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ABSTRACT
A fixed-throughput vector precoding (VP) approach specially suit-
able for hardware implementation in field programmable gate array
(FPGA) devices is presented in this paper. The algorithm, which is
based on the sphere encoder (SE), is divided into two main stages:
at the preprocessing stage, the columns of the precoding matrix are
ordered following any of the ordering approaches that have been
proposed in this paper. Secondly, the search tree is configured so
as to yield an appropriate bit error rate (BER) performance. Sim-
ulation results show that the BER performance of the proposed al-
gorithm is very close to that of the SE, whereas its complexity is
significantly smaller.

1. INTRODUCTION

The performance of wireless networks must be vastly improved if
the great challenges of the emerging applications are to be met. One
of the most promising approaches is the incorporation of multiple
transmit and receive antennas to rise the transmission data rate and
to combat the hostility of the radio channels. This is known as
multiple-input multiple-output (MIMO) systems. Most of the work
published on MIMO so far has been focused on point-to-point com-
munications. However, in the last few years the interest in MIMO
has evolved to the development of multiuser schemes which con-
sider more complex albeit realistic scenarios with multiple termi-
nals sharing the time, space, wideband and power resources avail-
able in a wireless network.
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Figure 1: A broadcast multiuser MIMO channel with M transmit
antennas and K single-antenna users.

Generally speaking, the MIMO multiuser environment is com-
posed of two channels that communicate the base station with the
user terminals: the multiple access channel (MAC), also known as
the uplink channel, covers the communication from the terminals to
the base station, whereas the broadcast channel, or downlink chan-
nel, carries the transmissions that stem from the base station and
end at the users’ terminals (Figure 1).

Focusing on the latter scenarios, the lack of cooperation be-
tween terminals in the signal detection stage is the main cause
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that prevents those detection techniques designed for single user
schemes from being applied into multiuser MIMO environments.
However, when performing a preprocessing stage on the signal at
the base station, it is possible to avoid interference at the user termi-
nals so that the information can be obtained without any interaction
between them [1]. This is referred to as precoding, which can be
either linear or non-linear.

Among the linear approaches, zero-forcing precoding [2] and
regularized precoding [3] are some of the most simple and effective
schemes. The first one premultiplies the signal to be transmitted
by the inverse of the channel, whereas the latter is the regularized
version of zero-forcing precoding. Another popular linear approach
is the Wiener filter precoding [2] which achieves minimum mean
square error (MMSE) performance.

The non-linear precoding approaches for multiuser scenarios
are based on the concept of writing on dirty paper introduced by
Costa [4]. For instance, Tomlinson-Harashima precoding (THP)
cancels the interference between streams in a sequential fashion by
means of a feedback filter [5]. However, the most important feature
of this precoding approach is the insertion of a modulo operation, in
both the transmitter and the receiver, to reduce the unscaled transmit
power. The modulo operation at the transmitter can be equivalently
replaced by the addition of a perturbing signal. This leads to the
idea of vector precoding [6], which optimizes the perturbing signal
to be added directly, as opposed to the iterative procedure used in
THP. In order to find the perturbation vector lattice techniques must
be applied. One of the most popular approaches for the search of the
perturbing signal is the SE. This algorithm was successfully applied
in [6] to obtain the perturbation signal required for VP. Other ap-
proaches employ lattice-reduction techniques to simplify the search
for the closest lattice point [7].

This paper aims to introduce a vector precoding system which
applies a fixed-complexity SE, or fixed SE (FSE), lattice search
technique for the computation of the perturbing vector. The decoder
version of the FSE, the fixed-complexity sphere decoder (FSD),
was originally developed for MIMO detection single user scenar-
ios [8]. In this reference, simulation results show that the pro-
posed approach achieves nearly-optimum performance with a sig-
nificant reduction in computational cost. Moreover, being it a fixed-
complexity system, it is highly suitable for hardware implemen-
tation on FPGAs, where the parallelization and pipelining of re-
sources can be applied to enhance the system throughput.

This contribution is organized as follows: in Section 2 the sys-
tem model is introduced. The complexity of the SE at the trans-
mitter side in relation to different matrix orderings is analyzed in
Section 3, while the fixed-complexity search technique for VP is
described in Section 4. Numerical results are given in Section 5 and
some concluding remarks are drawn in Section 6.

2. SYSTEM MODEL

Consider a MIMO broadcast channel with M antennas at the trans-
mitter and K single-antenna users, denoted as M×K (Figure 1). We
assume that the channel between the base station and the K users is
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represented by a complex matrix H ∈ CK×M , whose element hk,m
represents the channel gain between transmit antenna m and user k.
The entries of the channel matrix are such that E[|hk,m|2] = 1, being
E[.] the expectation operator. The received data at the K users can
be written by using a vector equation

y = Hx+w,

where y = [y1, . . . ,yK ]T represents the data received at the K users
and [.]T denotes the transpose operator. The transmitted data vector
is contained in x = [x1, . . . ,xM ]T and w = [w1, . . . ,wK ]T is the addi-
tive white Gaussian noise (AWGN) vector added to the signal at the
user terminals. The transmitted power at the base station Etr is con-
strained as Etr = M. Without loss of generality, this paper assumes
K = M, i.e. the same number of transmit antennas as users.

KK
ja

(1/ ) IK IK

Figure 2: Block diagram of an VP system with M = K.

An arbitrary VP system with M = K is depicted in Figure 2. The
matrix IK is the identity matrix of dimension K×K. The data vector
s = [s1, . . . ,sK ]T to be transmitted is perturbed by a complex signal
a ∈ τZK + jτZK , where τ is the modulo constant. This value has to
be chosen large enough so that unambiguous decoding can be per-
formed [10]. Nevertheless, small values of τ yield denser perturba-
tion lattices and hence the ability of the precoding scheme to reduce
the norm of the transmitted signal is enhanced. It is suggested in
most of the literature on VP that τ is chosen as τ = 2(dmax +∆/2),
where dmax is the absolute value of the constellation symbol with
the largest magnitude and ∆ is the minimum spacing between con-
stellation points. The precoding matrix P shapes the signal to be
transmitted and a scaling factor β−1 is applied prior to transmission
to comply with the transmit power constraints. At the user termi-
nals, the received signal is scaled by β again to meet the modulo
operation requirements. This non-linear operation at the receivers
is essential if the effects of the perturbing signal a are to be reversed.

The VP approach that achieves the best performance is the
Wiener filter VP (WF-VP), which jointly optimizes the perturbing
signal, the precoding matrix and the power scaling factor to reach
the MMSE solution [5]. A simpler approach to WF-VP can be at-
tained if the transmit power is minimized instead of aiming for the
MMSE solution. This approach is referred to as Regularized Vector
Precoding and is supported by the following equations:

aregV P = argmin
â∈τZK+ jτZK

∥∥∥HH(HHH +ξ IK)−1
︸ ︷︷ ︸

P

(s+ â)
∥∥∥

2

2
, (1)

x = β−1 HH(HHH +ξ IK)−1
︸ ︷︷ ︸

P

(s+aregV P).

The conjugate transpose is denoted as [.]H and ‖.‖2
2 represents

the squared two-norm. The value ξ represents the inverse of the
signal to noise ratio (SNR) and is defined as ξ = KN0/Etr. The real
and imaginary parts of the candidates for the perturbation vector
belong to the integer set. However, for the sake of simplicity only
those candidate points that lie within a set boundary are consid-
ered. This selection can be made by either selecting those candidate
points whose absolute values are below a certain threshold, or by
reducing the number of feasible integers to a reasonable value. The
latter is the approach that has been selected for this research work,
being B the number of candidate perturbing values.

From Equation (1) one can notice that the computation of the
perturbing signal a entails a search for the closest point in a lattice.
One of the most popular methods for the resolution of this type of
problems is the SE algorithm, which is explained in detail in the
following section.

3. SPHERE ENCODER AND MATRIX ORDERINGS

The sphere search method is a widely used technique in detection
and precoding schemes to minimize the complexity that an exhaus-
tive search method would imply. This method consists of search-
ing only over those points that lie within a hypersphere of radius R
around the reference signal. Applying the sphere constraint to the
computation of the perturbing vector, the cost function described in
(1) can be rewritten as

aregV P = arg{ min
â∈τZK+ jτZK

∥∥∥P(s+ â)
∥∥∥

2

2
6 R}, (2)

where P = HH(HHH + ξ IK)−1 is the precoding matrix. The
minimization problem in Equation (2) can be equivalently described
as

aregV P = arg{ min
â∈τZK+ jτZK

∥∥∥U(s+ â)
∥∥∥

2

2
6 R}, (3)

where U equals the upper triangular matrix obtained by the
Cholesky decomposition of PHP or, equivalently the QR decompo-
sition of P. The solution to (3) can be recursively obtained by using
a tree search approach, starting from the level i = K and working
backwards until i = 1. At each level, B child nodes originate from
each parent node on the tree. Only those child nodes that fulfil (4)
are considered as feasible solutions, with Equation (4) given by

|ai + zi|2 6 Ti

u2
ii

, (4)

with

zi = si +
K

∑
j=i+1

ui j

uii
(s j +a j), (5)

and

Ti = R2−
K

∑
j=i+1

u2
j j|s j + z j|2. (6)

Every time a new leaf node is reached, that is i = 1, the path
in the tree leading to that leaf node is stored as a feasible solution
and the search radius is updated with the Euclidean distance to that
leaf node. The SE search is continued with the new SE constraint.
On the other hand, if the established radius is exceeded at a certain
level in the tree search, such node in the tree and all its child nodes
can be discarded. Eventually, the last leaf node that is reached in
the tree search represents the solution to the closest vector problem
[8].

As stated in [9], it can be seen from Equations (4), (5) and (6)
that, on average, the number of parent nodes visited per level is
inversely proportional to E[u2

ii]. In addition, this effect is more rel-
evant in the first level (i = K) since Ti decreases with decreasing i.
Therefore, augmenting E[u2

KK ] would reduce the average number of
nodes visited in the first level, which would lead to a reduction in
the total number of paths evaluated during the tree search in the fol-
lowing levels. In the light of these statements, a pre-ordering of the
precoding matrix P that would maximize the value of E[u2

KK ] would
dramatically enhance the performance in terms of complexity of the
SE search. Two ordering approaches that aim in this direction will
be discussed in the following subsections.
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3.1 Iterative matrix ordering

In this section the performance of several iterative matrix order-
ing algorithms will be assessed. For this study, the matrix G =
PH

i (PiPH
i )−1 will be considered, where Pi represents the precoding

matrix with the previously selected columns set to zero. At each
stage of the ordering algorithm (i = K . . . i = 2), the row of G with
the maximum or minimum squared norm, as stated by the ordering
strategy, is selected. Once the order of the columns of P has been
set, these are rearranged accordingly. The ordering strategies under
consideration are as follows:
• A: FSD ordering proposed in [8] for MIMO detection.
• B: The opposite of the FSD ordering.
• C: Maximization of the norm at each stage (Max Ordering).
• D: Minimization of the norm at each stage (V-BLAST).
• E: Alternate maximization and minimization of the norm.
• F: Alternate minimization and maximization of the norm.
• G: Maximization of the norm until the K/2th stage and mini-

mization of the rest.
• H: Minimization of the norm until the K/2th stage and maxi-

mization of the rest.
These orderings have also been applied on a reverse fashion,

that is from i = 1 . . .K, hence doubling the number of orderings con-
sidered in the study. We will refer to these orderings as the reverse
orderings.

As stated in Section 3, the relevance of E[u2
KK ] is paramount

in the complexity of the SE. Among all the considered orderings,
the V-BLAST ordering yields the highest E[u2

KK ] and the smallest
complexity of the SE search in terms of average evaluated nodes
per level. This result is supported by [?], where the authors prove
that the aim of the V-BLAST ordering is to find the permutation
matrix Π such that the QR decomposition of P′ = PΠ has the prop-
erty that the originally minimum E[u2

ii] is maximized over all col-
umn permutations. In Table 1 the experimental values of E[u2

ii]
are displayed for the unordered, iteratively ordered (V-BLAST) and
non-iteratively ordered (Max Ordering) cases for a 6× 6 system
with 16-QAM modulation. For the iterative and non-iterative ap-
proaches, only the data for the ordering with best performance in
terms of searched points per level for the SE have been included in
each case. From the data in Table 1 it is clear that the minimum
E[u2

ii] in the unordered case is E[u2
66]. This value is maximized by

the V-BLAST iterative ordering, yielding the highest E[u2
66] value

among the non-iterative and the rest of iterative orderings. There-
fore, the results provided in Table 1 corroborate the optimality of
the V-BLAST ordering to reduce the complexity of the SE.

In addition to this, and based on Equation (6), one can assume
that maximizing the sum of the E[u2

ii] at each stage i = K . . .1 should
reduce the Ti value by the maximum possible, and hence allow the
SE to discard as many paths as possible in the algorithm. From
all the studied orderings, the V-BLAST approach is the only one
that yields the highest E[u2

KK ] at the first stage, then the highest
E[u2

KK ]+E[u2
K−1,K−1], and so on.

To sum up, it has been shown in this subsection that the V-
BLAST ordering is the optimal ordering, among the ones that have
been studied, in terms of complexity of the SE search. The results of
the complexity reduction for the selected ordering are shown in Ta-
ble 2, where the average total number of nodes per level considered
by the algorithm as feasible solutions is depicted.

3.2 Non-iterative matrix ordering

Although Section 3.1 proves that the iterative V-BLAST ordering is
the one that has a higher impact on the complexity reduction of the
SE search, a simpler approach will be described here. This method
differs from the iterative one in the pre-processing stage of the pre-
coding matrix, where this process is performed in a non-iterative
way. The columns of the precoding matrix P are ordered accord-
ing to their norm. The ordering methodology proposed in Section

E[u2
11] E[u2

22] E[u2
33] E[u2

44] E[u2
55] E[u2

66]
Unordered 1.905 0.837 0.478 0.332 0.249 0.197
Iterative 0.739 0.559 0.429 0.360 0.323 0.336
Non-iter. 0.589 0.610 0.510 0.401 0.329 0.284

Table 1: Mean u2
ii values for several matrix orderings in a 6× 6

system with 16-QAM modulation.

SE SE+Iter.Ord. SE+Non-Iter.Ord.
Level 6 6.558 3.529 4.520
Level 5 20.228 7.654 10.307
Level 4 37.468 11.369 14.763
Level 3 46.294 12.309 14.322
Level 2 37.725 9.923 9.648
Level 1 17.774 5.596 4.729

Table 2: Mean value of the number of visited nodes per level for
several matrix orderings in a 6x6 system with 16-QAM modulation.

3.1 will be applied here, except for a minimal change: the D or-
dering can no longer be related to the V-BLAST ordering since no
iterative procedure is performed. Moreover, the number of ordering
strategies under consideration is reduced since some of the order-
ings yield an identical matrix ordering, such as the D and the reverse
C orderings.

From all the studied non-iterative orderings, the Max ordering
is the one that yields the highest E[u2

KK ]. Nevertheless, the E[u2
KK ]

value for the non-iterative ordering is smaller, and therefore less op-
timum, than that of the iterative approach, as shown in Table 1. This
is an expected result since, as stated in Section 3.1, the V-BLAST
ordering achieves the highest E[u2

KK ] value. Moreover, and follow-
ing the rationale introduced in the previous section, the Max order-
ing is the non-iterative ordering that maximizes the sum ∑K

n=i E[u2
nn]

at each stage, thus minimizing the number of branches visited by the
SE algorithm.

The optimality of the Max ordering can be further justified if a
closer look at the U matrix is taken. As previously mentioned, the
u2

KK entry of matrix U is the most relevant among all the diagonal
values as it has a great impact on the performance of the SE search.
We henceforth define A , PHP, and therefore U = chol(A). Apply-
ing formula (8) for the computation of the Cholesky decomposition
of an arbitrary matrix for a 4x4 configuration, the value of u44 can
be calculated as expression (9).

ui j =
1
uii

(
Ai j−

i−1

∑
k=1

u∗kiuk j

)
(7)

uii =

√√√√Aii−
i−1

∑
k=1

|uki|2 (8)

u44 =
√

A44− (|u14|2 + |u24|2 + |u34|2︸ ︷︷ ︸)
W4

(9)

Clearly from the above formulae, in order to increase the value
of u2

44, A44 has to be maximized and W4 minimized. Simulations
showed that the best performing non-iterative ordering (Max order-
ing) yielded the highest A44 value, whereas the worst performing
ordering (D ordering) achieved an A44 value 80% smaller than the
optimum. This supports the hypothesis that an increase on the value
of A44 leads to an augmentation in the value of the u2

44 element. Fol-
lowing this observation, and since A , PPH , the diagonal values of
the matrix A equal the squared value of the norm of the ith column
of the precoding matrix P. Therefore, by selecting the column with
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the highest norm to be the first one to be processed during the tree
search (when i = K), the value of AKK is maximized, which with
a high probability leads to a higher u2

KK value. Nonetheless, sev-
eral orderings, such as B, E and G orderings, select the column of
P with the highest norm in the i = K level and still achieve a worse
performance than the Max Ordering.

The rationale behind this lies on the u2
K−1,K−1 . . .u2

11 values of
the U matrix, as only the Max ordering’s E[u2

ii] values render the
highest ∑K

n=i E[u2
ii] at each stage. This can be explained by follow-

ing Equation (8) for the computation of the diagonal elements in
a Cholesky matrix. Therefore, the values of u2

33, u2
22 and u2

11 are
defined as

u33 =
√

A33− (|u13|2 + |u23|2︸ ︷︷ ︸)
W3

,

u22 =
√

A22− (|u12|2︸ ︷︷ ︸)
W2

and u11 =
√

A11.

If the ∑K
n=i E[u2

nn] is to be maximized at each stage i = K . . .1,
the Aii values should have an increasing tendency as i decreases, that
is AKK > AK−1,K−1 > .. . > A11. If the Max Ordering is applied, it is
clear that the distribution of the diagonal elements of A fulfils such
condition. However, and despite the fact that a decreasing tendency
of the Wi values would be desirable so as to maximize Aii−Wi at
the early stages of the algorithm, the matrix ordering methodology
affects both coefficients in equal terms. Therefore, it is advisable
not only to select the column of P with the highest norm first, but
to apply this ordering criteria in the rest of the levels to reduce the
complexity of the SE.

To sum up, if at each iteration i the column of P with the max-
imum norm is selected, the value of Aii will be maximized, which
is very likely result in a higher value for u2

ii. The effect of the in-
crease of u2

ii at each iteration is a reduction of the number of points
to be searched by the SE, which yields a smaller complexity for the
algorithm, and thus a more suitable scenario for the implementa-
tion of the FSE. The complexity reduction achieved by this ordering
method is reflected in Table 2.

4. FIXED SPHERE ENCODER FOR VP

4.1 FSD for detection in MIMO systems
The FSD was originally published by Barbero [9] with the purpose
of overcoming the two main drawbacks of the SD detection scheme
in single-user Ntx×Nrx MIMO systems. On one hand, the complex-
ity of the detector is variable and depends strongly on the noise level
and channel conditions. On the other hand, the sequential nature of
the algorithm makes it unsuitable for hardware implementation, as
the parallelism and pipelining features of such devices cannot be
fully exploited.

The main feature of the FSD is the fixed-complexity tree search
performed in order to find a quasi-ML solution of the detection pro-
cess. As can be seen in Figure 3, the search tree is defined by
n = [n1, . . . ,nK ], being ni the number of child nodes to be con-
sidered at each level. At each level, the symbols to be selected
are chosen in accordance with the Schnor-Euchner enumeration [9].
The total number of paths visited by the algorithm is calculated as
nT = ∏Ntx

i=1 ni. The suggested distribution of nodes in the original
FSD is n = [1,1, . . . ,1,T ], where T denotes the constellation size.

The original FSD presented in [9] performed a preprocessing
stage of the channel matrix prior to developing the search for the
closest lattice point. The matrix ordering stage iteratively orders the
Ntx columns of the channel matrix starting from i = Ntx and working
backwards until i = 1. At the first iteration the signal with the largest
noise amplification is selected. For the rest of the iterations, the
opposite operation is performed, i.e. the signal with the smallest
noise amplification is chosen. The square norm of the rows of H†

i =
(HH

i Hi)−1HH
i are used as the metric to evaluate the amount of noise

4

3

2

1

Figure 3: FSD tree search in a 4× 4 system with QPSK modulation.

amplification, where Hi equals the channel matrix with the columns
selected in previous iterations set to zero.

However, the search for the closest lattice point that needs to be
performed in a VP multiuser system entails a different problem and,
therefore, the recommended design rules such as the node distribu-
tion pattern (n) or the matrix ordering do no longer apply.

4.2 FSE for VP in multiuser MIMO systems
The implementation of the FSE at the transmitter side is splitted in
two stages:
• Matrix ordering: The columns of the precoding matrix P must

be rearranged in order to achieve a better performance of the al-
gorithm. To this end, any of the orderings described in Section
3.1 or Section 3.2 can be used. However, the BER performance
of the algorithm will be different in systems where distinct or-
derings have been applied.
The complexity of the matrix ordering methods described in this
paper differ as the iterative ordering involves performing K−1
matrix inversions, while none is required for the non-iterative
procedure. However, note that the matrix ordering stage of the
algorithm is performed only once per channel realization, and
therefore, its complexity is negligible when compared to the
processing of the whole data block.

• FSE tree search: The design of the search tree is crucial, since
it has a strong influence on both the complexity of the algorithm
and its performance in terms of BER.
For every system configuration a trade-off between complexity
and performance has to be met. Notice that the higher the num-
ber of calculated paths is, the better the performance will be and
viceversa. It all depends on the hardware resources available
and the target BER. Therefore, no optimum node distribution
pattern will be provided in this paper. However, some hints for
a proper setup of the search tree will be supplied: first, selecting
ni > 1 at high levels in the tree (when i = K, . . . , i = K/2) has a
positive impact on the BER performance. It is advisable as well
to always set n1 = 1, as setting a higher value for this element
would not make any difference if the Schnor-Euchner enumera-
tion is followed. Finally, simulations show that those trees with
nK > nK−1 > . . . > n1 render a better BER performance than
those who do not.

5. SIMULATION RESULTS

For the results in Figure 4 and Figure 5 a channel model with in-
dependent and identically distributed unit-variance Rayleigh fad-
ing coefficients has been used and perfect channel state informa-
tion (CSI) is assumed at the transmitter. The channel remains con-
stant during every transmission block which consists of 100 16-
QAM symbols and the modulo constant τ has been set accord-
ing to the recommendations in Section 2. The node distribution
vector has been chosen as n = [1,1,2,5] for the K = 4 antenna
FSE system, n = [1,1,1,2,3,4] for the K = 6 configuration and
n = [1,1,1,1,2,2,3,4] for the K = 8 antenna FSE system.

The simulations in Figure 4 show that the BER performance of
the non-iterative ordering FSE approach is very close to that of the
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SE. The difference in performance is approximately 0.09 dB at a
BER of 10−3 for all system configurations. Although the initial re-
sults foresaw that the V-BLAST matrix ordering would perform bet-
ter than the non-iterative one, since it maximized the E[u2

KK ] value
and therefore it reduced the complexity of the SE, simulation results
contradict this initial hypothesis. Despite the fact that the iterative
ordering results in a smaller amount of nodes visited per level in
the SE in almost all the levels of the tree search, the non-iterative
method performs better under a fixed tree structure. This might
be due to the fact that the non-iterative approach requires a smaller
amount of points in the two lower levels, namely i = 1 and i = 2, for
all the antenna configurations that have been studied in this research
(e.g. see Table 2 for the results on the K = 6 antenna case). Regard-
ing the BER curves for the iterative ordering approach, they are not
displayed for sake of clarity. However, some numerical results on
the difference in performance between the two ordering approaches
will be provided. The non-iterative approach outperforms the iter-
ative method by 0.06 dB at a BER of 10−3 for the K = 4 system
configuration. Nevertheless, the difference between the two order-
ing approaches narrows as the number of antennas is increased.
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Figure 4: BER performance of the SE, the ordered FSE and the
unordered FSE under several system configurations.

Finally, Figure 5 shows the number of visited nodes per level
for several antenna configurations. Note that the markers for the
SE case stand for mean values only, as the complexity of the SE is
variable. The number of nodes visited during the FSE tree search
is calculated as ∏K

j=i n j for level i. The data displayed in this plot
show that the number of visited nodes by the proposed algorithm is
considerably smaller for most of the levels. It is worth to mention
as well the great reduction in searched paths that is achieved with
the VP-FSE compared to the exhaustive search method. If the num-
ber of candidate values for the elements of the perturbing vector is
set to B = 25, the total number of paths searched by the exhaustive
search approach for a 4 antenna system would be 254 = 3.90 ·105,
as opposed to the 10 paths required for the FSE. This huge gap in
complexity is increased if more antennas are added to the system.
In a 6× 6 system the complexity of the exhaustive search would
be of 256 = 2.44 · 108 paths, and this value could be increased to
258 = 1.52 ·1011 if 8 antennas are used. On the other hand, the FSE
simulations carried out in this research only required the computa-
tion of 24 and 48 paths for the 6 and 8 antenna cases, respectively.
These results verify the vast complexity reduction achieved by the
proposed VP-FSE scheme.

6. CONCLUSIONS

The FSE applied to the search of the perturbing signal in a vector
precoding system has proved to be a fully valid and applicable ap-
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Figure 5: Number of visited nodes per level by the FSE and SE
algorithms for K = 4, K = 6 and K = 8 systems at 20 dB.

proach. The BER performance of the proposed algorithm is very
close to the optimum solution whereas its complexity is far more
reduced in comparison to that of the exhaustive search method or
even the SE algorithm. Moreover, due to its fixed complexity, the
proposed algorithm can be effectively implemented in FPGA de-
vices, where the pipelining and parallelization of resources enhance
the throughput of the overall communication system.

As for the best ordering approach, the results on BER perfor-
mance depicted in Figure 4 have shown that the non-iterative matrix
ordering performs slightly better than the V-BLAST matrix order-
ing, while not requiring any of the K−1 matrix inverse operations
required by the latter.
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