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ABSTRACT 
This work objectively evaluates and presents a quantitative 
analysis of concentrated time-frequency distributions (TFDs) 
obtained through Network of Expert Neural Networks (NENNs). 
The objective methods include the ratio of norms based measures, 
Shannon & Rényi entropy measures, normalized Rényi entropy 
measure and Jubisa measure. The introduction of these measures 
allows quantifying the quality of TFDs instead of relying solely on 
visual inspection of their plots. Performance comparison with 
various other quadratic TFDs is provided too. 

1. INTRODUCTION 

The analysis of time varying signals has important applications in 
acoustics, speech, communications, geophysics, biomedicine, and 
many other areas of science and engineering. To analyze the 
evolving spectra of such signals, the TFDs are used as primary tool 
[1]. By distributing the signal energy over the time-frequency (t-f) 
plane, TFDs provide the analyst with information like number of 
components with their time duration and frequency bands based on 
type of signal being analyzed, their relative amplitude, phase 
information, and the instantaneous frequency (IF) laws, which are 
unavailable from the signal time or frequency domain 
representations.  

Choosing the right TFD to analyze the given signal is not 
straightforward, even for monocomponent signal, and becomes 
more complex while dealing with multicomponent signals. Various 
bilinear distributions (BDs) like the spectrogram (spec), Wigner-
Ville Distribution (WVD), Choi-Williams distribution (CWD), and 
Born-Jordan distribution (BJD) are shown in Fig. 1, which 
represent a real life multicomponent bat echolocation chirp signal 
[12] in the t-f domain. A common practice to determine the best 
TFD for the given signal has been the visual comparison. We can 
see less interference and better component separation for spec and 
CWD than the other considered TFDs. However this selection is 
generally difficult and subjective. The need to objectively compare 
the plots in Fig. 1 requires the definition of a quantitative 
performance measure for TFDs. Some theoretical measures that 
deal essentially with signal concentration have been proposed in 
literature [10-14].     

Concentration of a TFD is one of TFDs’ very important and 
extensively studied properties [1, 2, 8, 13]. However it has been 
shown that the BDs including the spec results in a blurred version 
of the true TFD [1, 2]. The spec suffers from the window effect 
which governs its resulting t-f resolution. Combination of the specs 
or the spec with adaptive window selection may just reduce the 
blurring effect. The WVD is a prototype of distribution that is 
qualitatively different from the spec. It produces ideal 

 

concentration along the IF for linear frequency modulated (FM) 
signals but presence of cross terms reduces their practical 
effectiveness.  Moreover If the IF variations are of a higher order 
than linear then WVD cannot produce the ideal concentration.           

To compute a TFD that is free of any blurring effect, with no initial 
knowledge of the components, network of expert neural networks 
(NENNs) are employed in [2]. The method employs Bayesian 
regularization in training the neural networks to obtain energy 
concentration along the IF of individual components for unknown 
blurred TFDs. Fig. 2 is the block representation of the method. 
Though the visual results were indicative of TFDs’ high 
concentration but the work lacked quantitative analysis. By going 
further in study and analyzing more complex TFDs, this paper uses 
some important objective criteria to measure the information content 
of the output TFDs of NENNs (henceforth the NTFDs) for a 
practical analysis. The focus is on various existing measures 
including the ratio of norms based measures [13], Shannon & 
Rényi entropy measures [3-4], normalized Rényi entropy measure 
[11] and Jubisa measure [9]. The paper includes comparison of the 
information content captured through these measures of most 
commonly used BDs with the proposed method. 

In this context, it is shown that the NTFDs perform better than 
other TFDs for multicomponent signals with components closely 
spaced in the t-f plane. In other signal examples, it is at least as 
good as others. Also the NTFDs are found to be more informative 
than the TFDs obtained through simple neural network (SNN), 
trained without incorporating Bayesian regularization and 
clustering.  The main objective of the paper is to verify the 
effectiveness of Bayesian regularized NENNs for estimation of 
highly concentrated, informative and de-blurred TFDs. 

2. OBJECTIVE CRITERIA TO MEASURE THE 
CONCENTRATION OF TFDs  

An efficient quantitative criterion to evaluate performances of 
different distributions can be obtained by TFD concentration 
measurement. Gabor [5], Vakman [6], Janssen [7], and Cohen [1] 
made important initial contributions to measure distribution 
concentration for monocomponent signals. For more complex 
signals, some quantities in statistics were the inspiration for 
defining measures for TFDs in various forms such as: the ratio of 
distribution norms by Jones and Parks [13], the Rényi entropy by 
Williams et al. [11], and distribution energy for optimal kernel 
distributions design by Baraniuk and Jones [8]. A simple measure 
for a distribution’s concentration was presented by L. Stankovic [9] 
based on definition of duration of the time limited signals. A brief 
overview of these measures is presented next. 
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Fig. 1: TFDs of a multicomponent bat echolocation chirp signal. 
(a) Spec (Test Input to the NENNs)[Hamming window of length 
L=100], (b) WVD, (c) CWD [kernel width =1], (d) BJD, (e) NTFD 
[2], (f) optimal kernel TFD [8].  

2.1 Ratio of Norms based Measures 
An approach to get good t-f concentration [13], adapts the 
parameters of window to maximize a measure of concentration 

created by dividing the fourth power norm of TFD ( ),Q n ω by 

its second power norm, given as: 

( ) ( )
21 1 1 14 2

0 0 0 0
, ,

N W N W

JP
n n

E Q n Q n
ω ω

ω ω
− − − −

= = = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑∑ ∑∑      (1) 

The fourth power in the numerator favors a peaky distribution [13]. 
To obtain the optimal distribution for a given signal, the value of 
this measure should be the maximum 

2.2 Entropy Measures 
A more promising approach to complexity based on entropy 
functionals has been useful in quantifying the information content 
of time-varying signals. The peaky TFDs of signals with high 
concentration would yield small entropy values and vice versa 
[10]. 

2.2.1  Shannon Entropy  

The well known Shannon entropy [3] for TFD of unit energy 
signals, can be written as 
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The negative values taken on by most TFDs prohibit the 
application of the Shannon entropy due to the logarithm in (2). By 
taking into account the absolute value of the distribution ensures 
that the integrated logarithm exists. 

(a) (b) 

2.2.2 Rényi Entropy  

It is introduced as a more appropriate way of measuring the t-f 
uncertainty sidestepping the negativity issue, derived from the 
same set of axioms as the Shannon entropy [4, 14], given as 
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whereα is the order of Rényi entropy, which for the purpose of 
this paper has been taken as 3 being the smallest integer value to 
yield a well-defined, useful information measure for a large class 
of signals. 
2.3 Normalized Entropy Measures    

The Rényi entropy measure with 3α = does not detect zero mean 
cross terms, so normalization either with signal energy or 
distribution volume is necessary. By definition Rényi entropy 
normalized by distribution volume is given by: 
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2.4 Jubisa Measure    
A simple criterion for objective measurement of TFD 
concentration is presented by L. Stankovic in [9], which can also 
be used in automatic determination of some TFDs’ parameters. 
The basic idea comes from the obvious definition of the duration 
of time limited signals. The Jubisa concentration measure in the 
discrete form is given as: 
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The best choice according to this criterion is the distribution that 
produces the minimal value of ( ),J Q n ω⎡ ⎤⎣ ⎦ . 

3. THE REALIZATION OF HIGHLY 
CONCENTRATED TFDs  

   The algorithm for the realization of highly concentrated TFDs 
includes three major steps: pre-processing of the input data, 
training/testing of NENNs, and post-processing of the output data 
[2]. Fig. 2 is a block diagram of the method. 

3.1 Brief Description of the Algorithm   

3.1.1 Step 1  
The blurred specs and highly concentrated WVD of various known 
signals constitute the training set for BRNNs. These training TFDs 
are converted to vectors of particular length. This procedure is 
repeated for both input and target TFDs. Input vectors of specified 
length from blurred image and the mean values of vectors of same 
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length from the corresponding region of the concentrated target 
image are accumulated. 

The vectors obtained from the blurred specs are clustered 
according to certain underlying image features. The objective is to 
divide the input vector space into number of sub spaces, Sn, 
described by directional unit vectors, vn.  A vector will lie in the 
subspace Sn represented by vn that is most similar to this vector 
with respect to its information content. In our case, vn  are three 
directional vectors, used to characterize three types of edges 
(ascending, descending, triangular) in the image.   

3.1.2 Step 2 
Two simple signals are used to train the multiple neural networks. 
The first training signal produces linearly increasing parallel chirps 
given by: 
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while the second signal is the sinusoidal FM signal given by: 
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here refers to the number of sampling points.  N
     By keeping track of the network error/performance, accessible 
via the training record, the best network termed as the expert 
networks (ENs) can be selected in terms of training performance 
for each cluster. These ENs constitute the NENNs, which are then 
fed with the test image vectors.  

3.1.3 Step 3    
This is exactly the reverse of the first step, which includes de-
clustering and formulation of the resultant TFD from the output 
vectors, by placing them at appropriate pixel positions.                             

4. EXPERIMENTAL RESULTS 
Three examples including both real life and synthetic 
multicomponent signals are considered. Quantitative analysis is 
performed for measuring t-f uncertainty using the criteria described in 
section II. The aim has been to find, based on these measures, the 
best concentrated and thus an informative TFD.  

4.1 Real Life Test Case. 
Real life data for the bat echolocation chirp sound provides an 
excellent test case for it is a multicomponent signal [12]. The 
nonstationary nature of the signal is only obvious from its TFD, 
whereas neither the time nor the frequency domain representations 
convey this information.  The spec of the signal referred to as test 
image 1(TI 1), is shown in Fig. 1(a). The resultant NTFD is depicted 
as Fig. 1(e) along with other popular BDs and the existing optimal 
kernel method (OKM) [8] for a visual comparison. On close 
monitoring, it is revealed that no distribution, except the spec and 
NTFD, is able to recover the fourth chirp, thus losing some useful 
information about the signal. Whereas the NTFD is not only highly 
concentrated along the IF of the individual components present in the 
signal but also is more informative being able to show all the 
components.  

The slices of the input/output TFDs of NENNs are taken at the time 
instants n=150 and n=310 (recall that n=1,2,…,400) and the 
normalized amplitudes of these slices are plotted in Fig. 5. The peaky 
appearance of the three frequencies present in the signal (see Fig. 1(e)) 
at these time instants can be seen. There are no cross terms and the 
results of the proposed method offer better frequency resolution. It is 
important to highlight that on visual inspection, the NTFD not only 
has the best resolution i.e. (narrower main lobe and no side lobes) but 
also successfully recovers the fourth chirp (the weakest) compared to 
all the other considered distributions in Fig. 1.  

4.2 Synthetic Test Cases. 
In this paper, two synthetic signals of different nature with specs 
referred to as test image 2 (TI 2) and test image 3 (TI 3), shown in 
Fig. 3 are fed as the other two test cases to the trained NENNs. The 
first one is the synthetic signal consisting of two components 
sinusoidal FM intersecting each other, given as: 
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The second synthetic signal produces multiple nonparallel, 
nonintersecting chirps once seen on the t-f plane. Mathematically it 
can be written as: 
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The estimated NTFDs are shown in Fig. 4. The visual results are 
indicative of their high concentration and good resolution. 

However to verify the performance, quantitative assessment by 
various methods including the ratio of norms based measures, 
Shannon & Rényi entropy measures, normalized Rényi entropy 
measure and Jubisa measure is performed. The resulting values are 
recorded in Table I for a comparative analysis. The values that 
represent the best t-f concentration and resolution according to the 
different criteria have been indicated in bold italics. It is important to 
mention that the numeric values of the various measures, except 
simple Rényi entropies, indicate that the NTFDs’ performance is 
better than others for all the examples. Though simple Rényi entropy 
value is the minimum for the ZAMD but literature [4, 14] indicates 
the measure’s drawbacks and suggests usage of the volume 
normalized Rényi entropies, which however refer to the NTFDs as 
the highly concentrated. 

To get a clear picture, these measures are independently plotted for 
various TIs in Fig. 6, which confirm that NTFDs are the most 
informative.  The congruence and regular nature of the curves are very 
obvious in these plots which ascertain the validity of the selected 
objective criteria.  

5. CONCLUSIONS 
In this paper, a quantitative analysis is presented for the evaluation 
of the Bayesian regularized NENNs for the estimation of 
informative and highly concentrated TFDs of multicomponent 
signals whose frequency components vary with time, using both 
synthetic and real life signals. We have used the objective criteria 
to compare the concentration performance of TFDs for 
multicomponent signal analysis thus using a quantitative measure 
of goodness for TFDs instead of relying solely on the visual 
inspection of their plots.  
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The resultant TFDs are compared with some popular distributions 
known for their high cross terms suppression and high energy 
concentration in the t-f domain. It has been shown that the TFDs 
obtained through the proposed method exhibit high resolution, no 
interference terms between the signal components and are highly 
concentrated. Also they are found to be better at detecting the 
number of components in a given signal compared to the 
conventional distributions. It is however found that the resulting 
TFDs are not valid energy distributions because they do not 
observe the signature continuity and marginal characteristics or 
weak signal mitigation. Due to this reason, the results may not be 
feasible for certain applications which may have different 
preferences and requirement to the TFDs. This aspect may be 
attributed to the discontinuous target data and is expected to 
improve by a possible use of better pre and post-processing of the 
data to get TFDs without discontinuities along the IF of the 
individual components.  
Essentially this work merely scratches the surface of potential 
application of objective criteria in t-f analysis. Worthy of pursuit 
seems the axiomatic derivation of an application of the ideal t-f 
complexity measure along the lines of Jones and Parks for devising 
the ratio of distribution norms [13], Baraniuk and Jones’s effort in 
defining optimal kernel distributions’ design [8], Rényi’s work in 
probability theory [4] and investigate other possible measures.  
A further research direction may be to check the effect of 
improved clustering methodologies like fuzzy or unsupervised 
techniques and analyze more complex signals, embedded in 
additive noise. Also a separate work is needed for the signals that 
are not linear or sinusoidal chirps to see how performance of the 
algorithm is affected. To come up with a parametric representation 
of the IF of individual components of a multicomponent signal 
through neural networks may be another future work. 
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Fig. 2: Block diagram of the method 

 

 
Fig. 3: Test TFDs of two synthetic signals given as input to the 
trained NENNs 

 

Fig. 4: Resultant NTFDs for the two synthetic test signals 

 

BRNNs training, 
NENNs selection Test TFDs Pre-

processing 

Training TFDs Correlation & 
clusters formation

vectorization 

Pre-processing 

Resultant TFDs
Output 
Data

Post-
processing 

1179



Table I: Comparison of information criteria for various TFDs 
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Fig. 5: Time slices for the spec (blue) and the NTFD (red) for bat 
echolocation chirp signal, at n=150 (left) and n=310 (right) 
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Fig. 6: Comparative plots for the three test images, (a) Ratio of 
Norm based measure, (b) Rényi entropy measure, (c) Volume 
normalized Rényi Entropy measure, and (d) Jubisa measure 
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