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ABSTRACT
A formula of approximating histograms is presented. The
formula is an explicit function of data permitting the inclu-
sion of unknown parameters. The parameters in the formula
are learned so as to classify training data to build a pattern
classifier. Recognition is performed by applying the classi-
fier to testing data. Our method is used for the recognition of
vehicle-type.

1. INTRODUCTION

Histograms have been widely used in pattern recognition.
They are robust to noise and local image transformations.
Histograms were initially applied to the identification of 3-
D objects [12]. Following that work, a recognition system
based on histograms was proposed [11]. These papers use
color effectively, therefore, their approaches seem to be in-
sufficient for the discrimination of greylevel images. We also
have a problem that histograms do not capture spatial image
information. To remedy such a deficiency, Hadjidemetriou
et al. [2, 3, 4] proposed a multiresolution histogram method.
Their approach constructs a feature vector of an image from
the difference histograms proportional to the discrete Fisher
information measures, computed from the multiresolution
histograms of the image. They performed pattern recognition
by comparing these feature vectors. Recently, their method
has been applied to the classification of mammographic den-
sities [6]. In that work, the feature vectors constructed from
multiresolution histograms were classified using a multiclass
directed acyclic graph and a support vector machine. How-
ever, satisfactory recognition results have not been obtained
yet.

In this paper, we present a formula of approximating
histograms, which is an explicit function of data permit-
ting the inclusion of unknown parameters. The data con-
taining unknown parameters are constructed by applying the
lifting dyadic wavelet transform to an image. We produce
a histogram function corresponding to each of such data.
The unknown parameters are learned so as to separate the
constructed histogram functions to build a pattern classifier.
Since our method controls the histogram functions actively,
the obtained classifier can be a powerful tool for pattern
recognition. In simulation, the proposed method is used to
solve a vehicle-type recongnition problem, and the results of
recognition are compared with those of the multiresolution
histogram technique.

2. DIRICHLET KERNEL HISTOGRAM FORMULA

We derive a formula of approximating histograms, which
is called a Dirichlet kernel histogram formula, to utilize it

for pattern recognition. LetN be a positive integer, and di-
vide the interval[−1,1] into 2N +1 equidistant subintervals
[ξn,ξn+1]. Here,ξn representξn = (2n− 1)/(2N + 1), n =
−N, ...,N + 1. The midpoint of[ξn,ξn+1] is given bytn =
2n/(2N +1). Let us denoteM data byzm, m= 0, ...,M−1.
The datasizeM may be distinct per data. The datazm are
normalized as−1≤ zm ≤ 1. Let z̄m be a representative ofzm
existing in the subinterval[ξn,ξn+1]. The histogramf̄n of zm
is the number of ¯zm appearing in[ξn,ξn+1].

The following theorem holds.

Theorem 1 ([10]). The ratio of histogramf̄n to M can be
approximated by

f (t;z) =
1

(2N+1)M

M−1

∑
m=0

(
1+2

N

∑
k=1

cosπk(zm− t)

)

=
1

(2N+1)M

M−1

∑
m=0

sin(N+ 1
2)π(zm− t)

sin1
2π(zm− t)

,

−1≤ t ≤ 1, (1)

wherez = (z0, ...,zM−1).

The outline of proof is described as follows: We apply
the discrete Fourier transform to the histogram̄fn, and trans-
form it using a moment relation between̄fn and z̄m. The
histogram f̄n is obtained by exploiting the inverse discrete
Fourier transform. As a result, we havēfn = M f (tn; z̄) with
z̄ = (z̄0, ..., z̄M−1). This means thatf (t;z) is an approxima-
tion of f̄n/M.

Since f (t;z) in Theorem 1 is a Dirichlet kernel function
whenzm = 0, we call it a Dirichlet kernel histogram (Dkh)
formula or a Dkh function. It is important to notice that the
Dkh formula f (t;z) is an explicit function of the datazm, m=
0, ...,M−1. Of course,zm may include unknown parameters.
Since

∫ 1
−1 f (t;z)dt = 2/(2N+1) does not depend onM, we

can compare the Dkh functions with different datasizes.

Using the first equation of (1), we obtain

Corollary 1 . The L2-distance between two Dkh functions
f (t;zν) with zν = (zν

0 , ...,zν
Mν−1), ν = 1,2, is given by

‖ f (·;z1)− f (·;z2)‖2 =
∫ 1

−1
( f (t;z1)− f (t;z2))2dt

=
4

(2N+1)2

N

∑
k=1

(
(a1[k]−a2[k])2 +(b1[k]−b2[k])2) .
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Here,aν [k] andbν [k] denote

aν [k] =
1

Mν

Mν−1

∑
m=0

cos(kπzν
m), bν [k] =

1
Mν

Mν−1

∑
m=0

sin(kπzν
m),

respectively.

Corollary 1 will be used to derive a classification algo-
rithm.

3. LIFTING SCHEME

To obtain image data including free prameters, we use a set
of lifting dyadic wavelet filters:

hn = ho
n, (2)

gn = go
n−∑

l

λl h
o
n−l , (3)

h̃n = h̃o
n +∑

l

λ−l g̃
o
n−l , g̃n = g̃o

n,

whereλl ’s are free parameters. Here,{ho
n,g

o
n, h̃

o
n, g̃

o
n} denotes

a set of old dyadic wavelet filters, in whichho
n and go

n are
low-pass and high-pass analysis filters, respectively, andh̃o

n
andg̃o

n low-pass and high-pass synthesis filters, respectively.
It can be shown that the above lifting wavelet filters also be-
come dyadic wavelet filters ([5]). In this paper, only (2) and
(3) will be exploited. Images are not subsampled by these
analysis filters. From now on, a sequence of free parameters
is restricted to a finite sequence.

Let ui, j denote an original image. Applying the filter (2)
to ui, j in vertical direction, and the lifting filter (3) to the
resulting components in horizontal direction, we obtain

Di, j −
L

∑
l=−L

λ d
l Ci+l . j . (4)

Here, Ci, j = ∑k,mho
kho

mui+k, j+m represent low-pass compo-
nents, Di, j = ∑k,mgo

kho
mui+k, j+m high-pass components in

horizontal direction, andλ d
l ’s free parameters in horizontal

direction. Next, we apply the filter (2) toui, j in horizontal di-
rection, and the lifting filter (3) to the resulting components
in vertical direction to get

Ei, j −
L

∑
l=−L

λ e
l Ci. j+l , (5)

whereEi, j = ∑k,mho
kgo

mui+k, j+m are high-pass components in
vertical direction, andλ e

l ’s free parameters in vertical direc-
tion. Adding (4) and (5) yields the components

vi, j = Di, j +Ei, j −
L

∑
l=−L

λ d
l Ci+l . j −

L

∑
l=−L

λ e
l Ci. j+l . (6)

Note that vi, j has the information of original imageui, j
around(i, j), becauseCi+l . j andCi. j+l in (6) have it.

The lifted components (6) have been used for develop-
ing facial parts detection systems [7, 8, 13]. They have also
been exploited for the development of person authentication
systems [9, 14].

In this paper, the componentsvi, j of (6) are normalized to
construct a Dkh function. Although the maximum ofvi, j can-
not be calculated in advance, because (6) include unknown
parameters, they can formally be normalized as

wi, j =
vi, j − v̄

max(i, j)∈Ω |vi, j − v̄|
, (7)

whereΩ denotes an image region ofvi, j , andv̄ an average of
vi, j in Ω. The Dkh function forwi, j takes the following form.

f (t;w) =
1

(2N+1)#Ω ∑
(i, j)∈Ω

(
1+2

N

∑
k=1

cosπk(wi, j − t)

)

=
1

(2N+1)#Ω ∑
(i, j)∈Ω

sin(N+ 1
2)π(wi, j − t)

sin1
2π(wi, j − t)

,

−1≤ t ≤ 1. (8)

Herew = (wi, j), (i, j) ∈ Ω, where #Ω denotes the number of
pixels ofwi, j .

4. CLASSIFIER

4.1 Learning of free parameters

Suppose that there areSclasses of images. Theν-class con-
sists ofT training imagesuτ,ν

i, j , τ = 1, ...,T. We construct the

componentswτ,ν
i, j of the form (7) fromuτ,ν

i, j going through the
lifting (6) and the normalization (7). Furthermore, we con-
struct the Dkh functionsf (t;wτ,ν) having the form (8) from
wτ,ν

i, j . The next task is to calculate the average of the Dkh
functions inν-class as

f̄ ν(t) =
1
T

T

∑
τ=1

f (t;wτ,ν),

and the total average of the Dkh functions as

f̄ (t) =
1
S

S

∑
ν=1

f̄ ν(t).

Notice that the free parameters are included also in these av-
erages. We use the discriminant analysis method to learn the
parameters. The method in the present case is described as
follows: Determine the parametersλ d = (λ d

−L, ...,λ d
L ) and

λ e = (λ e
−L, ...,λ e

L) so as to minimize the functional

J(λ d,λ e) = ∑S
ν=1 ∑T

τ=1‖ f (·;wτ,ν)− f̄ ν‖2

∑S
ν=1‖ f̄ ν − f̄‖2

, (9)

where‖ · ‖ denotes theL2-norm. The norms included in (9)
can be computed using Corollary 1 as

‖ f (·;wτ,ν)− f̄ ν‖2

=
4

(2N+1)2

N

∑
k=1

(
(aτ,ν [k]− āν [k])2 +(bτ,ν [k]− b̄ν [k])2) ,

‖ f̄ ν − f̄‖2 =
4

(2N+1)2

N

∑
k=1

(
(āν [k]− ā[k])2 +(b̄ν [k]− b̄[k])2) .
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Here,aτ,ν [k] andbτ,ν [k] indicate

aτ,ν [k] =
1

#Ωτ,ν
∑

(i, j)∈Ωτ,ν

cos(kπwτ,ν
i, j ),

bτ,ν [k] =
1

#Ωτ,ν
∑

(i, j)∈Ωτ,ν

sin(kπwτ,ν
i, j ),

respectively, where #Ωτ,ν denotes the number of pix-
els of uτ,ν

i, j . Also, we put ¯aν [k] = ∑T
τ=1aτ,ν [k]/T,

b̄ν [k] = ∑T
τ=1bτ,ν [k]/T, ā[k] = ∑S

ν=1 āν [k]/S, and b̄[k] =
∑S

ν=1 b̄ν [k]/S.
To apply a minimization method toJ(λ d,λ e), we have to

differentiate it with respect toλ d
l andλ e

l , and thus with re-
spect towτ,ν

i, j . However, since the denominator ofwτ,ν
i, j is non-

differentiable, differentiation is done only for the numerator.

4.2 Inverse problems

The present minimization problem is considered as a dis-
crete inverse problem of elliptic-type of partial differential
operators. To explain this, we return to (6). If choosing the
high-pass filtergo

n asgo
0 = −0.25, go

1 = 0.5, go
2 = −0.25, and

go
n = 0.0 otherwise, which is a kind of dyadic wavelet filters,

the filtergo
n becomes the discrete Laplacian operator. There-

fore, a continuous version of (6) can be written as

v(x,y) = −
(

∂ 2

∂x2 (Iyu)(x,y)+
∂ 2

∂y2 (Ixu)(x,y)
)

− I(λ d,λ e)u(x,y). (10)

HereIy, Ix andI(λ d,λ e) represent the integral operators de-
fined by

(Iyu)(x,y) =
∫

ho(y′)u(x,y+y′)dy′,

(Ixu)(x,y) =
∫

ho(x′)u(x+x′,y)dx′,

(I(λ d,λ e)u)(x,y) =
L

∑
l=−L

(
λ d

l C(x+ l ,y)+λ e
l C(x,y+ l)

)
,

respectively, whereho(x) is a continuous version of low-pass
filter ho

n, andC(x,y) =
∫ ∫

ho(x′)ho(y′)u(x+x′,y+y′)dx′dy′.
Learningλ d andλ e by our method is regarded as solving a
discrete inverse problem of the elliptic-type of partial differ-
ential operator (10).

Such inverse problems generally become ill-posed.
Therefore, stabilization is needed, and is often executed by
using the Tikhonov’s regularization method. The method is
to add the penalty term

L

∑
l=−L

((λ d
l )2 +(λ e

l )2)

to J(λ d,λ e) of (9), and to minimize

J(λ d,λ e)+P
L

∑
l=−L

((λ d
l )2 +(λ e

l )2),

whereP denotes a penalty constant. This fact was pointed
out also in [7].

5. RECOGNITION METHOD

Recognition is performed by comparing a Dkh function for
a testing image with the Dkh average functions for training
images. First, we compute Dkh functions for training images
and their average functions per class by using the learned
parameters. Next, a Dkh function for a testing image is com-
puted by exploiting the same parameters. We measure the
L2-distances between the Dkh function and the Dkh average
functions for training images. The testing image is judged to
be inν-class, if its Dkh function is nearest to the Dkh average
function ofν-class.

6. RECOGNITION OF VEHICLE-TYPE

We consider a problem of recognizing vehicle-type. The
types of vehicles are bus, truck, van, mini-car, and sedan.
Using a webcamera, we took the pictures of vehicles going
at a speed of about 40km/h on a road, and cut off only mov-
ing objects. The values of background areas are almost zero.
Each image has a size of 64× 64. The object is not always
centered in an image, and is lacked partly in many examples.
The captured images contain the shadow of a vehicle and, in
some cases, walking people as noise. We captured 40 vehi-
cles per type, therefore, the total number of samples is 200.
About half of vehicles in each type is facing to the left, and
the remaining to the right. From each type of vehicles, 10 ve-
hicles are chosen for the use of training images, i.e.,T = 10,
and the remaining 30 images to use as testing images. Fig-
ure 1 shows a part of training images, and Fig. 2 a part of
testing images.

Figure 1: A part of training images; from the top of each line,
bus, truck, van, mini-car, and sedan are arranged.

6.1 Our method

By the use of dichotomy, we separate 50 training images,
each type of vehicles consists of 10 images. The free param-
etersλ d

l ’s andλ e
l ’s included in (7) are learned by our method

so as to distinguish, first, bus and the other types of vehicles,
second, truck and the other types of vehicles except for bus,
thirdly, van and the remaining two types of vehicles, and last,
mini-car and sedan. That is, we construct four classifiers,
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Figure 2: A part of testing images; from the top of each line,
bus, truck, van, mini-car, and sedan are arranged.

which are tools for recognizing bus, truck, van, mini-car, and
sedan. In all the cases, the number of free parameters in each
direction is chosen as 2L+1= 25, i.e.,L = 12, and the num-
ber of mesh points of a Dkh function as 2N + 1 = 11, i.e.,
N = 5. To ignore the background area in an original image,
we use only the values of image exceeding some thresholds.

For recognition, we compute the Dkh functions having
the form (8) for training images by using the parameters
learned for the bus classifier, the truck classifier, the van clas-
sifier, and the mini-car classifier. Furthermore, the averages
of these Dkh functions are calculated per vehicle-type. Fig-
ures through 3 to 6 illustrate the averages of Dkh functions
for four classifiers.

 0
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-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

’m2bmisvmt_m2bus_avg_hist.dat’
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’m2bmisvmt_mini_avg_hist.dat’

’m2bmisvmt_sedan_avg_hist.dat’

Figure 3: The averages of Dkh functions learned for training
images of bus, truck, van, mini-car, and sedan.

In Fig. 3, the bus average function behaves like a Gaus-
sian distribution witht = 0.0 as a center, while the other
ones have valleys neart = 0.0. This suggests that bus
is separable from the other types of vehicles. Figure 4
shows that the truck average function has a minimum around
t = −0.2, however, the remaining average functions present
sharp peaks there. Therefore, it is expected that only truck
will be distinguishable from the remaining types of vehicles
except for bus. Figure 5 presents a nortable difference be-
tween the van average function and the other ones in the in-
terval [−0.7,0.0]. This expects that van will be separated
from mini-car and sedan. Figure 6 shows that the average
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Figure 4: The averages of Dkh functions learned for training
images of truck, van, mini-car, and sedan.
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Figure 5: The averages of Dkh functions learned for training
images of van, mini-car, and sedan.

function of mini-car is distinct from that of sedan in the in-
terval[−0.3,0.1], which hints the separability of them.

We examine the recognition ability of our method for 50
training images already used for learning, and for 150 testing
images. The proposed method is evaluated by comparing the
L2-distances between a Dkh function for a training or test-
ing image and the Dkh average functions obtained for the
training images. If a Dkh function for an input image has
the shortest distance from the bus Dkh average function in
the bus classifier, the image is judged as bus. If not so, it is
checked for the remaining classifiers. The results of recog-
nition by our method are shown in Table 1 for the training
and testing images. The agreement based on our method was
100% for the training images, and agreement obtained for the
testing images was 90%.

6.2 Multiresolution histogram technique

For comparison, the experiments of vehicle-type recognition
are performed by the use of the multiresolution histogram
technique [4]. Although the method employs a Gaussian
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Figure 6: The averages of Dkh functions learned for training
images of mini-car and sedan.

1531



Table 1: Results of recognition by our method. b: bus,
t: truck, v: van, m: mini-car, s: sedan.

Training images Testing images
b t v m s b t v m s

b 10 0 0 0 0 24 2 4 0 0
t 0 10 0 0 0 0 28 0 2 0
v 0 0 10 0 0 0 0 30 0 0
m 0 0 0 10 0 0 2 0 27 3
s 0 0 0 0 10 0 0 0 2 28

pyramid of subsampled type to obtain histogram informa-
tion, we use the dyadic wavelet transform not subsampled,
because the size of images is small. Following the multireso-
lution histogram method, histograms proportional to the dis-
crete Fisher information measures are computed for the train-
ing and testing images treated in Section 6. These histograms
are concatenated to form a feature vector. We compare the
L1-distances between a feature vector for a training or test-
ing image and the averages of the feature vectors for training
images, and judge a viehicle-type with the shortest distance.
Table 2 shows the results of recognition. The matching rate

Table 2: Results of recognition by the multiresolution his-
togram method. b: bus, t: truck, v: van, m: mini-car, s: sedan.

Training images Testing images
b t v m s b t v m s

b 8 0 0 2 0 16 4 1 3 6
t 1 9 0 0 0 2 27 0 0 1
v 0 0 8 2 0 0 0 23 5 2
m 0 0 0 10 0 0 2 4 19 5
s 0 0 0 1 9 0 2 1 1 26

of the multiresolution histogram technique was 88% for the
training images, while it was 74% for the testing images.

7. CONCLUSION AND FUTURE WORKS

We have proposed a pattern recognition method based on a
Dkh formula. This formula is an explicit function of data per-
mitting the inclusion of unknown parameters. By learning
the parameters, we can build histogram pattern classifiers.
Practically, free parameters in the Dkh functions constructed
from the vehicle training images were learned by using the
discriminant analysis method to produce a vehicle-type clas-
sifier. The experimental results show the high recognition
ability of our method.

The proposed Dkh formula has many applications as well
as pattern recognition. One of important problems is to find
out a relation between our Dkh formula and the zero-norm
investigated recently by Donoho’s group [1]. Our Dkh func-
tion is considered as a generalization of Donoho’s zero-norm,
and differentiable with respect to data unlike the zero-norm.
The Dkh formula can also be utilized for the control of strat-
egy parameters included in solutions to evolution equations.
These are future works.
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