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ABSTRACT seems to be interesting in our application where the observa
ofons are affected by only a smaller subset of the latent vari

This paper presents a study on the potential interest Ables [8][10].

sparse Independent Component Analysis (ICA) for_th This paper is organized as follows. In section 2 the op-

diagnosis of a complex railway infrastructure device. Thisgration of the railway device and the purpose of its diagnosi
I i f I iall I . . ;
complex system is composed of several spatially relate described. Section 3 gives the ICA background and de-

subsystems, i.e. a defective subsystem not only modifies & . . X :
own inspection data but also those of other subsystems. IS the incorporation of penalty functions and constsin
this context, the ICA model is used to extract from inspactio 2N the mixing matrix to produce sparse parameters. The ef-
data indicators of each subsystem state. We assume here tqgenpy of using the ICA model in its traditional or sparse
inspection data are observed variables generated by afinea®M IS then evaluated on the railway application in section
mixture of independent and nongaussian latent variable&- N S€ction 5, conclusions are drawn.

linked to the defects. Furthermore, physical knowledge on

the inspection system provides prior information on the 2. RAILWAY TRACK CIRCUIT

mixing structure. We investigate then the ability of sparsey 1 1rack circuit principle

ICA to recover this structure and to provide meaningful

defect indicators. We also show that introducing sparsity i The track circuit is an essential component of the automatic
the mixing process slightly improves the results. train control system. Its main function is to detect the pres

ence or absence of vehicle traffic on a given section of rail-
way track. On French high speed lines, the track circuit is
1. INTRODUCTION also a fundamental component of the track/vehicle transmis
sion system. It uses a specific carrier frequency to transmit
The diagnosis of a complex system consists in detectingoded data to the train, such as the authorized speed on a
and identifying defect appearances from inspection measurgiven section. The railway track is divided into differeats
ments. Depending on whether labeled data are available tions (Figure 1). Each section has a specific track circuit co
not, two learning frameworks are possible : supervised osisting of:
unsupervised. In many real-world applications, labeleid da e a transmitter connected to one of the two section ends,
are _often diffiCU_|'[ to obtain While unlab_eled data are easily which supplies a frequency modulated alternating current
available. In this case, the main task is to develop models, the two rails that can be considered as a transmission line
which are able to catch the structure of the analyzed system, 5 receiver at the other end of the track section
underlying the observations [5]. o
In this article, we explore the use of a generative ap-
proach to achieve the diagnosis of a railway device, namely
the track circuit, in an unsupervised context. This compone 0 aitenuation of the transmitted current and improve the
can be considered as a complex system made up of spatially

) transmission level
related subsystems. The presence of a defect in one subS)As-t in is detected when the wheel d axl hort-circuit
tem not only modifies its own inspection data but also the inZ} F&!n IS détected when (€ Whee's and axies short-circul
e track, which induces the loss of the track circuit signal

spection data pertaining to other subsystems. The aim of t ) . o
diagnosis is to identify and localize defects appearance o e drop of the received signal below a threshold indicates
at the section is occupied.

subsystems on the basis of a specific inspection signal-anal
sis. The model involved here assumes that the observed varj- . .

ables extracted from the signal have been generated fromEJa2 Diagnosis purpose and Methodology

linear mixing of the latent variables linked to the subsgste The different parts of the track circuit are subject to many
defects. Under hypothesis that the latent variables are-mutconstraints (mechanical, electrical, atmospheric.a} thay

ally independent and nongaussian the Independent Complead to a defective behavior of the system. In the most ex-
nent Analysis (ICA) model is well suited to the problem [7]. treme cases, significant attenuation of the transmittethsig
We also investigate the possibility of making the unknowncan occur, which may induce signalling problems (the sec-
mixing matrix as sparse as possible. Indeed, detecting zetmn can be considered as occupied even if it is not). To avoid
entries can reduce the model complexity and thus provide such inconvenience and inform maintainers about failures,
more reliable estimation of the parameters. It can also makan inspection car equipped with a sensor on the first axle is
the structure of the generative model more interpretaliles T used to pick up the carrier current level of the short circuit

trimming capacitors connected between the two rails at
constant spacing to compensate the inductive behavior of
the track. An electrical tuning is then performed to limit
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Figure 1: Track circuit representation and inspection aign
without defect and with a defectivd'&apacitor. Figure 2: Generative graphical model

current (lcc, see Figure 1). This signal is recorded at eaches,( )t stands for the matrix transpose operator Avid

position of the train while the track is shunted by the inspecy matrix with a sparse structure that transcribes the $patia
tion train itself. In this paper, we focus on defects thatetff gependencies of the model.

trimming capacitors. Figure 1 shows examples of denoise Considering the previous problem as a blind source sep-

inspection signals along a 2000m track circuit. One of them, .- problem, the ICA model can be used to estimate
corresponds to an absence of defect, while the others cqfje mixing matrixA and thereby to recover the latent com-
_respond to a defe_ctwe”Qcapacn_or. The diagnosis system ponents (sourcesk, Cy, ...,cy from the observed variables
is aimed at detecting the operating mode of the track circuijjone. Moreover, ICA with a sparse mixing matrix can also
by analyzing the measurement signal (Icc) which is closelye considered to take account of prior information on the
linked to electrical trimming capacitor characteristics. mixing process. In this way, the connections between the
_ The proposed method is based on the following observaspserved and recovered variables can be closely linkegto th
tions: physical behavior of the system.
e the inspection signal has a specific structure, which is a
succession of local arches that can be approximated by 3 |NDEPENDENT COMPONENT ANALYSIS
guadratic polynomials
e the trimming capacitors have a spatial relationship be3.1 Independent Component Analysis principle
tween them, i.e. the presence of a defect in a trimmingry,
capacitor only affects the signal between the defect ang,

the receiver leaving the signal upstream unchanged (s€ge nongaussian and mutually independent [7]. The prob-
Figure 1) S _ lem consists of estimating both the mixing matrix and the re-
In the proposed method, the track circuit is considered aglizations of the latent variables from the obseved vagisbl
a global systenz made up of a series dfl subsystems alone. Note that, we assume here that the number of latent
Sy,..., Sy that correspond to thi trimming capacitors. A variables is equal to the number of the observed variables.
defect on one subsyste is represented by a continuous The estimation of the model can be done by maximizing the

value of the capacitance parameter A generative model |og-likelihood, which thanks to the independance assumnpti
can be built where the latent variablgesfor i = 1..N are the  takes the following form [7, p. 204]:

capacitances of trimming capacitors and the observed vari-

ablesd; for i = 1..N are extracted by approximating each T N

arch of the inspection signal (lcc) by a quadratic polyndmia . (A) = —T log(|detA|) + Zlog pil(A )il (2)

aix? + Bix+ V. Because of the continuity between arches, K=1i=

each observed variabli is only described by two coeffi- _ _
cients of the local polynomid3;, yi) and the whole measure- whereT denotes the number of samples gnds the density
ment signal is thus described by a total ™ 2oefficients.  Of sourcei. The estimation of the mixing matrik can be
This kind of model is useful because its structure can takdone thanks to gradient ascent algorithms [2]. The natural
advantage of the prior knowledge on the spatial relatignshigradient is well suited to this problem [1]. In this case, the

e classic version of the ICA model can be expressed as
equation (1) with the assumption that the latent variable

between subsystems. update rule foA takes the following form:
Assuming a linear relationship between observed and la-
tent variables (Figure 2), the generative model could be de- AA OAE{g(e)c}-1) 3)
scribed by:
d=Ac (1) whereE stands for empirical expectatioh,is the iflentity
whered = (dy, dy, ...,dn)! is the vector of observed variables, matrix, cis the current estimate of the sourc/c1e§ A~'dand
¢ = (c1,Cp,...,cn)! is the vector of independent latent vari- Y(c) = (Y1(ca), .., Pn(cn))!t with gi(c) = —%.
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The densitieg; can be adapted online to extract beth

pergaussiarand subgaussiarsources. In our experiments, Table 1: Expression of the penalty functidhs

this was done by using the functign(c;) = —2tanh(c;) for Pendlty | PA (@)
supergaussiasources and the functiah (¢;) =tanh(c) — ¢ L1 Alal

for subgaussiasources. The choice between the two func- L, Aal?

tions, is made by computing the nonpolynomial moment: Al la <A,
E{—tanh(ci)ci + (1 —tanh(c)<)}. If this nonpolynomial SCAD —(a®—2aAlal+A?) A <lal < aA
moment is positive the source is supposed tslygergaus- e [2(a —1)] <la=an,

sian otherwise it is supposed to Isebgaussiafi7, p. 205- (a+1)A2%/2 laj >aA.

210].

3.2 ICA with sparse mixing matrix The corresponding natural gradient learning ruleXds ob-
3.2.1 Constraints on the mixing matrix tained as:

In many real-world applications, the structure of the peofl AApen O A (E{l.U (c)d—1— At[P/)\ (aij )]) 9)
supplies a prior knowledge on the mixing process that can be

interesting to introduce in the model estimation. The naxin ) . . th .
matrix can be constrained to a specific form in order to také"/here[P,\ (aij)] denotes the matrix whosg j)™ element is
account of this kind of prior. In our application, as there isP, (ajj).

no influence between a trimming capacitor operating mode

and inspection data related to subsytems located upstream, 4, RESULTS

some elements of the mixing matrix can be constrained to bﬂa h f fthe diff i h
null. In this case, the estimation problem of the ICA model 0 assess e periormance ot the different approachs, we use

has to be reformulated in order to take account of conditiona‘a simulated database where the information about sources

independencies of some sources given some observed va ﬁ‘ittenft IQI/a_rlalgles)bls a;v?rl]lable;. We ci:torr\5|denr§d ‘3 t:atc)k cw-f
ables. It is shown in [3] that making this kind of hypothesisCtit Of N = 19 subsystems (or capacitors) and a database o
constraints the form of the mixing matrix to be as: 2500 noisy signals with different values of the capacitance

of each capacitor. 1000 signals were used for the training
di lLcjeaj;=0 (4) phase while the 1500 others were reserved for the test phase.
) ) At the end, the aim was to recovhrlatent variables from
whered; L cj means that the latent varialedoesn’tinflu- 2N observed ones (2 coefficients per signal arch). To con-
ence the observed variatie o serve the specific spatial structure of the mixing procéss, t
The maximization of the log-likelihood under these con-dimensionality reduction on the observation matrix using a
straints is done by COﬂSldemng Only the gradlent of the nonprincipa| Component ana|ysis was kept out. We chose to ex-
zero coefficients. The initialization and the natural geml tract N latent variables and to keep tNemost Strong|y cor-

update rule oA become then: related with the variables of interest, tNeothers being con-
0 _ ) sidered as noise. The right order of the estimated variébles
AT =M. A ()  deduced according to the obtained correlations.

ty The experiments were designed to illustrate the efficiency
Ao U M.A(E{l,u(c)c} I) . . ©) of the ICA method to achieve the diagnosis task and also

where . stands for the entrywise product aktlis a binary  to quantify the influence of introducing sparsity in the mix-
matrix with elements: ing process. Basic and sparse ICA models using natural
0 if d I c gradient-based algorithm were thus performed on the obser-

L | ] . . . .

myj —{ 1 else (7)  vation matrix. For the penalized model, the penalties de-

scribed in Table 1 were use8CADparameters was chosen
as suggested in [4]). The results of the different settingsew

] ) ) _ guantified through the correlation between the true sources
In [8], sparse priors are introduced in the basic model to pecapacitances) and their estimates calculated on thedgst s
nalize mixing matrix with a large number of significantly and by checking the mixing matrix structure.

non-zero parameters. Sparsity can also be achieved by-apply Figure 3 shows the results of the algorithm using the tra-
ing certain penalty functions to the mixing parameters as igjitional ICA model and the penalized one with penalty
linear regression problems [9][10]. Different functioriely:  (for aA = 4). Obviously, the correlations between the esti-
ally expressed aB) (a) can be used as penalties, wh&%e  mated sources and the true capacitances (after permytation
is a penalty function and the degree to which the penalty are stronger in the penalized case. As expected, the estimat
influences the solution. The following table (Table 1) giveSmixing matrix shown seems to be block lower triangular,
the expression of three penalty functions used in the expefwhich validates the spatial relationship between the syste
iments: thel,, theL, and the Smoothly Clipped Absolute variables. One can observe that the mixing structure is more
Deviation SCAD penalties [4]. _ . legible when applying penalty in the ICA model.

The sparse mixing matrix is then simply derived from ~ However, a more accurate quantification of the benefits of
the log-likelihood together with the penalty as the objexti penalized ICA needs a suitable choice of the regularization
function [4]: parametei . Different computations on the test set accord-

N ing to a variable\ = 0...25 were then achieved for the differ-
(L (A) - P, (aj) (8) entpenalties. Note that the case- 0 illustrates the perfor-
i1 mances of the traditional ICA model (without any penalty).

3.2.2 Penalized mixing matrix
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tion with respect to one elemerd;(;7) of A expected to be

null thanks to prior information. Figure 4(c) shows the mean

estimate of the entrgy 17 of A for eachA value over 30 runs

of the algorithm. According to all previous observations, w

can see that from a certah value, the last three methods
.  perform better than traditional ICA and provide a more sta-
.«  ble estimate.
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Figure 3: Absolute value of the correlations between esti « °f
mated latent variables and true capacitances compute@¢ont **
test set using the traditional ICA model (a) and the pendlize
model (b), and absolute value of the estimated mixing matri;
computed on the test set using the traditional ICA model (c, ’ ’ © Lambda B ®
and the penalized model (d). (c)

As shown in Figure 4(a), the values of the mean correlatiofrigure 4: Mean correlation between the true capacitances
between the estimated and the true sources increases whiifl the estimated ones over 30 runs at diffefenalues (a).
the regularization paramet@rincreases. The decreasing is Mean sparsity measure as function of the regularization pa-
expected for too large values afbecause the data is then rameterA over 30 runs (b). The estimate of the endfy17
neglected and only the penalized term is taken into accounfor differentA. The error bars denotes the standard deviation
A suitable value ofA should be chosen equal to 8 fog  Of the results over 30 runs (c).
penalty, 10 for SCAD penalty, while tHe penalty seems to
be more effecient than the others for a loweralue @ = 4). A representation of the penalization impact for an appro-
We also used a measure of sparsity to evaluate the consisriate choice of the penalty function and theralue is sum-
tency of the structure obtained on the estimated mixing mamerized in Table 2. The correlations;(;) between each
trix knowing the structure implied by the prior knowledge. real source and its estimate are computed from the tradition
This sparsity measure is proposed in [6] to quantify the s6CA model, the ICA with constraints on the mixing matrix
called energy contained into the components of a vector. Wend the penalized ICALg penalty withA = 4). For each
adapted this measure to the mixing matrix in order to evalusource, the mean of the absolute value of the correlations

ate its sparsity: over 30 runs is given in the table. Taking into account that
only the correlations higher than®are meaningful, the ba-
VNX2N - (5 |aj]) / zaiZj sic ICA allows us to recover 10 capacitances while, the ICA
sparsityA) = (10)  with constraints allows us to recover 13 capacitances and th
VNx2N -1 penalized ICA 15 capacitances. Clearly, the sparse ICA mod-

els improve efficiently the estimation of the sources that ar

inal ¢ and tak | f it ot detected by the traditional ICA model. The model with
a singie non-zero component, and lakes a value ol zero | enalty provides better results than the others which doaild
components are equal (up to signs). In the ICA with mixing

constraints, half of the mixing matrix elements are zero angxplalned by the fact that the part of the mixing matrix con-

This measure is equal to one if and onlyAiftcontains only

. ; . idered as noise is also penalized and thus less influerees th

the mean sparsity measure estimated on 30 runs is equal iQimation of the model
0.5. For the penalized ICA, Figure 4(b) displays the spar- '
sity measure as a function of the regularization parameter 5. CONCLUSION
In this case, the sparsity increases with the valud .ofA '
suitable choice of the parameteiis thus given by the mean We have investigated in this paper the possibility of using
correlation between estimated and real sources rather th&@A model for a railway infrastructure component diagnosis
the sparsity. The proposed approach aims at recovering the latent vari-

We also compared the results of penalized ICA estimaables linked to the defects from their linear observed mix-
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tures that correspond to the features extracted from the in-  the mixing matrix in independent component analysis.
spection signal. The ICA without and with sparse connec- Neurocomputingd9:151-162, 2001.

tions have been tested on a database for which the source®] R. Tibshirani. Regression shrinkage and selection via
are known. The obtained results show the effectiveness of * the |asso. Journal of the Royal statistical Society
the approach to be used in a diagnosis objective. Introducin 58:267—288, 1996.

sparsity seems to be more efficient to establish the mixin : :
matrix structure and thus the data connections. It also pr(ﬁlo] I%EZXEng and L.S((Z)hag.?lcz%\évéth sparse connections. In
vides a better coherence between the estimated sources and » Pages 530-537, :

the model characteristics.

Table 2: The 19 mean correlations between the real sources
and their estimates computed on the test set over 30 runs,
with the traditional ICA, the ICA with mixing constraintsdn

the penalized ICA for a penalty, andA = 4 (<> stands for

the average).

Sources [ 1 2 3 4 5
A 0.63 061 072 059 0.73
<ol >cr 074 064 067 061 0.77
<Ireal>,,4 | 073 064 068 063 074
Sources | 6 7 8 9 10
A 0.72 071 0.78 0.72 0.72
<[rec| >ct 0.71 076 071 077 0.75
<|fea| >, | 073 071 076 077 0.74
Sources [ 11 12 13 14 15
I 0.68 068 0.7/5 065 0.75
<[re.gl>ct 076 077 073 075 0.80
<Ireal>,,4 | 077 079 075 079 0.80
Sources [ 16 17 18 19 <>
A 0.74 036 0.39 0.20 064
<recl >ct 0.74 069 056 0.32 0.71
<[fe.c|>L, 54 | 085 081 074 031 0.72
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