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ABSTRACT
In this paper, we introduce a new approach for the evalua-
tion of dual Posterior Cramer-Rao Lower Bounds (PCRLBs)
where the estimation procedure involves time-invariant, sta-
tionary system parameters and system states. Dual es-
timation may be required in respiratory system modeling
where the parameters are usually physiological model set-
tings. Bayesian solution of the parameter estimation lets us
derive the dual PCRLBs with the help of the block matrix
algebra. For the state estimation bound, our results give the
same expressions as in the previous studies. In addition, we
have obtained the iterative PCRLB expressions for the pa-
rameter estimation in the Mead respiratory model. Dual UKF
and EKF error variances that were obtained in our previous
work are demonstrated with respect to these bounds. Results
show that UKF performs better than the EKF for the dual
estimation in the Mead model.

1. GENERAL INFORMATION

One of the widely accepted ways to demonstrate the perfor-
mance of the unbiased estimator is to give the lower bounds
for the error covariance that can be achieved for the state-
observation model of interest:

P = E
{[

X̂−X
][

X̂−X
]T

}
≥ J−1 (1)

where P is the estimator’s error covariance matrix, J is the
Fisher Information Matrix (FIM), and X̂ is the estimate of
the random process X. Posterior Cramer Rao Lower Bound
(PCRLB) developed by [1] serves an important tool for time-
varying random parameter and state estimation. PCRLB was
studied in the literature for many tracking, detection and es-
timation problems [1],[2].

Mead respiratory model is used for respiratory mechan-
ics determination from measured pressure and flow in the
respiratory system [3]. Estimation of the parameters for the
Mead model is not a straight-forward task due to noise and
error involved in the measurements. It is previously shown
that Kalman Filtering may be used in order to estimate the
parameters as well as the states in respiratory system mod-
els [4]. In this work, we present the closed-form expression
of the PCRLB for the dual estimation in the Mead model
and illustrate the bounds for each parameters and states. In
the simulations, system parameters are assumed to be Gaus-
sian Distributed. Moreover, previously calculated Unscented
Kalman Filter (UKF) and Extended Kalman Filter (EKF) es-
timators’ error covariances [4] were demonstrated with re-

spect to calculated PCRLB to compare the performance of
the estimators for the Mead model.

2. PCRLB FOR DUAL ESTIMATION

A classical Fisher information matrix [1] is used for the lower
bound determination in the state or parameter estimation.
However, the problem rises if the parameters are considered
as a time-invariant unknown random variables and the un-
certainty on the parameter transition is set to null. That is
referred as a singular state covariance matrix, Qk, where k
is the time index. The difficulties of singular Qk matrix are
handled by PCRLB [1], but direct utilization of the general
PCRLB recursions do not necessarily give closed-form ex-
pressions for all models. Thus, in this work we present the
PCRLB for both states and parameter simultaneously, where
the parameters are assumed to be time-invariant and station-
ary random variables. PCRLB recursions are driven for finite
observation time, and the relations between PCRLB, system
states, and parameters are established.

The Mead model of the respiratory system can be gener-
ally represented as:

xk = fk (xk−1,Θ,uk)+qk (2)

zk = hk (xk,Θ,uk)+rk (3)

where xk is the system state vector, zk is the measurements
in the respiratory system, f (•) and h(•) are the nonlinear
system functions. uk is devoted to the known inputs and Θ
is the unknown parameter vector of interest. We assume that
qk ∼N [0,Qk] and rk ∼N [0,Rk] are the Gaussian type ad-
ditive state and observation noises respectively. Then it is
driven in Appendix that PCRLB for the state and parameter
estimation respectively are:

Px
k =Qk−1 +Fx

k−1

((
Hx

k−1
)T R−1

k−1Hx
k−1 +P−1

k−1

)−1 (
Fx

k−1
)T

(4)

Pθ
k =

(
T θθ

k−1

)−1

+
((

Hθ
k−1

)T R−1
k−1Hθ

k−1 +
(
Fθ

k−1

)T Q−1
k−1Fθ

k−1 +P−1
k−1

)−1

(5)
where Qk−1 and Rk−1 are the state noise error covariance
matrix and measurement noise error covariance matrix re-
spectively. In order to generate PCRLB, we utilize the below
definitions:
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Hx
k = ∂hk(xk,θ)

∂xk
, Hθ

k = ∂hk(xk,θ)
∂θ , Fx

k = ∂ fk(xk,θ)
∂xk

, Fθ
k =

∂ fk(xk,θ)
∂θ

Mθθ = E
{

∂ 2

∂θ 2 logPrθ (θ)
}

and

T θθ
k =−E

{
∂ T θ

k
∂θ

}
=

=
k
∑

n=0

(
Hθ

n
)T R−1

n Hθ
n +

(
Fθ

n
)T Q−1

n Fθ
n +Mθθ

3. MEAD RESPIRATORY MODEL

In this section expressions derived for the PCRLB of the
states and the parameters are applied to the linear respiratory
system model, called the Mead model [3]. The model state
and the observation equations are obtained in the discrete-
time as follows:

xk+1 =




1−Rc
/

L 0 −1
/

L −1
/

L 1
/

L
0 1−1

/
RpCl 1

/
RpCl 0 0

1
/

Cb 1
/

RpCb 1−1
/

RpCb 0 0
1
/

Cw 0 0 1 0
−1

/
Ce 0 0 0 1



xk

+




0
0
0
0

1
/

Ce


V̇k +




1
0
0
0
0


Pmus

k +qk

(6)

zk = [ 0 0 0 0 1 ]xk +Pven
k +rk (7)

where measurement noise and the state noise are zero-mean,
white Gaussian, qk ∼N [0,Qk] and rk ∼N [0,Rk]. V̇k is the
measured airway flow sequence. Parameter vector and state
vector are defined respectively as:
θ = [ Rc L Cl Cb Rp Cw Ce Pmus max ]T and

xk =
[

V̇ L
k PCl

k PCb
k PCw

k PCe
k

]T
.

In (6) and (7) the muscular pressure and the non-invasive
ventilatory effects are simulated as exponential functions:

Pmus
k =

{
−Pmus max

(
1− k

TI

)
+Pmus max 0≤ k ≤ T

Pmus maxe−k/τm TI ≤ k ≤ T
(8)

Pven
k =





PEEP 0≤ k ≤ ttrig
Pps

(
1− e−k/τvi

)
ttrig < k ≤ TI

Pps
(
e−k/τve

)
TI < k ≤ T

(9)

where the constant model parameters Pps, TI , T , τm, τvi, and
τve were set to constant values to resemble the correspond-
ing respiratory pressures [?]. Then, the associated Jakobian
matrices can be obtained:

Hx
k = [ 0 0 0 0 1 ] (10)

Hθ
k = 0 (11)

Fx
k =




1−Rc
/

L 0 −1
/

L −1
/

L 1
/

L
0 1−1

/
RpCl 1

/
RpCl 0 0

1
/

Cb 1
/

RpCb 1−1
/

RpCb 0 0
1
/

Cw 0 0 1 0
−1

/
Ce 0 0 0 1




(12)

Fθ
k = gk (X,θ) (13)

We assume the state and measurement noises are Gaus-
sian with constant covariances Q = 10−4I5×5 and R = 1.
Furthermore, since a prior distribution of the parameters ef-
fects the performance of the estimator, we require to define
the probability model of the parameters. Gaussian assump-
tion for the parameter estimation in Kalman Filters oblige
us to use Gaussian Distribution for the probability model
Prθ (θ) = 1

/√
2π |Qθ |exp

{−0.5θQ−1
θ θ T

}
. Thus, it is

found that:

Mθθ = Q−1
θ (14)

In order to illustrate the PCRLBs, artificial respiratory
signals are produced with (6) and (7), and bounds are com-
puted for one breathing cycle. The specified parameter model
covariance matrix was set to Qθ = 10−3I8×8, and the PCRLB
initials are Px

0 = 2×10−1I5×5, Pθ
0 = 10−1I8×8 for the Mead

model.

4. RESULTS AND DISCUSSIONS

UKF and EKF estimators were previously applied to the res-
piratory parameter estimation problem where the real signals
acquired from the patients and healthy subjects were used for
the observed signals. In this section UKF and EKF estima-
tors won’t be explained in details due to the physical limi-
tations. Comprehensive explanations and estimators’ algo-
rithm can be found in [6, 7] and more specifically in [4]. In
this work we used dual UKF and EKF estimators which en-
able simultaneously estimate both the states and the parame-
ters from the noisy observations. In this respect, the param-
eters are assumed to be the time-invariant random processes
which are modeled as:

θk+1 = θk (15)

Dual UKF and EKF estimators were applied to artificially
produced respiratory signals by using Mead model equa-
tions in (6), (7), and (15). Constraints due to the physi-
cal limitations on the parameters (0 ≤ θ ≤ ∞) are also ap-
plied to the dual estimation problem. In the algorithm, af-
ter the sigma points were calculated and after the Predic-
tion step, constrained sigma points were obtained with the
projection method explained in [4]. Artificial output signal
was computed with the parameters given in [4]. Further-
more, UKF algorithm parameters were set according to the
minimum Mean Squared Error (MSE) computed in the artifi-
cial data run. Monte Carlo simulations were performed with
MC = 100 run by artificial data series. α = 0.1 for the pa-
rameters whereas α = 0.5 for the states. κ , the secondary ad-
justment parameter was set to κ = 1 for the minimum MSE.
Finally, set β = 2 indicates that a prior distribution of the
output signal was Gaussian distributed.
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Fig.1a and Fig.1b illustrate the relation between the pa-
rameter and state PCRLBs and the estimators’ error variance
evolution throughout the breathing period. It is notable that
error variance of UKF estimator follow more closely to the
PCRLB than error variance of EKF estimator does. It is the
fundamental indicator that UKF perform better than EKF for
our models. However, the degree of the performance dif-
ference between the estimators vary among the parameters
and states. On the other hand, parameter PCRLBs alone can
be seen on Fig.2. It can be noticed that each parameter has
its own PCRLB that presumedly depends on the relation be-
tween the parameter and the states. Pmus max has the lowest
bound due to the direct proportion between the parameter
and the states. On the other hand Cw has the worst bound.
We observed that bounds on the parameters nicely coincides
with the estimation performance demonstrated in [4]. It was
noticed that nonlinear dependence and inverse ratio are the
contributions to the high PCRLB values. It is also observed
that the transition from the inspiration to expiration results
in the knees in the PCRLB curves (see Fig.2). The effect of
sudden decrease in the Pven

k and Pmus
k results in the reduction

on the resistive parameters and inductance element, L.
Moreover, we investigated the signal-to-noise ratio

(SNR) effects on the state PCRLBs. In the respiratory signal
measurements SNR is quite high due to the accurate airflow
and the pressure transducers. Thus, we range SNR between
25−75dB which corresponds to the measurement noise vari-
ances of R = 2−0.02 (Fig.3). As it is expected the PCRLB
of the state PCe decreases with increasing SNR. The direct
effects of the measurement equation on the state bound is
obvious in Fig.3. The use of the measured airflow on the
determination of the state V̇l results in more than 10th times
lower PCRLB, which shows the importance of the different
measurement locations on the respiratory system modeling.

5. APPENDIX

FIM is redefined for the dual estimation where the parame-
ters are also assumed to be the random variables:

Ji j = E
{
− ∂ 2 logPrz,x,θ (Z,X,θ)

∂wi∂w j

}
i, j = 1, · · ·Nx (16)

where joint probability distribution is given below:

Prz,x,θ (Z,X,θ)
= Pr z|x,θ (Z|X,θ)Pr x|θ (X|θ)Pr(θ)

=
k−1
∏
i=0

Pr z|x,θ (zi|xi,θ)Pr x|θ (x0|θ)

×
k
∏
i=1

Pr x|θ (xi|xi−1,θ)Pr(θ)

(17)

In order to generate the FIM, we utilize the score function
s(Zk,Xk,θ) = ∂ logPrz,x,θ (Zk,Xk,θ)

/
∂wk where wk =[

xT
k θ T

]T is the joint parameter vector. Then the score
function can be given as:
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Figure 1: Posterior Cramer-Rao Lower Bound (PCRLB) evo-
lution in the Mead model throughout one breathing cycle (a)
for the parameter estimation, and (b) for the state estimation.
Dashed red lines represent the PCRLB while solid blue and
doted green lines are the estimator error variances of Un-
scented Kalman Filter (UKF) and Extended Kalman Filter
(EKF) respectively.
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Figure 2: Posterior Cramer-Rao Lower Bound evaluation
through one breathing cycle for the parameter estimation.
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Figure 3: Posterior Cramer-Rao Lower Bound evaluation
versus signal-to-noise ratio for the state estimation.

s(Zk,Xk,θ) =




s0 (Z0,X0,θ)
...

si (Zi,Xi,θ)
...

sk (Zk,Xk,θ)




T

1×(k+1)(Nx+Nθ )

(18)

where Nx and Nθ are the length of the state and parameter
vectors respectively. The elements of the score function from
the observations up to and including k are defined as follows:

si (Zi,Xi,θ) =




Hx
i R

−1
i (zi−hi (xi,θ))

+Fx
i Q−1

i (xi+1− fi (xi,θ))
−Q−1

i−1 (xi− fi−1 (xi−1,θ))
T θ

i




T

1×(Nx+Nθ )
(19)

s0 (Z0,X0,θ) =




Hx
0R

−1
0 (z0−h0 (x0,θ))

+Fx
0 Q−1

0 (x1− f0 (x0,θ))
−P−1

0 (x̂0−x0)
T θ

0




T

1×(Nx+Nθ )
(20)

and

sk (Zk,Xk,θ) =
[
−Q−1

k−1 (xk− fk−1 (xk−1,θ))
T θ

k

]T

1×(Nx+Nθ )
(21)

FIM is obtained as the gradient of the score function. Thus,
by using the block matrix differentiation, FIM can be written
as:

Jk =−E
{

∂ s(Zk,Xk,θ)T

∂wk

}

=




∂ s0
∂w0

∂ s0
∂w1

· · · ∂ s0
∂wk

∂ s1
∂w0

∂ s1
∂w1

· · · ∂ s1
∂wk

...
...

. . .
...

∂ sk
∂w0

∂ sk
∂w1

· · · ∂ sk
∂wk




(k+1)(Nx+Nθ )×(k+1)(Nx+Nθ )
(22)

Using the score function (19), (20), and (21) FIM takes the
following form:

Jk =




Jk(11) Jk(12) · · · Jk(1(k+1))
Jk(21) Jk(22) · · · Jk(2(k+1))

...
...

. . .
...

Jk((k+1)1) Jk((k+1)2) · · · Jk((k+1)(k+1))


 (23)

where each element of the matrix can be defined as:

Jk(i j) =
[

J11
i j J12

i j
J21

i j J22
i j

]
(24)

∀i = j 6= 1

Jk(i j) =




(
Hx

i−1
)T

R−1
i−1Hx

i−1
+

(
Fx

i−1
)T

Q−1
i−1Fx

i−1
+Q−1

i−2

(
Hx

i−1
)T

R−1
i−1Hθ

i−1
+

(
Fx

i−1
)T

Q−1
i−1Fθ

i−1
−Q−1

i−2Fθ
i−2(

J12
i j

)T
T θθ

i




(25)

∀i, j = i+1

Jk(i j) =




−(
Fx

i−1
)T

Q−1
i−1

(
Hx

i−1
)T

R−1
i−1Hθ

i−1
+

(
Fx

i−1
)T

Q−1
i−1Fθ

i−1
−Q−1

i−2Fθ
i−2(

Hθ
i
)T

R−1
i Hx

i

+
(
Fθ

i
)T

Q−1
i Fx

i

−(
Fθ

i−1
)T

Q−1
i−1

T θθ
i




Jk( ji) =
(
Jk(i j)

)T

(26)

∀i, j > i+1

Jk(i j) =




/0

(
Hx

i−1
)T

R−1
i−1Hθ

i−1
+

(
Fx

i−1
)T

Q−1
i−1Fθ

i−1
−Q−1

i−2Fθ
i−2(

Hθ
i
)T

R−1
i Hx

i

+
(
Fθ

i
)T

Q−1
i Fx

i

−(
Fθ

i−1
)T

Q−1
i−1

T θθ
i




Jk( ji) =
(
Jk(i j)

)T

(27)

∀i = j = 1

Jk(11) =




(
Hx

0
)T

R−1
0 Hx

0
+

(
Fx

0
)T

Q−1
0 Fx

0
+P−1

0

(
Hx

0
)T

R−1
0 Hθ

0
+

(
Fx

0
)T

Q−1
0 Fθ

0
(

J12
i j

)T
T θθ

0




(28)

J is not a sparse matrix due to the correlations and depen-
dencies between the states and the parameters; therefore the
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inverse of the FIM can be calculated recursively. Thus, a
two-step recursion of the FIM can be written as follows:
1) Time Update

Jk|k−1 =

[
J11

k|k−1
Ak
Bk

Ck Dk Fk

]
(29)

where

J11
k|k−1 =




J11
k−1|k−1 J12

k−1|k−1

J21
k−1|k−1 J22

k−1|k−1 +
(
Fx

k−1

)T
Q−1

k−1Fx
k−1

[
I /0
/0 /0

]



Ak =




A0
A1

...
Ak−2




Ai =

[
/0 (Fx

i )T Q−1
i Fθ

i −Q−1
i−1Fθ

i−1(
Fθ

k−1

)T
Q−1

k−1Fx
k−1−

(
Fθ

k−2

)T
Q−1

k−2 T θθ
k−1

]

Bk =




−(
Fx

k−1

)T
Q−1

k−1

(
Fx

k−1

)T
Q−1

k−1Fθ
k−1

−Q−1
k−2Fθ

k−2(
Fθ

k

)T
Q−1

k Fx
k

−(
Fθ

k−1

)T
Q−1

k−1

T θθ
k−1




Ck =




C0
C1

...
Ck−2




T

Ci =




/0
(
Fx

k−1

)T
Q−1

k−1Fθ
k−1

−Q−1
k−2Fθ

k−2(
Fθ

i
)T

Q−1
i Fx

i

−(
Fθ

i−1
)T

Q−1
i−1

T θθ
k−1




Dk = (Bk)
T

Fk =

[
Q−1

k−1

(
Fx

k

)T
Q−1

k Fθ
k −Q−1

k−1Fθ
k−1

Fθ
k Q−1

k

(
Fx

k

)T −Fθ
k−1Q

−1
k−1 T θθ

k−1

]

2) Measurement Update

Jk|k =

[
J11

k|k J12
k|k

J21
k|k J22

k|k

]
(30)

where

J11
k|k = J11

k|k−1

J12
k|k = J12

k|k−1 +

[
/0

(
Hx

k−1

)T
R−1

k−1Hθ
k−1(

Hθ
k

)T
R−1

k Hx
k

(
Hθ

k−1

)T
R−1

k−1Hθ
k−1

]

J21
k|k =

(
J12

k|k
)T

J22
k|k = J22

k|k−1 +

[ (
Hx

k

)T
R−1

k Hx
k

(
Hx

k

)T
R−1

k Hθ
k(

Hθ
k

)T
R−1

k Hx
k

(
Hθ

k

)T
R−1

k Hθ
k

]

The error covariance matrix for the joint bound is:

Pk = E
{

[ŵk−wk] [ŵk−wk]
T
}
≥ J−1

k (31)

Thus, from (29), (30) and block matrix inversion [5] Pk is:

P−1
k ≥Fk− [ Ck Dk ]

(
J11

k|k−1

)−1
[

Ak
Bk

]

=





Fk− [ Ck Dk ]

×
{
Fk−1 +

(
Hx

k−1

)T
R−1

k−1Hx
k−1 +P−1

k−1

}−1

×
[

Ak
Bk

]





(32)

In this respect, the state error covariance matrix is com-
puted by the the upper left quarter of the FIM, J11

i j and the
classical Kalman Filter recursive solution for the error co-
variance matrix is achieved [2]:

P−1
k ≥Q−1

k−1

−





[
/0 −Q−1

k−1Fx
k−1

]

×
((

Fx
k−1

)T
Q−1

k−1Fx
k−1 +

(
Hx

k−1

)T
R−1

k−1Hx
k−1 +P−1

k−1

)−1

×
[

/0
−(

Fx
k−1

)T
Q−1

k−1

]





=
(
Qk−1 +Fx

k−1

((
Hx

k−1

)T
R−1

k−1Hx
k−1 +P−1

k−1

)−1 (
Fx

k−1

)T
)−1

(33)
In the case of parameter estimation, the lower bound of

the error covariance matrix can be obtained with the same
approach using the lower right quarter of the FIM, J11

i j :

P−1
k ≥ T θθ

k−1

−





[
T θθ

k−1

]

×
(

T θθ
k−1 +

(
Hθ

k−1

)T
R−1

k−1Hθ
k−1 +

(
Fθ

k−1

)T
Q−1

k−1Fθ
k−1 +P−1

k−1

)−1

×[
T θθ

k−1

]





=
((

T θθ
k−1

)−1 +
((

Hθ
k−1

)T
R−1

k−1Hθ
k−1 +

(
Fθ

k−1

)T
Q−1

k−1Fθ
k−1 +P−1

k−1

)−1
)−1

(34)
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