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ABSTRACT 
The Red Palm Weevil (RPW) is the most destructive pest for 
the date palm in the world. The economic damage to palm 
crops due to RPW could be mitigated significantly by 
bioacoustics recognition in an earlier phase of infestation and 
applying the appropriate treatment. In this paper, a novel 
signal processing system is developed to detect the existence of 
RPW through its bioacoustics features. A large set of features 
are extracted, including some unconventional features which 
are temporal roll-off, temporal slope, and temporal spread. 
Since the recorded sound is divided into time frames, an 
analysis for the criteria behind the choice of the optimum time 
frame length, as well as the selection of the suitable window 
function is provided. The results imply the efficiency of the 
developed system with the selected representative features, 
window functions, and frame period to detect the existence of 
the RPW through its feeding sound. 

1. INTRODUCTION 

Since 1980s, RPW has rapidly expanded its geographical range 
westwards. It reached Saudi Arabia and the United Arab 
Emirates in 1985, spreading throughout the Middle East and 
into Egypt. In 1994 it was detected in Spain, Israel, Jordan and 
Palestine in 1999, Italy in 2004, Canary Islands in 2005, 
Balearic Islands, France, and Greece in 2006, and Turkey in 
2007 [1]. All stages (egg, larva, pupa and adult), as described 
in figure 1, are spent inside the palm itself and the life cycle 
(about 4 months) cannot be completed elsewhere. 
 

 
Figure 1- The life cycle stages of the red palm weevil 

 
Larvae and adults destroy the interior of the palm tree, often 
without the plant showing signs of deterioration unless damage 
is severe [2]. Hollowing out of the trunk reduces its 
mechanical resistance, making the plant susceptible to collapse 
and a danger to the public [3]. In most cases, attack leads to the 
mortality of trees whatever their sizes. The larvae are large, but 
the hidden kind of living makes an early detection with 
traditional methods very difficult. Adults of RPW can be 
efficiently monitored using pheromone based traps [4]. 
However, these methods are unsuitable for quarantine 

inspections of planting material. Consequently, infested 
planting material is often transported to a new location before 
the first detectable symptoms of infestation appear [5].  
Bioacoustics technology and x rays enable the detection of the 
early phase of infestation, however the usage of x rays is 
expensive, but the acoustic technology has potential for 
reducing the expense and dangers involved in tree inspection. 
The acoustic recordings from insects in trees often reveal 
signals with spectral and temporal features that make them 
distinctive and easily detectable [6]. 
Preliminary studies demonstrated that sensitive microphones 
and dedicated amplifiers enable detection of the movement and 
feeding sounds of RPW larvae in palm trees [7]. Due to its 
high reproduction rate, the RPW prefers to live with no other 
insects in one trunk, which gives a good base for acoustic 
detection. On the other hand, the greatest difference between 
Red Palm Weevil and other possible beetle species is that the 
activities of RPW seem to be very aggressive, as shown in 
figure 2; the sound stream is a collection of many pulses 
showing the difficulty to separate them. While the sound of 
Copris hispanus [8] is more distinctive and clear to spot.  
 

 
Figure 2- Spectrogram, envelope and detailed waveforms of 

pulse trains emitted by RPW feeding (left) and Copris hispanus 
sounds (right) 

 
Different sounds of the RPW activities could be recorded, 
including feeding, moving, and spinning the cocoon sounds. In 
this paper, the audio detection system for the RPW feeding 
sound is presented in detail. The following section 
demonstrates the recording method and the families of features 
which have been used in the system. Following by a section 
clarifies the criteria behind the choice of the window function, 
before applying Fourier Transform to each time frame of the 
recorded sound. Afterward, an explanation for the selection of 
the representative features and the optimum frame length is 
described. Finally, the detection system results are shown and 
discussed. After the positive determination of the presence of 
the red palm weevil in a palm, it is necessary to remove the 
palm tree, because up today no real efficient treatment method 
exists. But with the removing of an infested palm a strong 
blow against the Red Palm weevil population will be done.  
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2. MATERIAL AND METHOD 

2.1 Recording Device 
An infested date palm sample trunk (70 cm length, 38-43 cm 
diameters, 117 kg weight) was transferred from Kingdom of 
Saudi Arabia to Germany, and stored in a quarantine room. 
The trunk is further divided into small blocks, to focus on the 
weevil development and investigate the activities of the larvae 
during recording. This results in a complete picture for the 
hidden RPW activities in the trunk. Afterwards, the equipment 
was installed including a mercury steam lamp, heater, 
humidity device, thermometer, infrared video cameras, as well 
as the recording device.  
Two different recording devices were tested to find the best of 
them for this task. The first was a Laar Ultrasound Gate© hard 
disk recording System (50 Hz – 250 kHz).  The second was 
Laar WD 60© detector with amplifying system and insertion 
sensors of different types (Contact microphone, airsound 
ultrasound microphone, contact acceleration sensor and a 
combined contact airsound probe sensor). The best recordings 
are obtained via the second device which was attached to a 
Laar/Avisoft SASLab Pro© sound analyzer (50 Hz to 30 kHz). 
Since there was no contact from the recording person, every 
recorded sound was caused by the RPW activities in the trunk. 
For a period of 13 subsequent months (~3 life cycles), 
covering different environments (i.e., pressure and temperature 
changes), 251 adult weevils had left the trunk - later were 
eradicated - and 980 successful feeding sound recordings had 
been made for the RPW. 
 
2.2 Signal Processing 
The recordings were digitized at 11025 Hz sampling rate and 
then were high-pass filtered with cutoff frequency of 0.2 kHz 
to eliminate low-frequency background noise. Afterwards, 
they were divided into time frames with 90% overlap between 
frames. A program was developed using MATLAB (Math 
Works©); with friendly user graphical interface (GUI), to hold 
all the signal processing procedures up to the detection step. 
2.2.1 Time Domain Features 
A list of temporal domain features, shown in [Table 1], was 
extracted for each time frame in order to have a time 
distribution of the features along the recorded signal. Three 
unconventional features were being included: temporal roll-off 
that describes the time below which 90% of the energy 
distribution is concentrated, temporal slope of decreasing or 
increasing of the signal amplitudes which is computed by 
linear regression, and temporal spread which represents the 
spread of the signal amplitudes around its mean value. 
For extracting the spectral domain features, each time frame 
was scaled by a suitable window function and then 
transformed to frequency domain using Fast Fourier Transform 
(FFT) method, which assumes that a signal is periodic. When 
the FFT of a non-periodic signal (which is the form of most 
signals) is computed, the resulting spectrum suffers from 
spectral leakage and reduction of the frequency resolution. 
2.2.2 Windowing 
The window function is used for better representation of the 
frequency spectrum of the data, by reducing the spectral 
leakage and/or increasing the frequency resolution. Figure 3 
shows how a Hanning window function reduced the spectral 
leakage, when applied to a non-periodic sine wave. 

Table 1: The time domain features which are extracted from 
the recorded signals. [  is the amplitude at sample , and  

is the total number of samples] 

 

 

 
Figure 3- The FFT computation assumes that a signal is 

periodic, there is integer number of cycles in the data block (as 
in (a)). The FFT for a non-periodic signal leads to a spectrum 
that suffers from leakage (as in (b)). When a Hanning window 
is applied, the leakage is reduced and the resultant spectrum is 

a sharp narrow peak (as in (c)). 

The most common window functions are rectangular, Hanning, 
flat top and Blackman windows. Each window function has 
slightly different wave form from the others, as shown in 
figure 4, which results in a different performance in the 
frequency domain. In figure 4, the tighter the main lobe width, 
the better the frequency resolution of the window functions, as 
for the rectangular window function. On the other hand, the 
higher the reduction rate between the main lobe and the first 
side lobe, the less the spectral leakage around the central 
frequency, as for the Blackmann window. 
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Figure 4- The distribution of the most common window 

functions in time domain (left) and frequency domain (right) 

The efficiency of each window function according to their 
frequency resolution and spectral leakage reduction criteria are 
displayed in table 2. In this study, the rectangular window was 
used to calculate the spectral features that require high 
frequency resolution (e.g. spectral roll-off), while the 
Blackmann window is applied to calculate the spectral features 
that require less spectral leakage (e.g. spectral centroid).  
 
Table 2: Comparison between the window functions of figure 
5 in their frequency resolution and spectral leakage analyses 

Window Frequency 
Resolution 

Spectral Leakage 
Reduction 

Hanning Good Good 
Blackman Poor Best 
Flat top Poor Good 

Rectangular Best Poor 
 
2.2.3 Frequency Domain Features 
After applying the FFT for the windowing time frame, a list of 
spectral domain features, as shown in table 3, were extracted. 
Adding these spectral features to the previously calculated 
temporal features, a group of 31 features were extracted for 
each time frame. 
2.2.4 Features’ Selection 
From the above extracted features, there are some features 
which are better than others in detection of the feeding sound 
of the RPW. On the other hand, some features may be useless 
to perform this particular task. The purpose of applying a 
features’ selection algorithm is to select the representative 
features from a large set of features. Feature selection 
algorithms typically fall into two categories; feature ranking 
[9] and subset selection [10]. Feature ranking ranks the 
features by a metric and eliminates all features that do not 
achieve an adequate score. Subset selection searches the set of 
possible features for the optimal subset by removing most 
irrelevant and redundant features from the data. In this study 
the feature ranking method was applied. To handle this, the 
temporal and spectral features were extracted for 765 out of 
the 980 RPW feeding sound recordings. Subsequently, the 
average feature value is calculated for its 765 values (based on 
the 765 recordings). If more than 80% of the recordings have 
feature value that lie within 5% deviation from the 
corresponding average feature value, this feature will be 
selected, and stored in set(1). The algorithm is explained in 

figure 5, and the selected features of set(1) are indicated beside 
each feature in table 1 and table 3. 
 

Table 3: The frequency domain features which are extracted 
from the recorded signals. [  is the spectrum at bin number 

, and  is the total number of frequency bins]. 

 
 

 
Figure 5- (a) Schematic diagram for the features selection 

algorithm. (b) Flow chart for the features selection algorithm. 
po  is the percentage of overlapping, fp  is the frame period, 

and n  is the total number for the extracted features out of the 
signal. 
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2.2.5 Optimum Frame Length 
As mentioned above, the recorded signal is divided into a 
number of time frames. The time frame length depends on the 
total duration of the desired sound (i.e., the feeding sound), the 
percentage of overlapping, and the required number of time 
frames. On the other hand there is an optimum selection for the 
frame length which is affected by the intended representative 
features. In depth, if the mean zero crossing rate is considered 
as identification feature for the feeding sound of the RPW, the 
frame period should ensure that the value of the mean zero 
crossing rate is approximately the same for all recorded 
feeding sounds of the RPW. In figure 6, the predetermined set 
of features (i.e., set(1)) was extracted for two audio signals 
(signal (1), and signal (2)), as well as for a reference signal of a 
typical feeding sound of the RPW, for different choices of 
frame lengths. Signal (1) contains a feeding sound for a RPW, 
while signal (2) does not. The mean square error between the 
selected features of each signal and the reference signal 
features was calculated and scanned with the corresponding 
frame length. As a result of figure 6, an optimum frame length 
of 0.42 sec. is selected. 
 

 
Figure 6- Mean square error between recorded sounds and a 

reference feeding sound of RPW versus the frame length, 
based on features set(1). Signal (1) contains a feeding sound 

while signal (2) does not.   

3. RESULTS AND DISCUSSION 

3.1 Developing of The System 
The selected temporal as well as the selected spectral features 
were extracted for 765 out of the 980 recordings, using forms 
of table 1 and table 3; respectively. The distributions of these 
features with time are shown in figure 7 for a typical RPW 
feeding sound. In figure 7, some features distributions suffer 
from approximately equal standard deviation; e.g. temporal 
roll-off and temporal centroid, spectral slope and spectral 
centroid, and spectral kurtosis and spectral skewness. 
Meanwhile the values of the mean for those distributions are 
different. As a conclusion, the mean value of most features is 
more representative than the standard deviation. This remark 
necessitates careful attention to keep out redundant values in 
the choice of the related statistic for each feature. Equation (1) 
and equation (2) were used to calculate the mean and the 
standard deviation; respectively, while table 4 shows which 
statistic assigned to each feature. 

 
Where   is the value of the feature on time frame , and  is 
the total number of frames on the recorded signal. 

 
Figure 7- Distribution of the selected temporal features (left) 

and spectral features (right) with time for a typical RPW 
feeding sound of total length 0.8 sec., divided into 10 frames 

each of 0.42 sec. by means of 90% overlapping. 

Therefore, one representing value was considered for each 
feature over one recording, and this value was averaging for 
the 765 recordings. The resultant system contained 18 
representative features for the feeding sound of the RPW, and 
these features values were saved as the system features. 

Table 4: The related statistic and the window function assigned 
to each feature 

 

3.2 Validation of The System 
The remaining 215 out of the 980 feeding sound recordings 
were used for the validation of the developed system. At which 
the pre-selected 18 features are extracted for each recording, 
and then were compared to the system features. 203 records 
were successfully detected since their extracted features were 
within 5% from those of the system features. On the other 
hand, 12 records were not detected since more than 10 of their 
extracted features had more than 12% percent deviation from 
the corresponding system features. This means that the system 
efficiency is higher than 94% in the detection of the RPW 
feeding sounds, when the feeding sound was defined to be the 
one with features that have a maximum of 5% deviation from 
the corresponding system features.  
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4. CONCLUSION 3.3 Evaluation of The System 
In order to test the power of the developed system to detect the 
existence of the RPW in a field test, an audio stream of length 
5 minutes was recorded on one infected palm tree, and the 
sound features were extracted for each 0.8 second batch, with 
90 % overlaps. The extracted features were scanned for each 
batch as shown in figure 8, as well as the system features (the 
horizontal solid lines). The grey regions in figure 8 represent 
the detected feeding sound by an expert. 

The economic damage to palm crops due to RPW could be 
mitigated significantly by bioacoustics recognition in an earlier 
phase of infestation and applying the appropriate treatment. In 
this study, before dividing the sound wave into time frames, 
the optimum frame length - for the case of the RPW feeding 
sound - was investigated, and found to be 0.42 sec. with 90% 
overlapping. For each frame; the selected 8 time domain 
features were extracted. In addition; the criteria behind the 
selection of the window function were studied, followed by the 
extraction of the selected 10 frequency domain features, using 
their appropriate window functions. The developed system was 
validated to have efficiency higher than 94%, therefore; it was 
used to powerfully detect the existence of the RPW feeding 
sound in a five minutes sound stream. 
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