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ABSTRACT 

Stochastic resonance and suprathreshold stochastic reso-

nance are nonlinear phenomena that yield a non-monotonic 

variation of system performance measures such as SNR gain, 

with respect to input noise variance [1, 2]. There exists an 
optimal strength of the added noise at which the performance 

measure is maximised. In this work, an analytical method is 

proposed to find the optimal input noise variance to be added 

to the array of quantizers in an SSR detector to optimize the 

performance. The theory is verified experimentally for differ-

ent noise environments and added SSR noise. 

1. INTRODUCTION 

The phenomena of stochastic resonance (SR) and su-
prathreshold stochastic resonance (SSR) have generated con-

siderable interest in the field of signal processing. These phe-

nomena imply that a system has non-monotonic variation of 

its performance measures such as output SNR, SNR gain, 

Fisher information or mutual information with respect to the 
input noise variance. In static nonlinear systems such as a 

quantizer, it has been shown that adding a small amount of 

noise at the input of the quantizer along with the signal that is 

in general smaller than the quantizer threshold, tends to aid 

the performance of the system. This phenomenon is referred 

to as SR. When an array of quantizers is used and independ-

ent and identically distributed (i.i.d) noise is added to each 

quantizer along with the signal that may be larger than the 

threshold, the performance is found to be better than that 

obtained using a single quantizer. This phenomenon is re-

ferred to as SSR [3, 4]. These phenomena can be employed 

to aid in signal detection, especially in an environment con-
taminated with non-Gaussian noise with a heavy-tailed dis-

tribution. 

An SR/SSR detector may be optimized in two ways : by tun-
ing system parameters (such as the value of threshold) for the 

best performance [5] or by optimizing the noise added at the 

input of the quantizers [6]. In this paper, an analytical method 

of optimizing the noise to be added to the array of quantizers 

constituting the SSR detector is proposed and the perform-

ance of the optimal SSR detector is investigated. The paper is 

organized as follows. In Section 2, the input data and the 

SSR detector models are described. In Section 3, a novel 

analytical method is presented for choosing the optimal 

amount of SSR noise to be added. In Section 4, experimental 

(simulation) results to verify the theory are presented and the 

performance of the optimal SSR detector is discussed. Con-

clusions are presented in Section 5. 

2. SSR DETECTOR 

The SSR system shown in Fig.1 consists of a parallel array 
of M one-bit quantizers with a common input x(t), t = 0, 1, 

... ,N -1. The input x(t) consists of a signal As(t) and an 

additive environmental noise e(t), where A is the signal 

amplitude. Independent and identically distributed white 

noises a1(t), a2(t),.. . aM(t) that are independent of e(t) are 

added separately to the quantizer inputs. The quantizer out-

puts {qM (t), m =1, 2, ..., M} are averaged to obtain the out-

put Y(t) of the quantizer array. To implement the detection 

scheme, Y(t) is now applied to a matched filter or correlator 

detector. Presence or absence of the signal is decided by 

comparing the output of the matched filter with the detector 
threshold. We refer to this nonlinear detector as the SSR 

detector. The test statistic of the SSR detector is thus given 

by  
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Figures 2(a) and 2(b) show the conventional linear matched 

filter (LMF) and the SSR detector respectively. 
 

The receiver operating characteristic (ROC) of the SSR 

detector depends on the signal s(t), the probability density 

function (pdf) of the environmental noise e(t), and the pdf 

and variance of the i.i.d added noises a1(t), a2(t),.. . aM(t). 

We shall designate the added noise as SSR noise. The va-

riance σ2
a of the SSR noises is to be chosen so as to maxim-

ize the probability of detection PD. In general, the optimal 

value of σa and the performance of the optimal SSR detec-

tor depend on the SSR noise pdf and the environmental 
noise pdf. 

 

We will compare the performance of the SSR detectors 

with that of the LMF and the locally optimal detector 
(LOD).The LOD is the optimal detector under the weak 

signal approximation [7]. We will assume that the environ-

mental noise is heavy-tailed (leptokurtic) in nature. This 

characteristic is typical of the noise encountered in under-

water acoustic channels. 
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Figure - 1: Schematic of an SSR system 

 
Figure – 2(a) Conventional linear matched filter detec-

tor, 2(b) SSR detector. 
 

There exist several ways of modelling leptokurtic noise. Two 

such models will be considered here, viz. the generalised 

Gaussian noise (GGN) and the mixture of Gaussians (MOG). 

The pdf of a GGN random variable X with variance σ2 is 
given by   
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This pdf is Gaussian for p=2 and leptokurtic for p<2. The pdf 

of a MOG random variable with variance σ2 consisting of a 

mixture of two zero-mean Gaussians, parameterized by a 

single parameter u is: 
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 ,  

0<u<1. 

 

The above pdf is Gaussian for u = 0.5, and it becomes pro-

gressively more leptokurtic as |u-0.5| increases. 

3. DETERMINATION OF OPTIMAL SSR NOISE 

VARIANCE 

Let the input to the system be the noisy signal x(t) given by 

 

   x(t) = A s(t) + e(t) = A s(t) + σe w(t), t =0,1,. . . N −1   (2) 
 

where w(t) is a zero-mean unit-variance noise. Let fw(x) and 
Fw(x) denote respectively the pdf and cumulative distribution 

function (cdf) of w(t). We assume that 
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 so that the parameter A2 denotes the signal power. Let the 
added SSR noise at the mth quantizer be  

 

am(t) = σa vm(t),  m = 1,2,. . . M 
 

where vm(t) are i.i.d zero-mean unit-variance noises with 

pdf fv(x) and cdf Fv(x). The output of the mth quantizer is  
 

       qm(t) = sgn  [x(t) + σa vm(t)],       (4) 
 

where sgn(.) denotes the signum function. The quantizer 

outputs are averaged to get the outputs of the quantizer array 
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Assuming samples of w(t) are i.i.d, it can be shown that [6] 
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where 1
1

.
M

M
M


  Derivation of (6) and (7) follows the 

procedure described in [6]. We shall now proceed to deter-

mine the optimal value of σa under the weak signal assump-

tion A/σe << 1.On defining 
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and assuming that fv (x) is an even function so that  
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equation (6) reduces to 
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Under the weak-signal assumption, we now have A1 << 1.  

Expanding fw(u-A1s(t)) in a Taylor series around u and trun-

cating the series after two terms, 
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and assuming that fw(x) is an even function, (9) reduces to 
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Since both the factors in (12) are non-negative functions, we 

conclude that K(σ) 0 . We also note that K(0) = fw(0) is the 

maximum value of K(σ) if fw(x) is unimodal. 
 

Similarly, assuming that fw(x) and fv (x) are even functions, 

and employing the small signal approximation, equation (7) 

reduces to  
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Consider the expression for the variance, 
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Since A1 << 1, the second term in (14) may be ignored to 

obtain 
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Thus var(Y(t)) is independent of t and A1. We define 

( ) var( ( ))L Y t   .                              (16) 

Since 1
( ){1 ( )}

4
v vF u F u   for all u, it follows that L(σ) 0 , 

and the maximum value of L(σ) is L(0) = 1. 
 

Now consider the detection problem, given by the binary 
hypotheses H0 and H1 where H1 corresponds to the presence 

of signal, represented as 
 

H0 : x(t) = σe w(t), 

H1 : x(t) = A s(t) + σe w(t). 
 

The test statistic T(Y) for the detection problem is given in 

(1). The means and variances of T(Y) under the 2 hypo-

theses are 
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σ0
2 = σ1

2 = var(T;H0) = var(T;H1) 
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The test statistic T is asymptotically ( N  ) Gaussian 

and hence the ROC for large data set is given by the equa-
tion 

PD = Q (Q-1 (PF) – d),       (20) 
 

where d is the deflection coefficient defined as 

               1 0
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From (17),(18) and (19), equation (21) reduces to 

          1  2d d A ND   ,     (22) 

where D(σ ) is the detection index defined as  

D(σ)= K(σ)L-1/2(σ).     (23) 

 It follows from (20) and (22) that PD is a monotonically 

increasing function of D(σ). Hence, to maximize PD for a 

given PF, we only need to maximize the detection index 

D(σ). Hence, the optimal value of σ, denoted by σopt, is the 

value of σ that maximizes D, i.e.,  
 

σopt = arg [Maxσ D(σ)].     (23) 
 

Thus we may obtain the optimal variance (σopt
2) of SSR 

noise by maximizing D(σ) for any given pdf pair {fw(x), 

fv(x)}. We shall denote the maximum value of D by Dmax. It 

may be noted that, for the SSR detector, the detection index 

D is a measure of performance that is independent of A1 and 

N. 

4. EXPERIMENTAL RESULTS 

Theoretical and experimental (simulation) results are pre-

sented in this section for different models of environmental 
noise pdf fw(x) and added (SSR) noise pdf fv(x). All simula-

tion results have been obtained from 20000 Monte Carlo 

simulations. 
 

Figure 3 shows the experimentally plotted variation of prob-
ability of detection PD with standard deviation σ of the SSR 

noise, assuming without loss of generality that the envi-

ronmental noise has unit variance. Environmental noise was 

considered to be MOG with u=0.025 (Kurtosis 27.8) and 

SSR noise is Gaussian. The signal is DC of amplitude 

A1=0.1, the number of quantizers is M = 200, data length is 

N = 80, and false alarm probability is PF = 0.1. The value of 

σ that maximizes PD is 0.825 
 

Figure 4(a) shows the variation of detection index D(σ) with 

σ at the same experimental conditions as in Fig 3. It can be 

seen that the theoretical value of σ that maximizes D in Fig. 

4(a) is the same as the experimental value of σopt that max-

imizes PD in Fig.3. In Fig.4(b), the environmental noise is 

GGN with p = 0.5 (kurtosis = 22.2), other conditions being 

the same as in Fig.4(a). In this case, D is a monotonically 
decreasing function of σ, and hence σopt = 0. This difference 

in behavior may be explained as follows. We have D(0) = 

fw(0). For MOG pdf, fw(0) shows only a small increase 

from 1

2

 to 1



as u decreases from 0.5 to 0. But for 

GGN pdf, fw(0) increases without bound as 0p  .  

 

Variation of Dmax with the number of quantizers M is 

shown in Figs.5(a) and 5(b) for MOG(u=0.01) and 

GGN(p=0.5) environmental noise. The saturation with in-

creasing M is clearly seen. 
 

Experimentally plotted Receiver operating characteristics 

(ROC) of SSR detectors with different values of σ are plotted 

in Fig. 6 to compare their performance with that of the LOD 

and the LMF. The ROC curves are plotted using 25000 

Monte Carlo trials. Environmental noise is MOG (u=0.025) 

in Fig.6(a) and GGN(p=0.5) in Fig.6(b). We have also veri-
fied that the experimental ROCs are practically indistin-

guishable from the theoretical ROCs defined by (20). 
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Figure-3:Plot of PD vs σ for SSR detector. MOG (u=0.025) 

environment, Gaussian SSR noise, M=200, N=80, A1=0.1 

 
Figure–4: Plot of D vs σ for Gaussian SSR noise, M=200. 

Environmental noise is (a)MOG with u = 0.025, (b)GGN 

with p=0.5  
 

In each of the Figs. 6(a) and 6(b), the thick outer line shows 

the ROC of LOD which is the optimal detector for weak sig-

nals. The ROC of the optimal SSR detector (SSR detector 

with optimal σ) shown by dashed lines is very close to that of 

LOD. The SSR detectors with other values of σ have a 

slightly lower performance compared to that of the optimal 

SSR detector. Hence the experimental ROCs demonstrate 

that the theoretically predicted values of noise variance are 

also the optimal ones. All the SSR detectors are observed to 

outperform the LMF (dotted lines). It is also seen that im-
provement in performance of optimal SSR detector with re-

spect to LMF is higher for GGN (p = 0.5, kurtosis = 22.2) 

environmental noise than for MOG (u = 0.025, kurtosis = 

27.8) environmental noise even though the kurtosis of the 

former pdf is slightly lower than that of the latter. 

 

Figure 7 shows the variation of PD with parameter u of the 

MOG and parameter p of the GGN environmental noise. It 

is seen that with increasing kurtosis, the performance of the 

optimal SSR detector shows an increasing trend similar to 

that of the LOD. In other words, in strongly leptokurtic 
environments the optimal SSR detector provides a signifi-

cant performance enhancement compared to the LMF. 

 

In all the results presented in this paper, the SSR noise is 

Gaussian. We have also examined the effect of using SSR  

 
Figure-5: Plots of Dmaxvs M for Gaussian SSR noise. Envi-

ronmental noise (a) MOG with u=0.01, (b) GGN with p=0.5 

 
Figure-6: Experimentally plotted ROCs of SSR detectors 

(Gaussian SSR noise, M=200), LOD, and LMF for N =80, 

A1=0.1, 25000 MC simulations. Environmental noise is 

(a)MOG with u=0.025,(b)GGN with p=0.5 

 

noise having GGN pdf with different values of p in the in-

terval (0.5, 10). This limited study indicates that changes in 

the value of Dmax (and the consequent changes in the value 

of PD) due to changes in the pdf of SSR noise are very 
small. But a more detailed analysis is required to fully un-

derstand the relationship between the pdf of the SSR noise 

(added noise) and the performance of the SSR detector. 
 

The foregoing analysis is based on the assumption that the 
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Figure–7: PD VS a) parameter p of GGN noise, b) parameter 

u of MOG environment noise. 

 
Figure–8: Plots of σopt vs A1 for PF=0.1, M=200,N=80, Gaus-

sian SSR noise. Environmental noise is (a) MOG with u = 

0.01, (b) GGN with p = 0.5 

 
signal is weak, i.e. A1<<1. It is of interest to consider the 

performance of the optimal SSR detector when the signal is 

not weak. The value of σopt in the case of non-weak signals 
can be determined either theoretically by computing E[Y(t)] 

and E[Y2(t)] from (6) and (7) respectively (without invok-

ing the weak signal approximation) and finding the value of 

σ that maximizes the deflection coefficient d(σ) defined in 

(21), or experimentally by determining the value of σ that 

maximizes PD. Either approach is quite straightforward but 

tedious. The variation of σopt with A1 is shown in Fig.8(a) 

for MOG (u = 0.01) environmental noise and in Fig 8(b) for 

GGN (p = 0.5) environmental noise. The SSR noise is 

Gaussian. The corresponding plots of PD vs A1 for PF = 0.1 

are shown in Figs.9(a) and 9(b). It is seen that the optimal 

SSR detector offers a significantly better performance than 
the LMF even when the signal is not weak.  

5. CONCLUSIONS 

In this paper, the performance of the SSR detector for detec-

tion of weak signals in leptokurtic (heavy-tailed) noise has 

been investigated. A method has been proposed to analytical-

ly obtain the optimal SSR noise to be added to the system to 

maximize the SSR detector performance. The method has 

been verified with experimental results that show excellent 

agreement between predicted and experimental performance 
for a wide selection of environmental and SSR noise pdfs. It  

 
Figure-9: Plots of PD vs A1 for optimal SSR detector and 

LMF. PF=0.1, M=200, N=80, Gaussian SSR noise. Environ-

mental noise is (a) MOG with u=0.01, (b) GGN with p=0.5 
 

has been shown that the performance of the optimal SSR 

detector is very close to that of the locally optimal detector. 

The performance of the optimal SSR detector is significantly 

better than that of the linear matched filter in leptokurtic 

noise environments, and the degree of improvement increas-
es as the kurtosis of the environmental noise becomes higher. 

The performance of the optimal SSR detector depends on the 

choice of the SSR noise pdf, but this dependence appears to 

be quite weak. Finally, it has been shown that in leptokurtic 

environments the optimal SSR detector performs significant-

ly better than the linear matched filter even when the signal is 

not weak. 
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