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ABSTRACT
The need for warping diffusion tensor after applying a geo-
metric transformation to an image of this modality has been
previously reported. However, a careful justification of this
requirement has not been provided. In this paper, on the basis
of the image acquisition procedure, the effects of geometric
transformations in both diffusion weighted images and in the
diffusion tensors computed from them are analyzed. This
provides the grounds for the description of how the tensors
should be warped if the image is transformed, and it supplies
a general framework in which the warping strategies previ-
ously proposed in the literature can be viewed as approaches
to such theoretical warping.

1. INTRODUCTION

Diffusion tensor imaging (DTI) is an image modality that
measures the water diffusion in tissues [2]. In brain, it allows
to visualize the fiber structures since diffusion is constrained
by the myelin coat of the axons. Note that it is a macro-
scopic imaging technique, meanwhile fibers are formed by
neuron axons, that have microscopic diameters. For this rea-
son, instead of the microscopic fiber structure, the macro-
scopic tracts in which fibers are bundled are visualized.

The processing techniques that deal with this modality
must take into account its special features, since the diffu-
sion tensor (DT) at each voxel is related to the underlying
structure. Thus, if a geometric transformation is applied to
the image, the DT should be also transformed to remain con-
sistent with the structures. This is essential for registration
of these images, and therefore some strategies have been de-
veloped to warp the tensors consistently with the transforma-
tion [1, 7]. They argue that only rotations should be applied
to tensors because they define microscopical tissue proper-
ties that cannot change, an argument whose accuracy will be
discussed in further sections. Moreover, both the require-
ment for warping and the simplification to rotations have not
been rigorously justified. Thus, in this paper we provide the
rationale behind the requirement for tensor warping. On this
basis, it will be possible to define an approach to the tensor
warping directly related to the actual effect of image trans-
formation, as well as, to analyze the validity of previously
proposed methods inside this framework.

This paper is structured as follows: in Section 2 a de-
scription of the problem can be found. Then, in Section 3 the
methods proposed in the literature are described. The need
for tensor warping and its description are exposed in Sec-
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tion 4, and the experiments with real data are described in
Section 5. Finally, some conclusions are drawn in Section 6.

2. PROBLEM ASSESSMENT

Let I be an image defined in a compact support Ω and let be
T a transformation that maps the Ω into a deformed domain
Ω′. That is, for a given point~x∈Ω, we obtain a point~x′ ∈Ω′,
~x′= T (~x). Thus, the local deformation in a point~x is assessed
as the gradient of the transformation at the given point, that is
the Jacobian matrix J(~x) = ∂T (~x)

∂~x . In a scalar image, a trans-
formed image I′ is built by mapping the intensity values at
~x ∈Ω to the new positions in the Ω′ domain. However, in the
case of tensor data, the value at the location~x is a tensor Dx.
If this value is directly mapped to the transformed domain,
the tensor Dx′ could not preserve the coherence with under-
lying structures in the transformed image. For this reason, it
is necessary to warp the original tensor Dx, in order to obtain
the appropriate transformed tensor D′x′ .

The requirement for tensor warping can be viewed in the
synthetic example in Fig. 1, where tensors are represented
by ellipses, whose axes length and directions are given re-
spectively by the tensor eigenvalues and eigenvectors. Since
diffusion is constrained by the axons myelin coat, the areas
where diffusion has a predominant direction can be identified
as fibers oriented in such direction. Thus, a synthetic fiber
can be distinguished in Fig. 1.(a). This image is rotated, and
the tensors are translated to the new locations, so the image
in Fig. 1.(b) is obtained, where the main diffusion direction
does not coincide with the new fiber orientation. Therefore,
the same rotation should be applied to tensors in order to be
aligned with the fiber direction, as shown in Fig. 1.(c) .

(a) (b) (c)

Figure 1: Synthetic example that shows the need for warping
tensors after the image transformation: (a) Synthetic image
with a vertical fiber; (b) rotation of (a) without tensor warp-
ing; (c) rotation of (a) with tensor warping.

Although in this example the warping that must be ap-
plied to tensors seems to be obvious, if more complex trans-
formations are applied to the image the assessment of such
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(a) (b)

Figure 2: Effect of the direct application of the local defor-
mation matrix: (a) Original isotropic tissue; (b) Warped DT.

warping is not straightforward. The strategies that have been
proposed to tackle this problem are detailed in next section.

3. BACKGROUND

In general, the methods that compute the warping are based
on the local deformation at every voxel, that is given by the
Jacobian matrix, J(~x), of the transformation at the voxel (the
transformation is assumed to be differentiable). Thus, the
first and most simple approach to the warping that should be
applied to the tensor Dx is the one mentioned in [5], that
computes the warped tensor D′x′ at the location ~x′ = T (~x) as:

D′x′ = JT (~x)DxJ(~x) (1)

According to [5], it is not clear that diffusion tensors de-
form following this model. The problem is that the shape of
the ellipsoids that represent the tensor is not preserved. It is
argued that the tensor shape should be preserved, specially
in areas of high anisotropy where the fiber tracts are, that is,
the deformation should only affect to the directional prop-
erties of the diffusion, but not to its size or shape. For this
reason, it is proposed to rescale the tensor D′x′ obtained by
Eq. (1) to preserve the ellipsoid volume. Another proposal is
to normalize the higher eigenvalue, to be the same that in Dx.
This method is analyzed by the example in Fig. 2 where it is
shown that it can lead to some situations that does not cor-
respond to the physical interpretation of the data. Fig. 2.(a).
represents a tissue area where diffusion is isotropic. Since
the diffusion is isotropic and equal in every point of the tis-
sue, the diffusion in the area enclosed by each voxel will
be equal in every direction. That is, the measured tensor
should be isotropic independently of the measurement frame.
Therefore, for any transformation applied to the domain, DT
should preserve its shape. If the local deformation is applied
to the tensors to warp them1, we obtain anisotropic tensors
as the shown in Fig. 2.(b), what is not coherent with the un-
derlying tissue, where diffusion is isotropic. Even though
the tensor was rescaled to preserve the volume or the higher
eigenvalue of the original data, the warped tensors would be
anisotropic. Therefore, the direct application of the local de-
formation tensor provides a warped DT that is not realistic.
Actually, the authors in [5] state that more research is re-
quired to clarify how the tensor should be transformed.

Other research line is based on the assumption that only
rotations should be applied to the tensors, and the rotation
component of J(~x) is searched. Once the rotation matrix R
is obtained, the warped tensor is computed as:

D′x′ = RT DxR (2)
1For this example, a random local deformation matrix has been gener-

ated: J =
(

0.9 0.1
0.2 0.8

)

Two methods are proposed in [1] in order to find the rotation
matrix: Finite strain (FS), and preservation of principal direc-
tion (PPD). The former is based on the polar decomposition
theorem, that states that for any non-singular square matrix
there are unique symmetric positive definite matrices P and
Q and a unique orthonormal matrix R that satisfy that:

J = RP = QR. (3)

Thus, the FS computes the rigid rotation component R of the
transformation as follows:

R = J(JT J)−
1
2 (4)

In [4], a different but equivalent way to compute the rotation
matrix is provided. It is based on the singular value decom-
position (SVD) of J = UΣVT . Both matrices U and V are
orthonormal and Σ is a diagonal matrix whose elements are
the scale factor in each direction. Thus, the scaling is ig-
nored, and the rotation matrix is computed as R = UVT .
The equivalence between these two rotation matrices is easy
to prove if J is replaced by its SVD decomposition in Eq. (4).

FS ignores the deformation component, also related to
rotational effects that depends on the original data orienta-
tion. This effect is addressed by PPD [1] as follows: First, a
rotation matrix R1 is obtained as the one that maps the first
eigenvector, ~e1, into the unitary vector in the direction given
by J~e1. Then, a matrix R2 is obtained as the one that maps
the second eigenvector, ~e2, into the unitary vector in the di-
rection of the projection of the vector given by J~e2 in the
plane perpendicular to J~e1. Finally, the matrix that should be
applied to the tensor is computed according to R = R2R1.

Both methods in [1] consider that only rotations can be
applied to tensors. This simplification is justified saying that
size and shape of the DTs reflects microstructural properties
of the tissue, that cannot be changed. However, this state-
ment is not completely true. It is true that the microstructural
properties of the tissue must not change. However, the DT
is a macrostructural measure of the properties of this tissue.
Each voxel could contain various tissue kinds that contribute
to the global diffusion measure. Since the underlying region
comprised by the voxel can change due to the transformation,
the diffusion tensor at the voxel can change both in shape and
size. This can be better understood by the example in Fig. 3.

The four images in Fig. 3 simulate acquisitions of the
same region with different voxel size. Two tissues can be
distinguished: the background, where diffusion is small and
isotropic; and the fibers, where the diffusion is higher in the
major eigenvector direction, so the ellipses approach lines in
this direction. In Fig. 3.(a), five fibers can be clearly iden-
tified, whereas in Fig. 3.(d), only two of these fibers (the
two broadest fibers) are so clearly distinguished. Since the
voxel size is higher, each DT represents the diffusion in a
wider area, that includes both background points and fiber.
The contribution of the anisotropic diffusion to the measure
is decreasing as the voxel area comprises more isotropic tis-
sue. For this reason the fibers are dispelled into the isotropic
tissue as the voxel size is getting larger. In conclusion, since
the DT is a macroscopic measure of the microscopic tissue
properties, DT size or shape changes may occur due to the
acquisition procedures. The DT that is measured is not a mi-
croscopic tissue property, and for this reason, the two previ-
ous methods are based on a questionable assumption. In this
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(a) (b)

(c) (d)

Figure 3: Acquisition of the same tissue area with different
voxel size: (a) 0.01 mm2; (b) 0.09 mm2; (c) 0.225 mm2; (d)
0.36 mm2

paper these methods are analyzed and grounded on physical
principles to validate its performance.

Other more complex approach is proposed in [7]: major
eigenvector is viewed as a random sample of the true fiber
direction and the rotation matrix is computed by Procrustean
estimation. Again, the method is also grounded on the same
assumption about the preservation of size and shape.

4. DIFFUSION TENSOR WARPING

In this section, the basis of DTI acquisition and tensor com-
putation are described to understand how the DT at each
voxel is related to the underlying structures. Taken this issue
in mind, we can assess how the tensors should be warped.

4.1 DTI Acquisition and Computation
DTIs are computed from a set of diffusion weighted mag-
netic resonance images (DWIs), that are acquired by means
of a gradient pulse in a given direction ~g, and measure the
diffusion in such direction. A conventional MRI without dif-
fusion weighting, the baseline image, is also required to com-
pute the tensor. Each of the DWIs are related to the baseline
by means of the Stejskal-Tanner equation [6]:

Si = S0e−b~gi
T D~gi , i = 1, ...,N (5)

where Si stands for the DWI acquired by means of the pulse
gradient in the direction given by the unitary vector ~gi, S0
represents the baseline image, and b is a parameter related to
the sequence applied to measure the diffusion. Since D is de-
scribed by a symmetric 3×3 matrix, six matrix components
must be computed, so at least six different DWI are required.

The intensity value of Si is related to the quantity of dif-
fusion in the direction given by ~gi. This vector is defined by
its coordinates with respect to a reference framework. If this
framework changes, due, for instance, to a geometric trans-
formation, the vector should be expressed with respect to the
new framework. Next, we show how the gradient directions
should be changed to correctly estimate the tensors from the
transformed DWIs. For the sake of simplicity, we firstly ana-

lyze the case of a rigid rotation, and then the effect of higher
degree of freedom transformations.

4.2 Rotation
Let suppose that the coordinate system in which the images
(both DWIs, Si, and baselines) are defined is changed by a
rotation matrix R. The tensor should be therefore estimated
from the set of rotated images. To correctly estimate the ten-
sor components, the gradients in Eq. (5) must be expressed
in the same reference framework than the diffusion images.

The value of intensity at the voxels of the transformed im-
ages, SRi is related with the diffusion in the direction given
by the gradients in the new reference frame, that are com-
puted as ~hi = R~gi. Thus, it is possible to find the relationship
between the tensors Dx computed from the original dataset,
and D′x′ computed in the rotated domain. Let us consider a
voxel~x, whose original intensity values are Si(~x), i = 0, ...,N,
where N is the number of acquired diffusion images. After
rotation, these values will be located at a position ~x′ = R~x,
that is, SRi(~x′) = Si(~x). To compute the DT at ~x′, we evaluate
Eq. (5) in ~x′ and substitute the original gradient by ~hi:

SRi(~x′) = SR0(~x′)e
−b~hi

T
D′

x′
~hi (6)

SRi(~x′) = SR0(~x′)e
−b~gi

T RT D′
x′R~gi (7)

On the other hand, the tensor computed in the original
domain at~x is obtained by evaluating Eq. (5) at this point:

Si(~x) = S0(~x)e−b~gi
T Dx~gi (8)

Since SRi(~x′) = Si(~x), the right terms in both previous
equations can be equated. Simplifying the common terms
in the resulting equation, and taking logarithms, the relation
between the DT at the position ~x in the original image, and
the warped tensor at the transformed location ~x′ is obtained:

RT D′x′R = Dx (9)

D′x′ = RDxRT (10)
Therefore, after applying a rotation to the image, the

same rotation should be applied to the tensors, in order to
preserve the information provided by the images. This agrees
with the intuitive approach previously mentioned.

4.3 Elastic Transformations
If a more complex transformation has been applied to the
image, the change in the gradient direction will be different
at each voxel, depending on the local deformation J(~x). If
this matrix is applied to the unitary gradient vector ~gi, we
will obtain a vector ~hi = J~gi. Let note that, if J is not an
orthonormal matrix, ~hi is not unitary. For this reason, nor-
malization is required in order to obtain the unitary vector in
the transformed gradient direction, that would be given by:

~hi(x) =
J(x)~gi

||J(x)~gi||
, i = 1, ...,N, (11)

where N is the number of gradients. Note that, due to the
shear effect that may appear in the deformation, the orienta-
tion of~hi depends on the original direction ~gi. For this rea-
son, it is not possible to obtain a unique rotation matrix for
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every gradient, but a different rotation is applied to each of
them. According to the polar decomposition theorem, every
non-singular matrix can be decomposed into a rigid rotation
R and a strain component U. The reorientation effect of the
pure rotation matrix is independent of the original vector di-
rection, but the rotational effect of the strain component de-
pends on the original gradient direction. Therefore, to obtain
an expression similar to Eq. (9) the strain component should
be ignored so only the rigid rotation component would be
applied. This will lead directly to the definition of the FS
previously described. That is, the FS method simplifies the
real warping by discarding the deformation component.

Eq. (11) shows that the non rigid transformation causes
a warping of the tensor that is more complex than rotation.
Therefore, the assumption that only allows tensor rotations is
a simplification of the real case, and the proposed algorithms
for tensor reorientation do not represent the real tensor warp-
ing, since they do not allow changes of shape or size. Thus,
to correctly warp the tensors, the DWI should be warped and
then the tensor should be recomputed with the reoriented gra-
dient directions. We denote such method as gradient warp-
ing (GW). However, this procedure may be costly, and some
problems may appear if transformation with a high deforma-
tion component is applied to the gradients. To estimate the
tensor, it is advisable that gradient directions were equally
distributed in the space. However, since a different rotation is
applied to every gradient, the resulting gradients may be sep-
arated by a small angle, what may lead to problems in tensor
estimation, such as negative tensor eigenvalues, what is not
realistic. As show in Section 5, this problem may be negli-
gible in real registration problems, since transformations are
smooth enough. Nevertheless this problem involves that a
general method cannot be described without taking into ac-
count the conditions required to correctly estimate the tensor.
Moreover, this method may be computationally costly and
for this reason, it can be simplified to perform in registration
algorithms. Next we show that such simplifications will lead
to the known reorientation strategies.

4.4 DT Warping Simplifications

In previous subsection, it was deduced that a closed expres-
sion for tensor warping can be obtained from the Stejskal-
Tanner equation to describe the effect on tensors of image
rigid rotation. However, this expression cannot be obtained
if other kind of transformations are applied, unless their de-
formation component is ignored, which lead to the definition
of the FS strategy, as shown in Subsection 4.3.

This can also be analyzed as a Procrustean problem. To
preserve the norm of the transformed vectors, the matrix that
multiply them must be orthonormal. The search for the or-
thonormal matrix that better approach a given matrix J is a
Procrustean problem, whose solution is given by R = UVT ,
where U and V are the matrices obtained by SVD of J,
what coincides with the computation of the rotation matrix
described in [4], that is itself equivalent to the FS approach.

Therefore, FS is a simplification that ignores the rota-
tional effect due to the strain component of the transforma-
tion. The PPD strategy [1] was proposed to consider the re-
orientation due to this component, that depends on the origi-
nal orientation of the data. Again, it is a simplification of the
real warping, since it only allows tensor rotations. It approx-
imates better the shear effect, but it still ignores the possible

(a) (b)

Figure 4: (a) Target image and (b) Source image between
which registration is performed.

changes in shape and size that can appear. The simplifica-
tions that lead to this method are detailed just below.

As aforementioned, a problem appears if high shears are
applied to DTs, because it may lead to undesired situations
where gradients are not separated enough to obtain realistic
DT. To avoid it, the angle among gradients should be pre-
served, which means that the same rotation should be applied
to every gradient. Note that it is a simplification to avoid
problems in DT estimation. Since shear involves a rotation
that depends on the original direction, if only a rotation is
chosen, it should rotate correctly unless the most meaningful
diffusion direction. In the domain of DWIs, the most im-
portant direction is the one in which Si is minimum and the
diffusion is maximum. However, more information may be
obtained from DT because it integrates the information of
the DWIs and describes diffusion in every direction. Thus,
diffusion is maximum along the direction given by the main
eigenvector, ~e1 and therefore, shear should be applied to this
direction. To include the shear in other directions, another ro-
tation matrix could be computed, as long as it did not affect
the already rotated main eigenvector, ~e1

′ and reorient the sec-
ond eigenvector ~e2 in the direction that better approaches the
direction ~e2

′ resulting of the application of J. Such direction
is given by the projection of the ~e2

′ on the plane orthogonal
to ~e1

′. If this were applied over the gradients, it could be
applied only to orthogonal directions, since in other case it
would not be possible to find a rotation matrix that does not
change the rotated gradient corresponding to the minimum
Si preserving the angle between gradients. For this reason, it
is simpler to compute the rotation over the DT instead of the
gradients, what lead to the definition of the PPD algorithm.

5. EXPERIMENTS

As shown in previous sections, the FS and PPD strategies for
tensor reorientation are simplifications of the warping that
should be applied to the tensors. Now, the effect of such
simplifications in the performance of registration is analyzed,
as well as, the feasibility of the use of GW in a real case.

To avoid assumptions about tensor warping model, syn-
thetic data have not been considered, since the transforma-
tion of the tensors should be described according to a theo-
retical model, what could bias the conclusions. Therefore,
real data acquired by a GE 1.5T scanner, with 15 diffusing
directions and b = 1000 have been used in the experiments.
Volumes where the brain orientation is noticeably different,
as shown in Fig. 4 have been chosen to better analyze the
effect of warping after registration.

Registration is carried out by a block matching algo-
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rithm based on the correlation coefficient between fractional
anisotropy (FA), that is a measure of the diffusion anisotropy
computed from the DT eigenvalues. The displacement field
is interpolated by B-Splines, so the Jacobian can be analiti-
cally computed. Hence, the same transformation is consid-
ered by each of the warping methods, so the differences be-
tween the registered images are only due to such algorithms.

Note that registration usually aim to obtain a smooth
transformation in order to preserve the image topology.
Thus, it is usual to include smoothing filters in the algo-
rithms to improve the registration results. Since the reorien-
tation depends on the Jacobian of such transformation, that
is smaller as the transformation is getting smoother, the ef-
fect of warping with respect to certain smoothing parameter
is analyzed. For instance, let suppose that the final trans-
formation is smoothed by a Gaussian filter described by its
variance σ . The angle between the major eigenvectors of the
tensors in the target images and the registered images with
different σ values is computed. Such angles are averaged in
regions where the linear coefficient2 is higher than 0.4, that
is, molecules diffuses mostly along the direction described
by the major eigenvector. The threshold is chosen to con-
sider the areas where fiber tracts are, where the diffusion
direction is more significant. In Table 1 is shown the im-
provement in the angle matching achieved by using warping
strategies. This improvement is measured as the difference
(in radians) between the average angle computed for the reg-
istration without tensor warping and the average angle com-
puted for each of the three warping strategies.

σ 1 5 10
FS 0.0106 0.0082 0.0062

PPD 0.0020 0.0019 0.0013
GW 0.0106 0.0084 0.0093

Table 1: Improvement in the average angle between target
and registered major eigenvectors due to warping methods.

Thus, improvement in the angle between eigenvectors
is less noticeable as transformation is smoother (higher σ ).
However, realistic transformations usually are required to
be smooth, and in such cases the improvement obtained by
warping tensors is less significant. In any case, the differ-
ence between reorientation strategies is small, what is hard
to perceive visually and has little effects in applications such
as fiber tracking, that are based on the major eigenvector
to track the fiber trajectory. This small difference was also
pointed in the experiments with real data compiled in [3].

On the other hand, the applicability of the GW has been
analyzed. As shown in Table 1 the results achieved with this
method are better than with FS or PPD, although the dif-
ference is very small. Regarding the problem related to the
loss of uniformity in the distribution of the gradient direc-
tion, the performed experiments have shown that tensors with
negative eigenvalues only appear in a negligible percentage
of voxels, namely from 0.002% to 0.004% of the voxels, as
σ value decreases. Thus, GW can be applied in real cases
where transformations are smooth enough. Nevertheless, the
improvement in the alignment is so small that FS or PPD

2Linear coefficient is defined as λ1−λ2
λ1

, where λi are the ordered tensor
eigenvalues, and measures the linearity of the diffusion.

simplifications can be used instead, without a very signifi-
cant loss of performance.

6. CONCLUSIONS

The need of warping tensors has been reported since reg-
istration was applied to DTI. However, a rigorous analysis
of such requirement has not been made, and the strategies
have been grounded in an uncertain argument that said that
tensor represents microstructural properties of the tissue. In
this paper we have shown that this assessment is not true,
and we have deduced how tensors should be warped from
the basis of the Stejskal-Tanner equation that relates the dif-
fusion tensor with the acquisition parameters. However, it
is shown that such theoretical warping could not be used in
general, because the warped DWIs and gradients could not
correspond to real physical situations. Empirically, we have
shown that this problem is negligible if the transformation is
smooth enough and results are similar to the results obtained
by means of FS or PPD, that are simplifications of the GW.

Warping methods have been compared for a real case of
DTI registration, and it has been shown that results achieved
with these methods are similar because of two reasons: first,
the real data are usually acquired with little orientation dif-
ferences, and second, the registration usually searches for
smooth transformations, so the local deformation at every
voxel is small and the resulting warping is also small. In
some cases, it could be suitable to estimate a global rigid ro-
tation to align the data and use the local deformation to refine
the results. These results encourage us to a thorough analy-
sis of tensor warping for different real cases to conclude how
the local deformation refinement improves the result of the
matching.
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