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ABSTRACT

This paper presents a study on the potential interest of
sparse Independent Component Analysis (ICA) for the
diagnosis of a complex railway infrastructure device. This
complex system is composed of several spatially related
subsystems, i.e. a defective subsystem not only modifies its
own inspection data but also those of other subsystems. In
this context, the ICA model is used to extract from inspection
data indicators of each subsystem state. We assume here that
inspection data are observed variables generated by a linear
mixture of independent and nongaussian latent variables
linked to the defects. Furthermore, physical knowledge on
the inspection system provides prior information on the
mixing structure. We investigate then the ability of sparse
ICA to recover this structure and to provide meaningful
defect indicators. We also show that introducing sparsity in
the mixing process slightly improves the results.

1. INTRODUCTION

The diagnosis of a complex system consists in detecting
and identifying defect appearances from inspection measure-
ments. Depending on whether labeled data are available or
not, two learning frameworks are possible : supervised or
unsupervised. In many real-world applications, labeled data
are often difficult to obtain while unlabeled data are easily
available. In this case, the main task is to develop models
which are able to catch the structure of the analyzed system
underlying the observations [5].

In this article, we explore the use of a generative ap-
proach to achieve the diagnosis of a railway device, namely
the track circuit, in an unsupervised context. This component
can be considered as a complex system made up of spatially
related subsystems. The presence of a defect in one subsys-
tem not only modifies its own inspection data but also the in-
spection data pertaining to other subsystems. The aim of the
diagnosis is to identify and localize defects appearance on
subsystems on the basis of a specific inspection signal analy-
sis. The model involved here assumes that the observed vari-
ables extracted from the signal have been generated from a
linear mixing of the latent variables linked to the subsystems
defects. Under hypothesis that the latent variables are mutu-
ally independent and nongaussian the Independent Compo-
nent Analysis (ICA) model is well suited to the problem [7].
We also investigate the possibility of making the unknown
mixing matrix as sparse as possible. Indeed, detecting zero
entries can reduce the model complexity and thus provide a
more reliable estimation of the parameters. It can also make
the structure of the generative model more interpretable. This

seems to be interesting in our application where the observa-
tions are affected by only a smaller subset of the latent vari-
ables [8][10].

This paper is organized as follows. In section 2 the op-
eration of the railway device and the purpose of its diagnosis
are described. Section 3 gives the ICA background and de-
tails the incorporation of penalty functions and constraints
on the mixing matrix to produce sparse parameters. The ef-
ficiency of using the ICA model in its traditional or sparse
form is then evaluated on the railway application in section
4. In section 5, conclusions are drawn.

2. RAILWAY TRACK CIRCUIT

2.1 Track circuit principle

The track circuit is an essential component of the automatic
train control system. Its main function is to detect the pres-
ence or absence of vehicle traffic on a given section of rail-
way track. On French high speed lines, the track circuit is
also a fundamental component of the track/vehicle transmis-
sion system. It uses a specific carrier frequency to transmit
coded data to the train, such as the authorized speed on a
given section. The railway track is divided into different sec-
tions (Figure 1). Each section has a specific track circuit con-
sisting of:
• a transmitter connected to one of the two section ends,

which supplies a frequency modulated alternating current
• the two rails that can be considered as a transmission line
• a receiver at the other end of the track section
• trimming capacitors connected between the two rails at

constant spacing to compensate the inductive behavior of
the track. An electrical tuning is then performed to limit
the attenuation of the transmitted current and improve the
transmission level

A train is detected when the wheels and axles short-circuit
the track, which induces the loss of the track circuit signal.
The drop of the received signal below a threshold indicates
that the section is occupied.

2.2 Diagnosis purpose and Methodology

The different parts of the track circuit are subject to many
constraints (mechanical, electrical, atmospheric...) that may
lead to a defective behavior of the system. In the most ex-
treme cases, significant attenuation of the transmitted signal
can occur, which may induce signalling problems (the sec-
tion can be considered as occupied even if it is not). To avoid
such inconvenience and inform maintainers about failures,
an inspection car equipped with a sensor on the first axle is
used to pick up the carrier current level of the short circuit

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 2042



Figure 1: Track circuit representation and inspection signal
without defect and with a defective 9th capacitor.

current (Icc, see Figure 1). This signal is recorded at each
position of the train while the track is shunted by the inspec-
tion train itself. In this paper, we focus on defects that affect
trimming capacitors. Figure 1 shows examples of denoised
inspection signals along a 2000m track circuit. One of them
corresponds to an absence of defect, while the others cor-
respond to a defective 9th capacitor. The diagnosis system
is aimed at detecting the operating mode of the track circuit
by analyzing the measurement signal (Icc) which is closely
linked to electrical trimming capacitor characteristics.

The proposed method is based on the following observa-
tions:
• the inspection signal has a specific structure, which is a

succession of local arches that can be approximated by
quadratic polynomials

• the trimming capacitors have a spatial relationship be-
tween them, i.e. the presence of a defect in a trimming
capacitor only affects the signal between the defect and
the receiver leaving the signal upstream unchanged (see
Figure 1)

In the proposed method, the track circuit is considered as
a global systemΣ made up of a series ofN subsystems
S1, . . . ,SN that correspond to theN trimming capacitors. A
defect on one subsystemSi is represented by a continuous
value of the capacitance parameterci . A generative model
can be built where the latent variablesci for i = 1..N are the
capacitances of trimming capacitors and the observed vari-
ablesdi for i = 1..N are extracted by approximating each
arch of the inspection signal (Icc) by a quadratic polynomial
αix2 + βix+ γi . Because of the continuity between arches,
each observed variabledi is only described by two coeffi-
cients of the local polynomial(βi ,γi) and the whole measure-
ment signal is thus described by a total of 2N coefficients.
This kind of model is useful because its structure can take
advantage of the prior knowledge on the spatial relationship
between subsystems.

Assuming a linear relationship between observed and la-
tent variables (Figure 2), the generative model could be de-
scribed by:

d = A.c (1)

whered = (d1,d2, ...,dN)t is the vector of observed variables,
c = (c1,c2, ...,cN)t is the vector of independent latent vari-

Figure 2: Generative graphical model

ables,( )t stands for the matrix transpose operator andA is
a matrix with a sparse structure that transcribes the spatial
dependencies of the model.

Considering the previous problem as a blind source sep-
aration problem, the ICA model can be used to estimate
the mixing matrixA and thereby to recover the latent com-
ponents (sources)c1,c2, ...,cN from the observed variables
alone. Moreover, ICA with a sparse mixing matrix can also
be considered to take account of prior information on the
mixing process. In this way, the connections between the
observed and recovered variables can be closely linked to the
physical behavior of the system.

3. INDEPENDENT COMPONENT ANALYSIS

3.1 Independent Component Analysis principle

The classic version of the ICA model can be expressed as
in equation (1) with the assumption that the latent variables
are nongaussian and mutually independent [7]. The prob-
lem consists of estimating both the mixing matrix and the re-
alizations of the latent variables from the obseved variables
alone. Note that, we assume here that the number of latent
variables is equal to the number of the observed variables.
The estimation of the model can be done by maximizing the
log-likelihood, which thanks to the independance assumption
takes the following form [7, p. 204]:

L (A) = −T log(|detA|)+
T

∑
k=1

N

∑
i=1

logpi [(A
−1dk)i ] (2)

whereT denotes the number of samples andpi is the density
of sourcei. The estimation of the mixing matrixA can be
done thanks to gradient ascent algorithms [2]. The natural
gradient is well suited to this problem [1]. In this case, the
update rule forA takes the following form:

△A ∝ A
(

E{ψ (c)ct}− I
)

(3)

whereE stands for empirical expectation,I is the identity
matrix,c is the current estimate of the sourcesc = A−1d and

ψ(c) = (ψ1(c1), ..,ψN(cN))t with ψi(ci) = − p
′
i (ci)

pi(ci)
.

2043



The densitiespi can be adapted online to extract bothsu-
pergaussianandsubgaussiansources. In our experiments,
this was done by using the functionψi(ci) = −2tanh(ci) for
supergaussiansources and the functionψi(ci)= tanh(ci)−ci
for subgaussiansources. The choice between the two func-
tions, is made by computing the nonpolynomial moment:
E{−tanh(ci)ci + (1− tanh(ci)

2)}. If this nonpolynomial
moment is positive the source is supposed to besupergaus-
sian otherwise it is supposed to besubgaussian[7, p. 205-
210].

3.2 ICA with sparse mixing matrix

3.2.1 Constraints on the mixing matrix

In many real-world applications, the structure of the problem
supplies a prior knowledge on the mixing process that can be
interesting to introduce in the model estimation. The mixing
matrix can be constrained to a specific form in order to take
account of this kind of prior. In our application, as there is
no influence between a trimming capacitor operating mode
and inspection data related to subsytems located upstream,
some elements of the mixing matrix can be constrained to be
null. In this case, the estimation problem of the ICA model
has to be reformulated in order to take account of conditional
independencies of some sources given some observed vari-
ables. It is shown in [3] that making this kind of hypothesis
constraints the form of the mixing matrix to be as:

di ⊥⊥ c j ⇔ ai j = 0 (4)

wheredi ⊥⊥ c j means that the latent variablec j doesn’t influ-
ence the observed variabledi .

The maximization of the log-likelihood under these con-
straints is done by considering only the gradient of the non-
zero coefficients. The initialization and the natural gradient
update rule ofA become then:

A(0) = M• A(0) (5)

△ACt ∝ M• A
(

E{ψ (c)ct}− I
)

(6)

where • stands for the entrywise product andM is a binary
matrix with elements:

mi j =

{

0 i f di ⊥⊥ c j
1 else (7)

3.2.2 Penalized mixing matrix

In [8], sparse priors are introduced in the basic model to pe-
nalize mixing matrix with a large number of significantly
non-zero parameters. Sparsity can also be achieved by apply-
ing certain penalty functions to the mixing parameters as in
linear regression problems [9][10]. Different functions glob-
ally expressed asPλ (a) can be used as penalties, wherePλ
is a penalty function andλ the degree to which the penalty
influences the solution. The following table (Table 1) gives
the expression of three penalty functions used in the exper-
iments: theL1, the L2 and the Smoothly Clipped Absolute
Deviation (SCAD) penalties [4].

The sparse mixing matrix is then simply derived from
the log-likelihood together with the penalty as the objective
function [4]:

LP =
1
T

(L (A))−
N

∑
i, j=1

Pλ (ai j ) (8)

Table 1: Expression of the penalty functionsPλ
Penalty Pλ (a)

L1 λ |a|
L2 λ |a|2

SCAD(α > 2)















λ |a| |a| ≤ λ ,
−(a2−2αλ |a|+λ 2)

[2(α −1)]
λ < |a| ≤ αλ ,

(α +1)λ 2/2 |a| > αλ .

The corresponding natural gradient learning rule forA is ob-
tained as:

△APen ∝ A
(

E{ψ (c)ct}− I −At [P
′
λ (ai j )]

)

(9)

where[P
′
λ (ai j )] denotes the matrix whose(i, j)th element is

P
′
λ (ai j ).

4. RESULTS

To assess the performance of the different approachs, we use
a simulated database where the information about sources
(latent variables) is available. We considered a track cir-
cuit of N = 19 subsystems (or capacitors) and a database of
2500 noisy signals with different values of the capacitance
of each capacitor. 1000 signals were used for the training
phase while the 1500 others were reserved for the test phase.
At the end, the aim was to recoverN latent variables from
2N observed ones (2 coefficients per signal arch). To con-
serve the specific spatial structure of the mixing process, the
dimensionality reduction on the observation matrix using a
principal component analysis was kept out. We chose to ex-
tract 2N latent variables and to keep theN most strongly cor-
related with the variables of interest, theN others being con-
sidered as noise. The right order of the estimated variablesis
deduced according to the obtained correlations.

The experiments were designed to illustrate the efficiency
of the ICA method to achieve the diagnosis task and also
to quantify the influence of introducing sparsity in the mix-
ing process. Basic and sparse ICA models using natural
gradient-based algorithm were thus performed on the obser-
vation matrix. For the penalized model, the penalties de-
scribed in Table 1 were used (SCADparameters was chosen
as suggested in [4]). The results of the different settings were
quantified through the correlation between the true sources
(capacitances) and their estimates calculated on the test set,
and by checking the mixing matrix structure.

Figure 3 shows the results of the algorithm using the tra-
ditional ICA model and the penalized one withL2 penalty
(for a λ = 4). Obviously, the correlations between the esti-
mated sources and the true capacitances (after permutation)
are stronger in the penalized case. As expected, the estimated
mixing matrix shown seems to be block lower triangular,
which validates the spatial relationship between the system
variables. One can observe that the mixing structure is more
legible when applying penalty in the ICA model.

However, a more accurate quantification of the benefits of
penalized ICA needs a suitable choice of the regularization
parameterλ . Different computations on the test set accord-
ing to a variableλ = 0...25 were then achieved for the differ-
ent penalties. Note that the caseλ = 0 illustrates the perfor-
mances of the traditional ICA model (without any penalty).
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(a) (b)

(c) (d)

Figure 3: Absolute value of the correlations between esti-
mated latent variables and true capacitances computed on the
test set using the traditional ICA model (a) and the penalized
model (b), and absolute value of the estimated mixing matrix
computed on the test set using the traditional ICA model (c)
and the penalized model (d).

As shown in Figure 4(a), the values of the mean correlation
between the estimated and the true sources increases when
the regularization parameterλ increases. The decreasing is
expected for too large values ofλ because the data is then
neglected and only the penalized term is taken into account.
A suitable value ofλ should be chosen equal to 8 forL1
penalty, 10 for SCAD penalty, while theL2 penalty seems to
be more effecient than the others for a lowerλ value (λ = 4).

We also used a measure of sparsity to evaluate the consis-
tency of the structure obtained on the estimated mixing ma-
trix knowing the structure implied by the prior knowledge.
This sparsity measure is proposed in [6] to quantify the so
called energy contained into the components of a vector. We
adapted this measure to the mixing matrix in order to evalu-
ate its sparsity:

sparsity(A) =

√
N×2N− (∑ |ai j |) /

√

∑a2
i j√

N×2N−1
(10)

This measure is equal to one if and only ifA contains only
a single non-zero component, and takes a value of zero if all
components are equal (up to signs). In the ICA with mixing
constraints, half of the mixing matrix elements are zero and
the mean sparsity measure estimated on 30 runs is equal to
0.5. For the penalized ICA, Figure 4(b) displays the spar-
sity measure as a function of the regularization parameterλ .
In this case, the sparsity increases with the value ofλ . A
suitable choice of the parameterλ is thus given by the mean
correlation between estimated and real sources rather than
the sparsity.

We also compared the results of penalized ICA estima-

tion with respect to one element (a1,17) of A expected to be
null thanks to prior information. Figure 4(c) shows the mean
estimate of the entrya1,17 of A for eachλ value over 30 runs
of the algorithm. According to all previous observations, we
can see that from a certainλ value, the last three methods
perform better than traditional ICA and provide a more sta-
ble estimate.
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Figure 4: Mean correlation between the true capacitances
and the estimated ones over 30 runs at differentλ values (a).
Mean sparsity measure as function of the regularization pa-
rameterλ over 30 runs (b). The estimate of the entrya1,17
for differentλ . The error bars denotes the standard deviation
of the results over 30 runs (c).

A representation of the penalization impact for an appro-
priate choice of the penalty function and theλ value is sum-
merized in Table 2. The correlations (rĉi ,ci ) between each
real source and its estimate are computed from the traditional
ICA model, the ICA with constraints on the mixing matrix
and the penalized ICA (L2 penalty withλ = 4). For each
source, the mean of the absolute value of the correlations
over 30 runs is given in the table. Taking into account that
only the correlations higher than 0.7 are meaningful, the ba-
sic ICA allows us to recover 10 capacitances while, the ICA
with constraints allows us to recover 13 capacitances and the
penalized ICA 15 capacitances. Clearly, the sparse ICA mod-
els improve efficiently the estimation of the sources that are
not detected by the traditional ICA model. The model with
penalty provides better results than the others which couldbe
explained by the fact that the part of the mixing matrix con-
sidered as noise is also penalized and thus less influences the
estimation of the model.

5. CONCLUSION

We have investigated in this paper the possibility of using
ICA model for a railway infrastructure component diagnosis.
The proposed approach aims at recovering the latent vari-
ables linked to the defects from their linear observed mix-
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tures that correspond to the features extracted from the in-
spection signal. The ICA without and with sparse connec-
tions have been tested on a database for which the sources
are known. The obtained results show the effectiveness of
the approach to be used in a diagnosis objective. Introducing
sparsity seems to be more efficient to establish the mixing
matrix structure and thus the data connections. It also pro-
vides a better coherence between the estimated sources and
the model characteristics.

Table 2: The 19 mean correlations between the real sources
and their estimates computed on the test set over 30 runs,
with the traditional ICA, the ICA with mixing constraints and
the penalized ICA for a penaltyL2 andλ = 4 (<> stands for
the average).

Sources 1 2 3 4 5
< |rĉi ,ci | > 0.63 0.61 0.72 0.59 0.73
< |rĉi ,ci | >Ct 0.74 0.64 0.67 0.61 0.77
< |rĉi ,ci | >L2 (λ=4)

0.73 0.64 0.68 0.63 0.74

Sources 6 7 8 9 10
< |rĉi ,ci | > 0.72 0.71 0.78 0.72 0.72
< |rĉi ,ci | >Ct 0.71 0.76 0.71 0.77 0.75
< |rĉi ,ci | >L2 (λ=4)

0.73 0.71 0.76 0.77 0.74

Sources 11 12 13 14 15
< |rĉi ,ci | > 0.68 0.68 0.75 0.65 0.75
< |rĉi ,ci | >Ct 0.76 0.77 0.73 0.75 0.80
< |rĉi ,ci | >L2 (λ=4)

0.77 0.79 0.75 0.79 0.80

Sources 16 17 18 19 <>

< |rĉi ,ci | > 0.74 0.36 0.39 0.20 0.64
< |rĉi ,ci | >Ct 0.74 0.69 0.56 0.32 0.71
< |rĉi ,ci | >L2 (λ=4)

0.85 0.81 0.74 0.31 0.72
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