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ABSTRACT 
The fixed-complexity sphere decoder (FSD) has been previ-
ously proposed for multiple input-multiple output (MIMO) 
detection to overcome the two main drawbacks of the origi-
nal sphere decoder (SD), namely the variable complexity 
and sequential structure. However, one issue for the FSD is 
that many redundant computations are introduced resulting 
in high power consumption, which will become more evident 
when many antennas are involved and/or higher-order con-
stellations are utilised. In this paper, a statistical threshold 
based scheme (ST-FSD) is proposed in order to speedup the 
algorithm by eliminating its unnecessary search paths. The 
optimum threshold of the proposed scheme has been derived 
through analysis of the statistical distributions of the correct 
and erroneous estimate. Further, a tight lower bound on the 
threshold has been obtained by using the singular value 
decomposition (SVD) method and applied to the FSD. From 
simulation results, the proposed scheme is shown to be able 
to achieve a significant reduction in computational complex-
ity with almost no performance degradation compared to the 
original FSD algorithm. 

1. INTRODUCTION 

During the last decade, multiple-input multiple-output 
(MIMO) technology has become one of the most popular 
approaches to meet the demands for high data rate commu-
nication. Various MIMO detectors based on different per-
spectives and methodologies have been proposed in the lit-
erature. The sphere detector (SD) [1-2] is an important, 
computationally efficient implementation of the maximum 
likelihood (ML) detector. However, the SD still has an ex-
ponential expected complexity regardless of the signal-to-
noise ratio (SNR) for high numbers of antennas and large 
constellation sizes [3]. Therefore, a so-called fixed-
complexity sphere decoder (FSD) has been proposed re-
cently in [4-6], which combines a novel channel matrix pre-
processing with a search through a fixed subset of the com-
plete receive constellation. The FSD shows only a very 
small bit error ratio (BER) degradation compared to the 
original SD. Nevertheless, one drawback of the FSD is that 
many redundant computations are introduced resulting in 
high power consumption. This will become more evident 
when many antennas are involved and/or higher-order con-
stellations are utilised. 

In order to solve the above problem, the main idea in 
this work is to design a threshold scheme which is able to 

measure the “goodness” of estimates from different search 
paths traversed by the FSD and thus discard the unnecessary 
search paths that do not seem to lead to the final solution. 
Unlike other pruning approaches reported in literature [7], 
our work focuses on the FSD instead of the conventional SD 
or ML because the FSD is much more efficient from an im-
plementation viewpoint than the alternatives in terms of 
achievable throughput [6]. Moreover, since the derived 
threshold only depends on the channel matrix, the need for 
tuning many parameters, often encountered in previous prun-
ing approaches, is thus eliminated. This makes the algorithm 
very advantageous for practical implementation in real sce-
narios.  

The remainder of the paper is organised as follows. Sec-
tion 2 describes the system model and Section 3 briefly re-
views the conventional SD and FSD algorithms. Details of 
the proposed statistical threshold based scheme are described 
in Section 4. Computer simulation results are presented in 
Section 5. Finally, Section 6 concludes the paper.  

2. SYSTEM DESCRIPTION 

Consider an MIMO system with NT transmit antennas and NR 
receive antennas (NR ≥ NT) signalling through flat fading 
channels as shown in Figure 1.  
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Figure 1 – A linear MIMO channel with NT inputs and NR outputs. 
 

The input-output relationship of this system is given by 
wHsr +=    (1) 

where the transmitted vector can be denoted as 
T

NT
ss ],,[ 1=s and the superscript T)(⋅  stands for the 

transpose, Δ∈is  where Δ  is a digital constellation alpha-

bet with size P, T
NR

rr ],,[ 1=r  denotes the received 

vector and T
NR

ww ],,[ 1=w  is a vector of independent 
zero-mean complex Gaussian noise samples with variance 
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2σ per real or imaginary component. For simplicity, it is 
assumed that NR= NT=N, thus the subscripts of transmit and 
receive antennas are omitted in the sequel. However, the al-
gorithm can be applied for any choice of NT and NR, subject 
to NR≥ NT. Also, we assume that the channel matrix H is con-
stant over a block of consecutive time instants and the detec-
tor has perfect knowledge about of the entries of H.  

3. SPHERE DECODER AND FIXED-
COMPLEXITY SPHERE DECODER 

The conventional SD approach to the problem of obtaining 
the estimate, ŝ , is to find a candidate that minimises the 
squared Euclidean distance (ED) metric within a hyper-
sphere of radius D2 around the received signal, which can be 
mathematically represented by  

22
SD ˆmin argˆ

ΔΦˆ
D≤−=

⊂∈
sHrs

s
 (2) 

where 2 stands for the Euclidean norm and Φ  refers to 

some subset of Δ  defined by the radius constraint. 
After structuring the channel using the QR decomposi-

tion, i.e. H=QR, where Q is an orthogonal matrix and R is 
an upper triangular matrix, the sphere constraint in Eq. (2) 
can be rewritten as 

22ˆ D≤− sRy   (3) 

where y=QHr and the superscript H)(⋅  stands for the Her-
mitian transpose. Due to the triangular structure of R, the 
solution of Eq. (3) can be obtained recursively starting from 
the top layer k=1 to the bottom layer k=N. 

It is known that the computational complexity of SD al-
gorithm increases significantly as the number of antennas 
increases or when the SNR is low. Therefore, the FSD is pro-
posed to overcome the disadvantages of SD by searching 
over only a fixed number of lattice points sHˆ  around the 
received signal r, independent of the noise level. Actually, the 
FSD is based on the observation of the fact [5] that the di-
agonal entries of R satisfy 

][][][ 2
11

2
11

2 rErErE NNNN <<< −−  (4) 
Consequently, the number of candidates at layer k which 

denoted as kn should satisfy 

][][][ 21 NnEnEnE ≥≥≥   (5) 
Therefore, the main idea of FSD is to assign a fixed but 

distinct number of candidates to be searched per layer inde-
pendent of the initial radius. It is found that in order to 
achieve asymptotical ML performance and the same diversity 
performance as the ML detector, the distribution of candi-
dates ( sn ) searched by FSD should follow [4] 

 
1for          , 1

1for         ,

⎩
⎨
⎧

+=
=

=
, N, Lk

, L, kP
nk  (6) 

where P is the constellation size and L is minimum number 
of layers whose candidates’ distribution should be set as P. 

As an example, L=1 is found by [4] for an N=4 MIMO sys-
tem. 

4. PROPOSED STATISTICAL THRESHOLD 
APPROACH 

The basic motivation for the proposed statistical threshold 
based FSD (ST-FSD) scheme is the fact that all the search 
paths of FSD have different probabilities of finding the final 
solution and the total number of those paths can be prede-
termined. Hence, instead of performing a search over all of 
these paths blindly in parallel as in the FSD, the proposed 
ST-FSD treats all the FSD search paths as its potential can-
didates but searches them in sequence. The main hypothesis 
here is that when applying a suitable threshold test (whose 
threshold value is denoted as Tth) to judge the “goodness” of 
ED metrics found by different paths, it would hopefully 
eliminate unnecessary searches and obtain a complexity 
advantage over the FSD algorithm. This reduction could be 
exploited to increase the number of received signal vectors r 
that can be processed per second or to reduce the power 
consumption of the FSD hardware circuit. We will show 
later that with high probability only a small fraction of FSD 
search paths are typically needed, especially when SNR is 
high enough, thus the proposed ST-FSD is able to offer a 
desirable performance-complexity trade-off. 

Clearly, for the proposed scheme, it is vital to guarantee 
that the algorithm is able to find the candidate solutions that 
lie close to the final solution as early as possible and thus 
expedite the tree search. This can be achieved by adopting a 
Schnorr-Euchner (SE) enumeration strategy [8], where the 
child nodes of a parent node are generated in ascending order 
of their ED metrics and thus the path with the highest prob-
ability of finding the best solution can be searched first. Also, 
an optimum threshold value Tth must be selected in order to 
achieve a good trade-off between performance and complex-
ity. In following subsections, we will discuss how to deter-
mine the optimum threshold by analysing the statistical prop-
erties of the ED metrics of the estimates. 
4.1 Optimum Statistical Threshold 
In statistics, there are two hypotheses about the estimate ŝ  
consisting of the null hypothesis 0Η ( ss =ˆ ) and the alter-

native hypothesis 1Η  ( ss ≠ˆ ), which represent the correct 
and wrong estimates, respectively. Thus we denote the nor-
malized ED metric as  

  2

2ˆ
σ

ρ
sHr −

=  (7) 

Consequently, under the above two hypotheses, Eq. (7) 
can be formulated as  
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Therefore, in case of the null hypothesis, ρ  is the sum of 
2N squared zero mean Gaussian distributions, hence is a 
scaled central chi-square distribution (CSD) random vari-
able with 2N degrees of freedom and mean 2N, denoted 
as 2

2Nχ . The probability density function (PDF) of ρ  is 
given by 
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In case of the alternative hypothesis, ρ  is the sum of 
2N squared non-zero mean Gaussian distributions, thus is a 
non-central chi square distribution (Non-CSD) random vari-
able with 2N degrees of freedom and mean γN +2 , de-

noted as 2
,2 γNχ , where γ  is the non-central parameter and 

is defined as  

  22)ˆ( σγ ssH −=  (10) 
The PDF of ρ  is given by 
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To this end, for every estimate ŝ , we present the fol-
lowing threshold check criterion  

⎩
⎨
⎧

>
≤

estimate   wrong theis  ˆ   assumethen  

estimatecorrect    theis  ˆ   assumethen  

  , 
, 

s

s

th
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Tρif
Tρif  

 (12) 

Based on statistical signal detection theory in Chapter 3 
of [9], we have a lemma as follows. 
Lemma: For a particular error pattern with a specific non-
central chi square distribution ( γ ), the intersection point of 

the PDF curves of 2
2Nχ  and 2

 ,2 γNχ  , is the optimum thresh-

old thT . 
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Figure 2 – PDF curves of chi square distribution (CSD) and non-
central chi square distribution (Non-CSD) with N=4. 

The PDF curves of 2
2Nχ  and 2

 ,2 γNχ  with N=4 are 
shown in Figure 2. It can be seen that the intersection points 
of 2

2Nχ  and 2
 ,2 γNχ  follow a linear function of N and γ , 

denoted as ),( γNJ , which can be obtained by the function 
approximation method as follows 
  NγαγNJ 2),( +∗=  (13) 
where α  is the coefficient depending on the system parame-
ter N. As an example, for a system with N=4, it is found that 

3465.0≈α . Based on the above lemma and monotoni-
cally increasing property of the ),( γNJ , we have follow-
ing corollary. 
Corollary: For a given system with various error patterns, 
the intersection point of the PDF 2

2Nχ  and 2
 ,2 minγNχ  , i.e. 

),( minγNJ , is the optimum threshold Tth, where minγ is 
the minimum value of γ . 

However, we noticed that the calculation of minγ  is 
very complicated because it needs to consider every possible 
error pattern in Eq. (10). Therefore, in the next subsection, 
we will derive a lower bound on the threshold by approxi-
mating the value of minγ  using the singular value decompo-
sition (SVD) method, which is then used as the threshold 
value Tth for hypothesis test in Eq. (12). 
4.2 Lower Bound on the Threshold 
From [10], the SVD technique decomposes the channel ma-
trix H into the following factored form 

HVΛUH   =    (14) 
where U and V are unitary matrices, and Λ is the diagonal 
matrix of singular values of H as follows 

⎥
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where Nλλλ ≥≥≥ 21 . Note that the smallest singular 

value is Nλλ =min .  
From matrix algebra, it is known that for any vector x 

22
min

2 xHx λ≥    (16) 
Therefore, based on the Eq. (10) and Eq. (16), the lower 

bound of minγ  can be calculated as  

22
min

2
min

222
min

22
min

ˆ       

))ˆ(min(

σλσλ

σγ

d≥−≥

−=

ss

ssH
 (17) 

where 
22

min )(min jiji
ssd −=

≠
 is the minimum squared 

distance of two constellation points. Thus, given a specific 
modulation scheme and channel matrix, the lower bound of 

minγ  is calculated from Eq. (17) and the approximate inter-
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section point ),( minγNJ  is computed from Eq. (13) that 
then is used as the practical threshold Tth, which is clearly 
adaptive to the channel conditions. 

5. SIMULATION RESULTS AND DISCUSSIONS  

Figure 3 shows the BER performance of the SD, FSD and 
ST-FSD decoders using uncoded 4-QAM, 16-QAM and 64-
QAM modulation for a 44×  system. The distribution of 
candidates adopted by the FSD is }1 ,1 ,1 ,{Ps =n , where 
P=4, 16, 64, respectively, , which has been proven to 
achieve quasi-ML performance [5]. As expected, the FSD 
shows very small BER degradation compared to the original 
SD and the proposed ST-FSD scheme has almost same per-
formance as the FSD for all considered modulation types. 
However, there is a considerable reduction in computational 
complexity for the ST-FSD compared with its FSD counter-
part, which is clearly shown in Figure 4. The relative com-
putational complexity is defined as the average number of 
nodes visited by the ST-FSD divided by that of the FSD. We 
can observe that the proposed scheme saves at least 42%, 
60%, and 68% computational load of the FSD for 4-QAM, 
16-QAM and 64-QAM, respectively. The computational 
complexity gain of the proposed scheme is also quite robust 
to SNR variations. Also, the complexity reduction of higher-
order modulation, e.g., 64-QAM, is bigger than that of lower 
order ones, e.g., 4-QAM, which makes the ST-FSD scheme 
even more helpful for realising high data rates over MIMO 
systems. 

0 2 4 6 8 10 12 14 16 18 20 22
10-6

10-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0 in dB

B
E

R

N=4

SD
FSD(P,1,1,1)
ST-FSD

64-QAM

16-QAM

4-QAM

 
Figure 3 – BER performance of the SD, FSD and ST-FSD as a func-
tion of the Eb/N0 in a 44×  MIMO system. 
 
As an example, details of the number of paths chosen by ST-
FSD for 16-QAM modulation are shown in Figure 5. For 
each Eb/N0, there are P+1 bar columns which represent the 
number of paths traversed by the ST-FSD in ascending order. 
Specifically, for the first P columns, the thp  column de-
notes the percentage of time that ST-FSD traversed p paths in 
total and the estimates from the first to the th)1( −p  paths 
cannot satisfy the predesigned threshold, while the thp  path 
is able to meet the threshold check and the ST-FSD termi-

nates the tree search after that. The P+1 column (unshaded 
column) denotes the likelihood that the ST-FSD traverses all 
P paths and none of those results satisfied the threshold 
check criterion. Then the ST-FSD chooses the path which 
gives the minimum ED metric as its final solution, which is 
obviously the same as the FSD. For instance, from Figure 5 it 
can be seen that at Eb/N0=20dB, the ST-FSD finishes the 
search after traversing the first path (the minimum SE path) 
79% of the time while about 15% of the final results need 
full a 16 path search. This clearly shows that the original 
FSD algorithm processes many unnecessary paths and results 
in more redundant computation. It is evident that the ST-FSD 
is more efficient than the FSD due to the fact that ST-FSD 
usually completes after searching a reduced number of paths. 
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Figure 4 – Computational complexity of ST-FSD relative to FSD in 
a 44×  MIMO system. 
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Figure 5 – Percentage of running different paths for the ST-FSD 
scheme in a 44×  MIMO system with 16-QAM modulation.  
 
Figure 6 shows the effect of SE path ordering on the pro-
posed ST-FSD scheme in the case of 16QAM modulation. 
When switching off the SE ordering, the complexity gain 
deteriorates considerably and the largest complexity reduc-
tion shrinks from 60% to around 33%. It has thus been 
shown that it is favourable to combine our threshold strategy 
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with the ordering scheme in order to expedite the algorithm 
tree search and achieve more complexity reduction. 
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Figure 6 – The effect of the path ordering scheme on the complexity 
gain in 16-QAM with N=4. 
 

In order to investigate the effects of varying the thresh-
old on the BER and complexity performance, we deliber-
ately changed the operating threshold by multiplying the 
threshold by a positive coefficient θ , which is chosen as 
0.25, 0.5, 1, 2, and 4, respectively. As shown in Figure 7 and 
8, when θ  reduces below 1, the BER shows marginally 
enhanced performance while the computational complexity 
increases considerably. On the other hand, when θ  in-
creases above 1, the BER deteriorates significantly although 
the computational complexity decreases notably. Clearly, the 
proposed threshold offers a desirable trade-off between per-
formance and complexity. 
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Figure 7 – The effects of varying the threshold on BER performance 
in 16-QAM with N=4. 
 

6. CONCLUSIONS 

In this paper, a novel statistical threshold assisted FSD algo-
rithm was proposed. The conventional FSD has been restruc-
tured by employing the proposed threshold criterion as well 
as the SE path ordering, and it turns out that a good choice of 
the threshold results in an important reduction in the com-

plexity while maintaining almost the same BER performance 
as the original FSD. Also of importance is the fact that the 
proposed scheme is effective at both low and high SNR re-
gions and more efficient for high-order constellations, mak-
ing it particularly desirable for realising high data rates over 
MIMO systems. Future work will include the analysis of the 
ST-FSD in larger MIMO systems and a real-time hardware 
implementation of this algorithm. 
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Figure 8 – The effects of varying the threshold on computational 
complexity in 16-QAM with N=4.  
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