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ABSTRACT

This paper presents a new statistical method for separating
more than two sound sources from a two-channel record-
ing. It is based on a probabilistic model of the Interchannel
Level/Phase Difference presented in [1] and the model para-
meters are estimated using the maximum likelihood criterion
and an Expectation-Maximization algorithm. The source
separation task is achieved by soft time-frequency masking
of the observation. These masks are derived from the es-
timated source position model. Algorithm performance is
evaluated on the real and synthetic convolutive mixtures
data of the first audio source evaluation campaign [2] as well
as the Signal Separation Evaluation campaign (SiSEC) [10].
Promising results are obtained when comparing to the other
methods presented in these two campaigns.

1. INTRODUCTION

Blind Source Separation (BSS) is a widely used technique
that aims at recovering a set of N original sources based only
on their M observed mixtures. This task is more difficult
when the mixing model is not instantaneous but convolutive
and gets even harder in the underdetermined case (N >
M). Indeed, when N is larger than M , no algebraic linear
solution can be found to separate the sources, even if the
mixing matrix is identified. Still, with the source sparseness
assumption, researchers have found a way to build non linear
masks for the separation task.

Most of the BSS methods that consider the sparseness as-
sumption deal with the two-channel case from which cues or
features like Interchannel Level/Phase Difference (ILD/IPD)
are used. In [3] a KMeans algorithm classifies these features
in clusters and binary separating masks are estimated. In [4],
rather than clustering the observed (ILD/IPD), the authors
propose to model these features as Gaussian variables with
the assumption of a dominant path. Then, after estimat-
ing the model parameters, soft separating masks have been
derived. Nevertheless, in real-world situations, the underly-
ing linear phase assumption deriving from the dominant path
hypothesis reveals not applicable due to early reflections and
reverberation. Also, the proposed Gaussian model, even if
it facilitates the equation computation, does not have any
theoretical background.

In this paper a Model Based Underdetermined (blind)
Source Separation (MBUSS) is considered. In our previous
work [1] a theoretical distribution for the (log(ILD)/IPD)
features is presented, but no separation algorithm based on
this distribution was explicitly provided. This paper, pro-
poses an estimation procedure for this theoretical distrib-
ution parameters, based on an Expectation-Maximization
(EM) algorithm where the Maximization step is speeded-
up by a Quasi-Newton algorithm. Unlike [3], probabilistic
soft masks are computed instead of binary ones, thus less

distortion and artifact are audible in the extracted sources.
Unlike [4], separation is performed independently in each fre-
quency band, therefore no linear phase assumption is made
and wide band sources can be extracted even with the pres-
ence of frequency aliasing. Of course separating indepen-
dently in each frequency band has the traditional permu-
tation problem drawback. This permutation alignment is
corrected using the ratio envelope of the extracted sources
as in [5].

2. MODEL BASED SOURCE SEPARATION

We describe here briefly the (log(ILD)/IPD) probabilistic
model that will be used in the separation task. For more
detailed analysis, please refer to [1]. Consider the convolutive
two-channel mixture model:

xj (t) =

NX
i=1

x
(i)
j (t) =

NX
i=1

X
k

aji (k) si (t− k) (1)

where x
(i)
j (t) is the contribution of the ith source to the jth

sensor. si(t), i = 1, .., N are the sources and aji(k) is the
impulse response of the acoustic channel separating source i
from microphone j with j = 1, 2. The time-domain observed
signals xj(t) are converted into frequency-domain time-series
signals using the Short-Time Fourier Transform (STFT):

Xj(t, ω) =

L−1X
k=0

w(k)xj(t + k)e−jωk =

NX
i=1

X
(i)
j (t, ω) (2)

where w(k) is a window (e.g. Hanning) and X
(i)
j (t, ω) is the

STFT of x
(i)
j (t). Sparseness of the sources in the Time Fre-

quency (TF) domain is the key assumption in solving the
underdetermined separation problem. It means that each
given source is non negligible on only a few number of TF
slots. It generally implies that the sources have nearly dis-
joint supports in the TF domain in the sense that for each TF
slot there can be at most one dominant source, and it is this
last assumption that will be actually assumed [3]. If q is the
index of this dominant source at (t, ω), then the jth observa-

tion in eq.(2) can be approximated to Xj (t, ω) ≈ X
(q)
j (t, ω)

and the ratio between the two observations at (t, ω) will then
be:

R (t, ω)=
X1 (t, ω)

X2 (t, ω)
=

PN
i=1 X

(i)
1 (t, ω)PN

i=1 X
(i)
2 (t, ω)

≈ X
(q)
1 (t, ω)

X
(q)
2 (t, ω)

. (3)

The approximation X
(i)
j (t, ω) ≈ Aji(ω)Si(t, ω), with Aji(ω)

as the Fourier transform of aji(k), can be found in most of
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the TF source separation methods. With it, the last term in
(3) can be reduced to a constant in each frequency band ω
and thus:

R(t, ω) =
X1(t, ω)

X2(t, ω)
≈ X

(q)
1 (t, ω)

X
(q)
2 (t, ω)

≈ A1q(ω)

A2q(ω)
. (4)

The above ratio, being (approximately) time independent
but frequency and source dependent, has been widely used
as dominant source indicator in the TF binary masks ap-
proach. In [3], the modulus and argument of R(t, ω), which
are no more than the well-known Interchannel Level Differ-
ence (ILD) and Interchannel Phase Difference (IPD), have
been clustered by a KMeans algorithm. The cluster members
define the binary separating mask and the cluster centers
give an estimation of A1q(ω)/A2q(ω). But does the above
approximation (4) hold when dealing with a long tap im-
pulse response, i.e with a reverberating environment?

2.1 One source Ratio STFT distribution model

To simplify the notations in this section, we will omit the ω
parameter. From now, we implicitly work in given frequency
band ω. It has been demonstrated in [1] that, even if one
source is observed, R(t) is not constant in time. Fig.1 plots
the real and imaginary part of R(t) for a 10-second speech
source placed in a moderate reverberant conditions (T60 =
250ms). This one source observed ratio should be considered
as a (complex) random variable, the distribution of which has
been derived in [1]. More precisely this paper provides the
theoretical joint density of the real part and imaginary parts

x and y of log R(q)(t) = log[X
(q)
1 (t, ω)/X

(q)
2 (t, ω)] :

x = log |R(q)(t)| = log ILDq, y = arg R(q)(t) = IPDq

where ILDq/IPDq are the ILD/IPD of sq. Note that we

did not considered the traditional feature R(q)(t) because it
admits an infinite variance (see [1]). To estimate the joint
density of (x, y), we assume that L is large enough so that,

by the Central Limit Theorem, the pair X
(q)
1 (t) and X

(q)
2 (t)

can be considered as Gaussian (complex circular) [1] with
variance σ2

1,q(t) and σ2
2,q(t) and complex cross-correlation

βq. It has been demonstrated in [1] that the variance ratio
σ1,q/σ2,q and βq does not vary in time and may be considered
as specific features for each source sq, hence of the variable

log R(q)(t). Based on the complex gaussian circular assump-
tion, the couple of variables (x, y) admits the following joint
density [1]:

p (x, y|rq, ρq) = pρq (x− log |rq|, y − arg rq) (5)

where rq = (σ1,q/σ2,q)e
i arg βq , ρq = |βq| and

pρ(x, y) =
1

4π

1− ρ2

(cosh x− ρ cos x)2
.

The parameters rq and ρq are specific to the source sq posi-
tion in space. Note that it is the source position in space
which is modeled and not the source itself. Thus, this
”‘space”’ position model can be applied independently from
the source model (gaussian, laplacian, ...). More in details,

rq corresponds to the mean of log R(q)(t) and thus depends
only on the source position in space where |rq| is equal to the
ILDq and arg(rq) is equal to the IPDq. As for ρq, it will stand
for the reverberation degree of the acoustic path separating
sq from the set of microphones. This can be viewed from its
definition as the modulus of the cross-correlation between
the two observations where high reverberation causes low
cross-correlation between microphones and vice-versa. For
example, in free field conditions, i.e anechoic environment,
the cross-correlation is maximum and ρq = 1.
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Figure 1: Ideal and observed (IPD,log(ILD)) for a single
source mixture at the 100Hz center frequency

2.2 Mixture ratio STFT distribution model

Having the one source log ratio distribution model (5) and
under the disjoint assumption, we are led to assume the fol-
lowing distribution model for the real and imaginary parts
of the observed log ratio log[R(t, ω)]:

p (x, y|ρ, r, µ) =

NX
i=1

µipρi {x− log |ri| , y − arg ri}. (6)

This model is given at the frequency ω for the set of consid-
ered time points t ∈ T with ρ = [ρ1, .., ρN ], r = [r1, .., rN ]
and µ = [µ1, .., µN ] where µi is an added parameter that
denotes the a priori probability of the ith source in the con-
sidered frequency band. This parameter reveals necessary
since all sources are not equiprobable in a given frequency
band, depending for instance on the mean pitch of a per-
son. Simulations with equiprobable hypothesis showed that
the estimation of the model parameters ρ and r is biased,
hence producing degraded performance in terms of source
separation.

2.3 Soft mask separation

The set of parameters ρ, r and µ, which depend on the
frequency band ω, are the parameters of the mixture model
and need to be estimated in order to separate the sources.
Once the parameters of the probabilistic model given in (6)
are estimated, the a posteriori probability that ith source is
dominant at the TF point (t, ω) can be obtained directly as
follows:

πi (t) =
µipρi [log |Ri(t)| , arg Ri(t)]PN

q=1 µqpρq [log |Rq(t)| , arg Rq(t)]
(7)

where Ri(t) = R(t)/ri. Then, source separation can be eas-
ily performed in each frequency band ω by applying these
above probabilities to the observations. Note that sources
are independently separated in each frequency band, thus
permutation ambiguity remains and needs to be solved. In
this paper, the correlation between the ratio envelope is used
as in [5]. Note that other methods, based on linear phase as-
sumption [6], can not be used due to reverberation. Fig. 2
shows the flow chart of the Model Based Source Separation
approach where Mi(t, ω) refer to the masks that extract the
ith source. Mi(t, ω) is constructed from the a posteriori
probabilities (7) after correcting the permutation ambigui-
ties. Thus, Mi(t, ω) = πΠω(i) with Πω = [Πω(1), . . . , Πω(N)]
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Figure 2: Basic scheme of Model Based Source Separation Approach

the permutation alignment vector estimated by [5] in the
frequency band ω.

As said before, to build the soft separating mask, the
µi, ri, and ρi parameters need to be estimated for each
source at each frequency band ω. To do so, we propose
to use as criterion the maximum of the log-likelihood of the
data {log |R(t)|, arg R(t)}, t ∈ T . Under the independence
assumption between the time set of observations, it is given
by:

L(ρ,r,µ)=
X
t∈T

log

(
NX

i=1

πipρi [log |Ri(t)| , arg Ri(t)]

)
. (8)

The above log-likelihood is hard to maximize. However, it
may be recasted as the log-likelihood for a model with miss-
ing observations or hidden variables. These variables are the
indexes that indicate which source is dominant at each (t, ω)
point (here ω is fixed and hence not displayed). In this con-
text the log-likelihood can be maximized by the well known
Expectation Maximization (EM) algorithm [7].

3. THE EM ALGORITHM

This algorithm operates in two steps as described below.

3.1 The E-step

This step computes the conditional expectation of the full
log-likelihood given the data {log |R(t)|, arg R(t)}, t ∈ T .
The expected log-likelihood will be computed at generic new
parameters µ′i, r′i and ρ′i and the conditional expectation is
computed relatively to the model specified by the current
parameters µi, ri and ρi. The result can be shown to be:

X
t∈T

NX
i=1

πi (t) log

�
µ′ipρ′

i

�
log

����R (t)

r′i

���� , arg
R (t)

r′i

��
(9)

where πi(t) is the a posteriori probability given in (7) and
computed at the current parameter µi, ri and ρi.

3.2 The M-step

This step maximizes the above conditional expectation of the
full log-likelihood with respect to the generic parameters µ′i,
r′i and ρ′i. The maximum point is then taken as the new pa-
rameter. It is easily seen that the maximization of (9) with

respect to µ′i (under the constraint
PN

i=1 µ′i = 1) and with re-
spect to the set (r′i, ρ′i) can be performed independently. The
first maximization yields the new µi: µi =

P
t∈T [πi(t)]/|T |

where |T | denotes the number of points in T . The second
one is reduced to the maximization of:

C(r′i, ρ
′
i) =

X
t∈T

πi (t) log pρ′
i

�
log

����R(t)

r′i

���� , arg
R(t)

r′i

�
(10)

for each i = 1, .., N with respect to r′i and ρ′i.

3.3 Relaxing the M-step

Maximizing the above expression (10) is not easy and can
not be done without using an iterative algorithm. In [8],
we overcome this problem by replacing the theoretical den-
sity (5) in (10) with another similar and easier one to handle.
Thus, we were able to maximize it analytically. In this work,
as the theoretical density shall be used, we propose not to
maximize the expected full log-likelihood (10) but to just
make it increase. In fact, from the EM algorithm theory, in-
creasing the expected likelihood (10) would be sufficient to
increase, also, the marginal likelihood (8). Therefore, given
the current parameters ri and ρi, we limit ourselves to find-
ing the new parameters r′i and ρ′i that increase the objective
function (10). Such new parameters can indeed be found
analytically as described in the following basic step:

3.3.1 Basic step

Using Jensen’s inequality, it can be easily proved that
C(r′i, ρ

′
i)− C(ri, ρi) has the following lower bound:

−2ζ log
X

t

wi(t) {cosh[ξi(t)− λi]− ρ′i cos[φi(t)− θi]}
ζ(1− ρ

′2
i )

1/2
/(1− ρ2

i )
1/2

(11)

where

wi(t) =
πi(t)

cosh[log |Ri(t)|]− ρ cos[arg Ri(t)]

=
2|Ri(t)|πi(t)

|Ri(t)|2 + 1− 2ρ<[Ri(t)]

and ζ =
P

u πi(u), ξi(t) = log |Ri(t)|, λi = log |r′i/ri|,
φi(t) = arg Ri(t), θi = arg(r′i/ri) and <(z) is the real part
of the complex number z. The maximum of the above equa-
tion (11), with respect to (r′i, ρ

′
i), is strictly larger than zero

(because it is equal to zero when (r′i, ρ
′
i) = (ri, ρi)). Thus,

the new couple (r′i, ρ
′
i) that maximizes (11) will increase, at

the same time, the objective function (10). Therefore, by a
simple variable substitution, the problem of increasing the
likelihood is now reduced to maximize (11) with respect to
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S1 S2 S3 S4 Mean S1 S2 S3 S4 Mean S1 S2 S3 Mean S1 S2 S3 Mean OVAP
SDR 3,91 2,68 3,71 4,17 3,61 4,46 3,40 4,37 5,27 4,37 2,42 5,80 4,81 4,34 1,65 3,49 0,35 1,83 3,61
ISR 6,17 5,99 6,52 6,87 6,39 6,58 7,28 7,07 7,52 7,11 4,27 8,61 8,61 7,16 1,76 6,38 0,40 2,85 6,00
SIR 5,75 2,62 5,37 6,89 5,16 6,75 3,45 6,77 10,13 6,78 4,07 8,80 6,57 6,48 13,38 6,15 11,88 10,47 7,04
SAR 6,21 5,52 6,19 6,08 6,00 7,78 7,44 6,82 7,72 7,44 5,50 11,24 8,96 8,56 15,90 9,73 7,56 11,06 8,05
SDR 3,25 1,97 3,69 4,11 3,25 4,43 3,84 4,44 5,50 4,55 1,69 5,87 5,19 4,25 1,64 3,02 0,34 1,67 3,50
ISR 6,14 4,17 6,87 7,21 6,10 6,34 8,03 7,89 8,65 7,73 4,31 8,30 10,50 7,70 1,80 7,16 0,42 3,12 6,27
SIR 3,73 2,21 5,20 6,27 4,35 8,45 5,35 7,24 9,53 7,64 3,15 9,78 7,15 6,69 14,85 6,94 11,94 11,24 7,27
SAR 5,99 5,04 6,25 6,17 5,86 6,78 6,95 6,68 7,29 6,93 5,60 11,26 9,00 8,62 11,59 6,09 6,01 7,89 7,19
SDR 3,50 2,24 3,16 3,57 3,12 4,03 3,10 3,77 5,22 4,03 1,82 5,58 5,15 4,19 1,72 4,62 0,36 2,23 3,42
ISR 7,64 5,90 7,38 8,65 7,39 6,16 10,55 9,20 10,06 8,99 5,29 8,00 10,28 7,86 1,82 8,75 0,42 3,66 7,15
SIR 7,01 4,62 6,36 7,08 6,27 12,51 5,52 8,04 9,81 8,97 4,13 8,49 7,05 6,55 14,73 7,77 13,68 12,06 8,34
SAR 4,58 2,40 4,24 4,54 3,94 4,69 5,65 5,53 6,31 5,54 7,34 11,27 9,68 9,43 16,26 10,92 7,75 11,64 7,22

Kmeans
[3]

new
MBUSS

old
MBUSS
[ ]

3 Music, with drums3Music, No drums4Women Speech4Men Speech

8

Table 1: Results for synthetic recording with a 5 cm microphone spacing and two different types of sources: speech and
music. the overall performance OVAP of the source separation is presented in the last column. All figures are given in dBs

θi, λi, ρ
′
i. By developing the numerator terms cosh[ξi(t)−λi]

and cos[φi(t)− θi], the maximum is obtained when

λi = tanh−1

P
t wi(t) sinh ξi(t)P
t wi(t) cosh ξi(t)

θi = arg
X

t

wi(t)sign {Ri(t)}

ρ
′2
i =

[
P

t wi(t) cos φi(t)]
2 + [

P
t wi(t) sin φi(t)]

2

[
P

t wi(t) cosh ξi(t)]2 − [
P

t wi(t) sinh ξi(t)]2

where sign {z} = z/|z| = ei arg z. Finally, to increase (10),
we are led to assume the following one iteration basic step:

ri ← ri

p
ai/bi sign ci, ρi ← |ci|/

√
aibi

where ai =
P

t χi(t)|Ri(t)|2, bi =
P

t χi(t), and ci =P
t χi(t)Ri(t) with χi(t) = 1

2
wi(t)/|Ri(t)|.

3.3.2 Combining with the Quasi Newton step

The basic step could lead to a slower convergence of the algo-
rithm as the obtained increase of the expected log-likelihood
(10) can be much less than the maximum achievable. To
overcome this problem we will consider a Quasi-Newton (Q-
N) algorithm. In fact, when the old parameter ri and ρi are
close to the maximum solution of (10), the Quasi-Newton
algorithm would have a quadratic convergence to the point
maximizing (10). Therefore, the algorithm should converge
within one single Q-N iteration. However, in contrast to the
basic step, the Q-N step does not guarantee the increase of
the expected log-likelihood. It does not even guarantee the
new ρ′i to be in the interval (0,1). Thus, the following strat-
egy is adopted in the M-step:

• Compute the new parameter ρ′i and r′i based on the basic
step as in section 3.3.1
• Compute the other new estimation of ρ̂′i of the Q-N step

and test if it belongs to the interval (0,1)
• If not, adopt the new parameter ρ′i and r′i of the basic

step, otherwise compute the other new parameter r̂′i of
the Q-N step and test if it and ρ̂′i of the Q-N step lead
to a larger increase of the expected log-likelihood than
the basic step; if so, adopt these parameter r̂′i and ρ̂′i
otherwise adopt those of the basic step ρ′i and r′i.

Computations (not detailed here) show that the Q-N step is
given by:

ρ̂′i = ρi −
ρi(ai + bi)− 2<(ci)P

t χ2(t){[|Ri(t)|2 + 1]2 − 4<[Ri(t)]2}/πi(t)

r̂′i = ri exp[(3/2)(ai + bi)/(ai − bi)]sign[3ci −<(ci)]

Note that these formula involve the already computed quan-
tities ai, bi, ci.

3.4 EM Initialization and Stop Criteria

A simple way to initialize our algorithm is to choose ran-
domly N times points t1,.., tN and initialize ri by ri = R(ti),
i = 1..N . The a posteriori probability πi(t) can be initial-
ized by formula (7) using the density (5) with ρi set to one,
leading to:

πi(t) =
d[R(t), ri]PN

i=1 d[R(t), ri]

where d [R (t) , ri] = cosh log [R (t)/ri] − cos arg [R (t)/ri].
Since the log-likelihood increases monotonically at each EM
iteration, the EM iteration process is stopped when the in-
crease of log-likelihood becomes insignificant(e.g 10−6).

4. EXPERIMENTS AND RESULTS

In order to evaluate our algorithm, we simulated speech and
music mixtures in a reverberant noise-free environment by
convolving speech and music samples with filter impulse re-
sponses coming from the first audio source separation cam-
paign [2]. Also, it was recently tested in the Signal Separa-
tion Evaluation Campaign (SiSEC) [10] where results showed
that our algorithm compares favorably with the others pre-
sented in this campaign in most of the real and synthetic
convolutive situation. As these results can be accessed at
[10], only the results for the first audio source separation
campaign will be presented. Signals are 16 kHz-sampled and
have a 10s duration. Four types of mixtures were generated:
4 female speakers, 4 male speakers, 3 musics with one of
them is drums and 3 other musics (no drums). Two different
sets of source positions are used, one for speech and another
for music mixtures. Angles and distances of these positions
are given in Table 2. Our algorithm uses Hanning windowed
2048 sample frames, and reconstruction is achieved using the
overlap and add method with 75% overlap.

Speech Sources Music Sources
S1 S2 S3 S4 M1 M2 M3

Distance (m) 1,2 1,1 1 0,8 1,1 0,9 1
Angle (deg) 50 -15 -45 15 45 -30 5

Table 2: Source positions from the set of microphone

4.1 Comparison Algorithm and performance mea-
surement

The proposed algorithm (referred to as new MBUS) is com-
pared with two other algorithms: the first one (referred to
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as old MBUS) is our previous method based on the same
model-based EM approach, but with a simplifying probabil-
ity distribution of the couple of variable (IPD,log(ILD)) [8].
The second one (referred to as Kmeans) is the KMeans un-
derdetermined source separation presented in [3], in which
the ILD/IPD observations are grouped into N clusters using
a KMeans algorithm: each cluster center gives an estimation
of the mixing matrix and the cluster point sets give the bi-
nary TF separating masks. The separation performance was
evaluated for each estimated source i by the same criteria
used in SiSEC: Signal to Interference Ratio (SIRi), Image to
Signal Ratio (ISRi), Signal to Distortion Ratio (SDRi) and
Signal to Artifact Ratio (SARi). For a detail description of
these criteria and of their computation, the reader may refer
to [10].

4.2 Results

Detailed performance are given in Table 1 whereas the mean
of each case and the overall performance OVAP (mean per-
formance on all mixture types) are plotted in Figure 3. When
looking at the SDR which computes the global separation
performance, OVAP column, the proposed MBUSS gives the
best results as compared to the others. It shows a slight ad-
vantage for the new MBUSS 3.61dB compared to the old one
3.5dB and a more efficient as compared to KMeans 3.42dB.
Furthermore, the intermediate errors show that the compro-
mise operated by the algorithms is different.

Comparing the new MBUSS to the old one, results show
that the proposed algorithm gives better results in terms
of SAR (SAR=8.05 and 7.19 respectively) and, almost, the
same in terms of SIR (SIR=7.04 and 7.27 respectively),
which justifies the use of the theoretical distribution and
not the approximated one as in [8]. Comparing the new
MBUSS with the KMeans, Fig. 3 (a),(b) and (c) show that
the MBUSS method performs better for speech mixture,
whereas KMeans performs better on music ones. One ex-
planation could lie in the nature of the signal themselves:
music sources are very resonant, hence the energy is highly
concentrated on some (usually harmonic) frequencies, which
ensures a quasi-disjoint spectro-temporal supports between
instruments. Thus, hard masking would be more suitable fil-
ter for this type of mixtures than a soft filter. The OVAP on
Fig. 3 (d) also shows that the KMeans algorithm favors weak
interferences (SIR=8.34) to the cost of more degraded sep-
arated speech (SAR=7.22), in contrast to our method that
presents stronger interference (SIR=7.04) but with a clearer
separated speech signal (SAR=8.05).

These results are confirmed by informal listening tests:
less audible artifact are noticed in the proposed MBUSS, at
the expense of more interference, which reveals nicer to lis-
ten to since our auditory system is very sensitive to artifact
(gurgling noise) and less to interference. One explanation
(partially) lies in the nature of the mask: as compared to
the binary mask used in the KMeans method, the soft mask
slightly smooths the output, limiting the isolated errors (the
artifact like musical noise), but favoring the presence of inter-
ference.Note that the mask is used ”as is”: we are inclined
to think that some ”wise” smoothing (linear or nonlinear)
could give better objective and subjective results, reducing
even more the artifact.

5. CONCLUSION

In this paper, a new method to solve the underdetermined
blind separation of audio mixtures problem has been pre-
sented. It is based on the sparseness assumption and on a
theoretical model for the interchannel cues (log(ILD),IPD)
given in [1]. By an EM algorithm, we were able to estimate
the parameters of this model and then build the time fre-
quency separating masks. The algorithm demonstrated its
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Figure 3: (a),(b),(c) presents respectively the SDR, SAR and
SIR performance for each type of mixture; (d) presents the
OVAP

ability to separate undetermined reverberant mixtures where
in terms of objective criteria it gives the best results in terms
of artifact and distortion. Nevertheless, more studies need
to be done, especially on the robustness of the model over
the source positions and room reverberation.
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“A new-model based underdetermined source separa-
tion,”IWAENC 2008, USA.

[9] http://sassec.gforge.inria.fr/

[10] http://sisec.wiki.irisa.fr/tiki-index.php

1461


