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ABSTRACT

Functional magnetic resonance imaging, in particular the
BOLD-fMRI technique, plays a dominant role in hu-
man brain mapping studies, mostly because of its non-
invasiveness and relatively high spatio-temporal resolution.
The main goal of fMRI data analysis has been to reveal
the distributed patterns of brain areas involved in specific
functions, by applying a variety of statistical methods with
model-based or data-driven approaches. In the last years,
several studies have taken a different approach, where the
direction of analysis is reversed in order to probe whether
fMRI signals can be used to predict perceptual or cognitive
states. In this study we test the feasibility of predicting the
perceived pain intensity in healthy volunteers, based on fMRI
signals collected during an experimental pain paradigm last-
ing several minutes. In particular, we introduce a method-
ological approach based on new regularization learning al-
gorithms for regression problems.

1. INTRODUCTION

Several neuroimaging techniques are today available for the
detection of the activity patterns which characterize human
brain function. They measure the spatial distribution and/or
the temporal course of physical entities which are strictly
connected to neural activity. One of the most recently
developed non-invasive techniques is functional Magnetic
Resonance Imaging (fMRI) based on BOLD (Blood Oxy-
genation Level Dependent) contrast ([1]). Using properly
weighted MR images, local changes in deoxyhaemoglobin
concentration, originating from the vascular response to
neuronal mass activity, can be revealed with such technique.

In fMRI, the acquisition of a sequence of cerebral 3D images
during the execution of a particular motor, cognitive or
sensory task, allows to construct the temporal course of the
haemodynamic response, following neuronal activity, at the
voxel level. The majority of fMRI data analysis methods are
aimed at searching for functional localization, i.e., obtaining
a spatial map of activated brain areas when performing a
task. To this end, the conventional approach consists of
convolving the vector representing the paradigm timing
with an estimate of the haemodynamic impulse response
function. The result is then used as a regressor of interest in
a General Linear Model ([2]) or as a reference function to be

correlated with the recorded signals.

However, in the last few years, a growing number of studies
have taken a different approach, where the direction of
analysis is reversed in order to probe whether the acquired
fMRI signals can be used to predict perceptual or cognitive
states. To this end, many different methods have been
proposed (e.g. Support Vector Machines for Regression,
Relevance Vector Regression) but so far no one can be
considered the best methodology ([3, 4, 5]). A new set
of techniques can be obtained by restating the machine
learning problem as a linear inverse problem and, more
precisely, by reviewing the aim of building a model close
to the data, which is able to generalize as a problem of
regularization of an ill-conditioned linear system ([6]).
The effectiveness of these algorithms in learning tasks has
been extensively tested on real and synthetic data, often
improving the performance of the state-of-the-art results.
Interestingly, the implementation of the above algorithms
is reduced to few lines of code. In this paper we consider
one of these techniques, the so calledν-method, and test its
efficiency for the prediction of subjective pain perception
of healthy volunteers. Analyzed data were BOLD-fMRI
signals collected during an experimental pain paradigm
lasting several minutes ([7]).

The plan of the paper is as follows: in Section 2 we recall the
general formulation of the statistical learning problem and
we define the algorithm we will use in the tests, while in
Section 3 we introduce the fMRI experiment, describe some
topics concerning the implementation and the choice of the
parameters involved to build the model and finally discuss
the results. Our conclusions are offered in Section 4.

2. THE ν-METHOD

Within the standard machine learning framework, a regres-
sion problem can be state as follows: given a compact subset
X of R

m, a real numberM > 0, the intervalY = [−M,M] and
a training set of dataS = {(xxxi,yi) : i = 1, . . .,n}⊂ X ×Y , find
a function f : X →Y that fits the elements ofS and is able to
provide a good predictiony ∈Y for a new examplexxx ∈ X . In
general, this function will solve a minimization problem

min
f∈H

1
n

n

∑
i=1

V (xxxi,yi, f (xxxi))+λ‖ f ‖2
H ,
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Figure 1: Top: clusters with signal time courses positively (yellow) or negatively (blue) correlated with the psychophysical
curve for a representative subject.Bottom: psychophysical pain intensity and averaged signals from two representative ROIs.

whereV : X ×Y ×Y → [0,+∞) is a loss function which
weights the errors made byf on the training set andH
is the Hypotheses space in which we choose the function
f itself. The real positive numberλ is the regularization
parameter which balances the fidelity of the solution to the
training set and its complexity (represented by the norm off
in the Hilbert spaceH ). Low values forλ lead to solutions
which behave very well on the training set but which may
not be sufficiently accurate on new examples, while on the
other hand high values forλ force the solution to be smooth
and stable (with respect to variations on the training set) to
the detriment of the information contained in the data.

Different machine learning techniques arise from different
choices forV andH ([8, 9]). In this work we point out a
family of algorithms which are extremely easy to implement
and very fast to provide the solution, especially if the dimen-
sions of the problem are not too large. It can be proved ([10])
that, if we choose the quadratic loss function

V(xxxi,yi, f (xxxi)) = (yi − f (xxxi))
2, i = 1, . . .,n

and we pickf in a Reproducing Kernel Hilbert SpaceHK
defined by the Mercer kernelK : X ×X → R ([11]), then by
the Representer Theoremf can be written as

f (xxx) =
n

∑
i=1

ciK(xxx,xxxi), x ∈ X . (1)

By straightforward computation it follows that the coeffi-
cientsccc = (c1, . . .,cn)

T are the solution of the linear system

(KKK +nλIII)ccc = yyy, (2)

where III is the identity matrix, yyy = (y1, . . .,yn)
T and

KKK = {Ki j}, Ki j = K(xxxi,xxx j), i, j = 1, . . .,n.

The linear system (2) is the Tikhonov regularized version of
the (potentially) ill-conditioned linear systemKKKccc = yyy ([12]).
This approach can be generalized ([13]) by considering other
regularization methods already existing in literature andby

defining the corresponding learning algorithms to obtain the
vectorccc ([14]). In this paper we consider an iterative algo-
rithm calledν-method ([15]) which collected good results in
terms of efficiency and robustness in the classification frame-
work ([16]). Thei-th approximation of the coefficientsccc de-
pends on the two previous iterates and its explicit form is
given by

ccc(i) =ccc(i−1) +ui

(

ccc(i−1)−ccc(i−2)
)

+
ωi

n

(

yyy−KKKccc(i−1)
)

,

i = 1, . . ., t, ccc(0) = 000, (3)

where, givenν > 0,

ui =
(i−1)(2i−3)(2i +2ν−1)

(i +2ν −1)(2i +4ν −1)(2i +2ν −3)
,

ωi = 4
(2i +2ν −1)(i +ν −1)

(i +2ν −1)(2i +4ν −1)
, i = 1, . . ., t.

The role of the regularization parameter here is played by
the number of iterationst: on one hand, many iterations
lead to the overfitting phenomenon, while on the other hand
few iterations give excessively regularized predictors. In
this connection, theν-method provides a significantly faster
convergence with respect to one-step iterative methods with
fixed steplength; more precisely, it can be proved ([15]) that
it needs the square root of the number of iterations required
by standard Landweber algorithm to get the regularized
solution.

3. THE FMRI EXPERIMENT

3.1 Creation of the dataset

The study was carried out on healthy volunteers who were
injected subcutaneously with a dilute ascorbic acid solution
(0.04 ml, 20%) into the left thenar eminence. They were
instructed to code the sensory intensity of pain through-
out the experiments, by moving a computer-controlled vi-
sual analogue scale (VAS) using their right (unstimulated)
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Figure 2: Pictorial representation of the dataset.

hand. Functional images were acquired by a GE 1.5 T
scanner, using an EPI BOLD-sensitive sequence (TR= 4s;
3.75×3.75×4 mm3, interpolated to 2×2×2 mm3). Exper-
iments lasted 20 minutes, during which 300 brain volumes
were acquired from 24 contiguous axial planes covering the
diencephalon and telencephalon. Based on a priori hypoth-
esis, 20 regions of interest (ROIs) in both hemispheres were
identified on anatomical brain images, acquired in the same
experimental session. They included the thalamus, basal gan-
glia, pre- and post-central gyrus and parietal operculum, in-
sular and cingulate cortical areas. After correction of head
movements, cluster of voxels, inside the pre-selected ROI,
were identified on the functional images whose time course
were correlated to the individual psychophysical pain profile
(|r| ≥ 0.6, cluster size = 400 mm3 - see Figure 1). Subse-
quently, the clusters signals were averaged together for each
ROI according to the sign of their correlation. For each vol-
unteer, the resulting dataset was composed of 80 signals (300
sampled points each), i.e. two signals for every one of the
selected 40 ROIs (see Figure 2). We trained the method by
using six subjects and predicted the labels of one different
subject. The analysis has been carried out on a computer
equipped with a 1.66GHz Intel Core Duo T5500 in a Win-
dows XP environment.

3.2 Model construction

We tried several different kernel functionsK (e.g., linear,
Gaussian, polynomial) and finally we found that a Gaussian
kernel

K(xxx1,xxx2) = e
−

‖xxx1−xxx2‖
2
2

2σ2 , xxx1,xxx2 ∈ R
m

seems to provide a better accuracy on the reconstructions
(although in some cases similar results are achievable even
with a linear or polynomial kernel, suitable scaled to assure
the convergence of the method - see [17]). Consequently,
the parameters that have to be fixed in the training phase
are the standard deviationσ of the Gaussian kernel and
the number of iterationst performed by theν-method.
As far as concerns the value ofν, we found good results

in terms of accuracy and convergence rate by setting
ν = 1 (different admissible values forν vary the number of
iterations required but lead essentially to the same solutions).

In our tests the free parameters of the algorithms have been
chosen via a “leave-one-volunteer-out” cross validation ap-
plied to the training set (see Figure 3). In particular:

• we fixed a grid of possible values(σ1, . . .,σM) and
(1, . . ., tmax) for the standard deviation of the Gaussian
kernel and the number of iterations, respectively;

• for each pair(σk, t j), k = 1, . . .,M, t j = 1, . . ., tmax, we
built the model using five subjects as the training set and
tested it on the excluded one. This step is performed six
times (exhausting all the possible combinations training
set / test set). For a fixedσk and for theℓ-th run of the
cross validation (ℓ = 1, . . .,6), we determined the optimal

number of iterationst(ℓ)min(σk) as the one which minimizes
the relative Euclidean errorρ2 = ‖ỹyy− f̃ff ‖2/‖ỹyy‖2, whereỹyy
and f̃ff are the vectors of the real and predicted labels for
the subject used as the test set;

• for eachk = 1, . . .,M, we defined

tmean(σk) =
[

(t(1)
min(σk)+ . . .+ t(6)

min(σk))/6
]

,

errmean(σk)= (ρ(1)
2 (tmean(σk))+. . .+ρ(6)

2 (tmean(σk)))/6,

where[·] is the floor function;
• we chose as optimal parametersσopt andtopt the values

σopt = argmin
k=1,...,M

errmean(σk),

topt = tmean(σopt).

Once we built the prediction functionf through equations
(1) and (3) with the optimal values forσ andt, we applied
it to the fMRI data of the testing volunteer to predict its psy-
chophysical pain profile and compared the results with the
true ones.
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Figure 3: Scheme of the “leave-one-volunteer-out” cross validation for the choice of the optimal values for the standard
deviation of the Gaussian kernel and the number of iterations performed by theν-method.

3.3 Results

In Table 1 the relative reconstruction errorsρ2 and the
Pearson correlation coefficientρP are given when each
volunteer has been used as the test set. We chose two
different ways to evaluate the accuracy of the results be-
cause we found that, in several cases, it is possible to find
reconstructions with high values forρP which do not reflect
the magnitude of the target. In other cases, especially when
the number of non-zero target values is particularly small,
it may happen that an almost straight line can provide a
very small error combined with an as much small value ofρP.

An example of the predicted pain profile, compared to
the real target, for one representative volunteer is shown
in Figure 4 (on top). For the sake of completeness, the
corresponding behaviour on the training set is also reported
on the bottom of Figure 4. The very high values ofρP
obtained in each test suggest that the considered learning
algorithm seems well suited to capture the general time
course of the psychophysical pain profile, even if an accurate
approximation of the real target is not always observed (see
ρ2 values in Table 1). Possible improvements are expected
by increasing the size of the training set and with a more
specific inclusion of the features, here represented by the
selected brain regions.

4. CONCLUSIONS

The aim of the present paper concerns both the machine
learning framework from a purely methodological viewpoint
and the neuroscience area with the application of the pre-
sented method to a fMRI experiment. Regarding the method,
we collected some recent results on the relation between
machine learning and the theory of linear inverse problems
in order to develop a learning algorithm which has the virtue
to be extremely simple to understand and to implement on
a computer which can provide good reconstructions in a
reasonable time. The novelties of the paper consist in the

Table 1: Relative reconstruction errors (ρ2) and Pearson cor-
relation coefficients (ρP) for the ν-method tested on seven
volunteers (top rows). The last two rows refer to the perfor-
mances on the six volunteers used to train the algorithm.

Test set
ρ2 0.27 0.38 0.50 0.48 0.40 0.37 0.48
ρP 0.93 0.91 0.95 0.92 0.96 0.93 0.84

A B C D E F G
ρ2 0.23 0.18 0.21 0.20 0.25 0.19 0.19
ρP 0.96 0.97 0.96 0.97 0.95 0.97 0.97

Training set

application of this method in a regression problem (while, as
far as we know, only applications to classification problems
have been deeply investigated in literature).

Regarding the fMRI experiment, the proposed regularization
algorithm collected very promising performances in recon-
structing the psychophysical pain profiles of the subjects.
The adopted model of acute prolonged (tonic) pain bears
some similarities with clinically relevant conditions, such as
prolonged ongoing activity in nociceptors and spontaneous
fluctuations of perceived pain intensity over time. Therefore
the approach proposed in this study has the potential to
establish grounds for being able to obtain an objective
measure of the ongoing level of clinical inflammatory pain.

Finally, the simplicity of schemes like theν-method makes
easy effective implementations providing interesting time
saving with respect to state-of-the-art learning approaches.
This peculiarity could be very interesting if the presentedal-
gorithm is used to quantify the relevance of the single com-
ponents of the examples in the predicted model through a
typical feature selection procedure ([18]). For the considered
application, this means to identify those brain areas which
role is essential in determining a specific brain state.
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Figure 4: Predictions of theν-method on volunteer A when volunteers B-G have been used to build the model (top panel).
For sake of completeness, we plotted also the predictions onthe examples of the training set in order to inspect how much the
algorithm has learnt from the data.
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