) oy (r, k)
=1

(30)

3.3.2 Interpretation of the polarimetric time-frequency sig-
natures

For a scatterer located at ro, H(rg, k) (respectively, A(rg, k),
and a(rg,k)) represents the entropy (anisotropy and the o
parameter) versus the emitted frequency and the observation
angle. These representations are called polarimetric time-
frequency signatures.

4. SUPERVISED CLASSIFICATION USING
NEURAL NETWORKS

Neural networks are non-linear statistical data modeling
tools. They can be used to find pattern data [11].
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4.1 Architecture of the multi-layer perceptron (MLP)

A multi-layer perceptron is a feedforward artificial neural
network model that maps sets of input data onto a set of ap-
propriate output. The structure of our multi-layer perceptron
is described figure (1). It is composed of nodes whose the
processing is [12]:

1 _ (1) (1)
a;’ = leij xi+bj ,

d
(€29

)

where aﬁl) associated input with each hidden unit. Here w;;

represents the elements of the first-layer weight matrix and
b; are the bias parameters associated with the hidden unit.

Input Vector](ro; A;)

———

Hidden
Layer

Output
Layer

Trihedral Road Parking y Country 2
Country 1

Building
Country 3

Output Vector
Probability densiy

Figure 1: Architecture of the multi-layer perceptron

The variables ay) are then transformed by the non-linear

activation function of the hidden layer. The activation func-
tion is tanh(.). The outputs of the hidden units are given by:

z; = tanh(a!") (32)
which has the property that:
de o 2
20 =1-zj (33)

The z; are then transformed by the second layer of

weights and biases to give second-layer activation values

a2,

M
a? =Y wiz+b (34)
=1

Finally, these values are passed through the output-unit
activation function to give output values y;. For the more
usual kind of classification problem in which we have of
¢ mutually exclusive classes, we use the softmax activation
function of the form [12]:

B exp(a,(cz))

o @)
a,
%: :

Our multi-layer perceptron is a three layers whose the
number of nodes of the input layer is equal to the number

Yk (35)

of input, the output layer is equal to the number of class to
obtain a probability density whose the maximum defines the
class which the scatterer is and the number of nodes of the
hidden-layer is calculated following:

NHidden—Layer = NinpulNoutput (36)

4.2 Learning Basis

In supervised learning, a set of known signatures is given and
the aim is to find a function in the allowed class of functions
that matches the examples. The cost function is related to the
mismatch between the mapping and the data and it implic-
itly contains prior knowledge about the pattern recognition
problem.

The choice of the mother wavelet is moving toward a
Gaussian shape. Indeed, a Gaussian have good properties
and it has proved itself [13]. The spreading band of the
Gaussian is chosen to % band because it represents the best
compromise of resolution between spatial and frequency do-
mains. Indeed, we want a good resolution on frequency do-
main.

The polarimetric time-frequency signatures of manually
selected scatterers are extracted as explained in the former
part. On the image, the scatterers selected are the trihedral,
the parking, the building, the road and three countries.

An example of Freeman-Durden learning basis is pre-
sented on the figure 2. The three contributions are coded re-
spectively: Py inred, P, in green and Py in blue. The image in
the center is the image full resolution of the Freeman-Durden
decomposition.

Country 3

>
Q
=]
Q
=
=)
o
-
=
O

bservation Angle

Frosnan DurdnDocampeston

Building

Country 1

Figure 2: Learning basis obtained by the Freeman Durden
polarimetric time-frequency signatures

5. RESULTS

The data under study is the full resolution image, (see Fig.
2). It is a X band image with an angular excursion of two
degrees. The polarimetric time-frequency signatures are pro-
cessed as explained in the former part. Then, these signatures
are sent to the neural networks.
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5.1 Freeman-Durden polarimetric time-frequency sig-
natures

The results of the Freeman-Durden time-frequency signa-
tures are represented on the figure 3. The trihedrals are clas-
sified as trihedral. The parking is identified by a melting pot
of parking and trihedral contributions. It can be explained by
their signatures. The three buildings are identified as a build-
ing. For the vegetation the results show that time-frequency
analysis is not sufficient for these behaviors.

lassification by Multilayer perceptron
e - (rejected)

- (Building)

- (Champ1)

- (Champ2)

+(Champ3)

Range X, meters

1 (Parking)

(road)

(tri)

(rejected)

500
500 450 400 350 300 250 200 150 100
Cross-range Y, meters

Figure 3: Classification results obtained by the Freeman Dur-
den polarimetric time-frequency signatures

5.2 H/alpha polarimetric time-frequency signatures

The results of the H/Alpha time-frequency signatures are de-
scribed on the figure 4. The trihedrals are classified as tri-
hedral. The parking is identified by a melting pot of parking
and trihedral contributions. It can be explained by their sig-
natures. The three buildings are identified as a building. For
the vegetation the results show that time-frequency analysis
is not sufficient for these behaviors.

Classification by Multilayer perceptron
g (rejected)

(Building)
(Champ1)
(Champ2)

(Champ3)

Range X, meters

(Parking)

(road)

(tri)

(rejected)

500
500 450 400 350 300 250 200 150 100
Cross-range Y, meters

Figure 4: Classification results obtained by the H/A/Alpha
polarimetric time-frequency signatures

6. CONCLUSION

A new method to classify scatterers on SAR imaging is
proposed. This method is designed to work in wideband
and strong angular excursion: Very High Resolution image
(VHR). Indeed, it is based on stationary or non-stationary
behavior of scatterers during the SAR integration. So, time-
frequency analysis and polarimetric incoherent decomposi-
tions highlight this point of view. The results show that the
information from polarimetric time-frequency signatures is
valuable for deterministic targets (man-made targets) like tri-
hedral, building and parking. However, this information does
not allow to characterize the vegetation or the canopy.
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