
PARALLEL MARKOV CHAIN MONTE CARLO COMPUTATION FOR
VARYING-DIMENSION SIGNAL ANALYSIS

Jing Ye1, Andrew Wallace1 and John Thompson2

Edinburgh Joint Research Institute in Signal and Image Processing
1 Heriot-Watt University, UK{jy68, A.M.Wallace}@hw.ac.uk

2 University of Edinburgh, UKJohn.Thompson@ed.ac.uk

Abstract. Parallel implementation of Markov Chain
Monte Carlo (MCMC) algorithms for Bayesian inference has
been effective but is usually restricted to the case where the
dimension of the parameter vector is fixed. We propose an
efficient parallel solution for the varying-dimension problem
by constructing multiple within-model MCMC chains and
then combining the separate results to analyze the posterior
distribution of dimensionality. We aim for parallel speed-up
by reducing the length of the burn-in period and the indi-
vidual chains in comparison with a serial, reversible jump
MCMC (RJMCMC) algorithm. The parallel methodology is
illustrated with application to a benchmarking, change point
problem.

1. INTRODUCTION

Recently, parallel computing has received impetus due to the
increasing availability of cheap computing power and net-
working. The great potential is to split a task into sub-tasks,
which are then distributed onto multiple processors and exe-
cuted concurrently. Consequently, both the computation time
and memory space requirement on individual machines are
reduced, offering the possibility to cope with previously in-
tractable calculations in a number of application areas. Com-
plex statistical model analysis becomes attractive, and inpar-
ticular, we are concerned with parallel MCMC implementa-
tion in the context of Bayesian inference.

This presents challenges in implementation and statisti-
cal analysis. For example, a principal factor affecting par-
allel performance is inter-processor communication. When
increasing the number of processors, the speed may slow
down dramatically due to additional communications over-
head. Therefore, it is crucial to design algorithms with a
relatively low message passing frequency and coarsegranu-
larity [1]. MCMC is serial by nature and does not easily mi-
grate onto a parallel system; a particular concern is whether
a parallel implementation produces the invariant distribution
of interest. Moreover, since MCMC estimation is based on
trajectory averaging, another significant task is to reducethe
correlation among random number streams on separated pro-
cessors that can arise by assigning identical random number
seeds to each machine [1]. Since the serial MCMC sampler
is the prototype of parallel MCMC, its statistical properties
such as the burn-in period and mixing performance could fi-
nally determine the selection of a parallel strategy and the

potential for speed-up.
The objective of parallel MCMC is to make use of

the conditional independence structure of underlying mod-
els combined with parallel computing strategies and MCMC
properties. Current algorithms can be classified into two
main categories: one is parallelization of a single chain,
and the other is parallel generation for multiple different
chains. Although some of these methods have shown con-
vincing parallel performance, most of them are restricted
to the case where the dimensionality of the parameter vec-
tor is fixed. The development of parallel methodologies for
varying-dimension signals remains comparatively neglected.

We address parallel computation for Bayesian model se-
lection with respect to the above considerations. The de-
signed method takes advantage of the faster convergence rate
present in within-model chains than in a trans-model chain.
Speed-up is therefore achieved by running shorter MCMC
chains in parallel rather than a serial RJMCMC chain. In
Section 2, we introduce MCMC and RJMCMC algorithms
associated with corresponding diagnostic methods. In Sec-
tion 3, our proposed solution for the varying-dimensionprob-
lem is presented. Section 4 presents the results from a spe-
cific benchmarking example, and in Section 5, we summarise
our results and suggest future work.

2. MCMC AND RJMCMC ALGORITHMS

2.1 MCMC and Convergence Assessment

The objective of Bayesian inference is to estimate the pos-
terior distribution of a parameter setθ based on the prior
knowledge of the statistical model and observationY using
Bayes’s formula as:

p(θ |Y ) =
p(Y |θ )p(θ )

p(Y )
(1)

wherep(θ ) is the prior distribution onθ and p(Y |θ ) is the
likelihood function.

The basic idea of MCMC analysis is to construct a
Markov chain whose limiting distribution is the invariant dis-
tribution π of interest, and then estimate the characteristics
of π using sample path averages. In the context of Bayesian
inference,π is p(θ |Y ). Whenθ is of fixed dimension, the
Metropolis-Hastings algorithm is used as follows:

1. Initialize the Markov chain withθ0 and sett = 0.
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2. For t = 1 to the maximum number of iterations, repeat
(a) to (d) :

(a) Propose a new sampleθ ′ from q(·|θt).
(b) Calculate the acceptance probabilityα(θt ,θ ′).
(c) Draw a random variableu from a uniform distribution

U(0,1).
(d) If u < α(θt ,θ ′), accept the proposed state and set

θt+1 = θ ′. Otherwise remain in the current state and
setθt+1 = θt

The proposal probabilityq(·|θt) can be in any form, but
may affect the Markov chain mixing performance and con-
vergence rate. The expression of the acceptance probability
for Bayesian inference is,

α(θt ,θ ′) = min{1,
p(θ ′|Y )q(θt |θ ′)

p(θt |Y )q(θ ′|θt)
} (2)

If the chain is constructed properly, ast goes to infinity,
the generated sequence{θ j}, j = 1,2, ... should converge to
the target distributionπ . However, in practice, we can only
produce a finite number of samples, and it is therefore impor-
tant to choose the chain length appropriately and assess the
convergence of the Markov chain to the stationary distribu-
tion.

The convergence diagnostic presented in [2, 3] compares
the samples drawn from several independent sequences with
different starting points and quantitatively evaluates the mix-
ing by analyzing the within-sequence and between-sequence
variance. The idea is that as the number of samples increases,
each individual chain will explore larger parts of the parame-
ter space, and consequently, the overall variance and within-
sequence variance will both converge to the true model vari-
ance. Assume that we simulateI > 2 independent sequences
initialized with over dispersed starting points, each of length
2T and discard the firstT samples treated as theburn-in pe-
riod. For any scalar functionx(θ ), we label thetth obser-
vation in chaini as xt

i and calculate the between-sequence
varianceB:

B =
T

I−1

I

∑
i=1

(x·i − x··)
2 (3)

where

x·i =
1
T

2T

∑
t=T+1

xt
i, andx·· =

1
I

I

∑
i=1

x·i (4)

The within-sequence varianceW is estimated by:

W =
1
I

I

∑
i=1

s2
i (5)

where

s2
i =

1
T −1

2T

∑
t=T+1

(xt
i − x·i)

2 (6)

The variance ofx in the target distribution,V is estimated by:

V̂ =
T −1

T
W +(1+

1
I
)

B
T

(7)

The convergence of the Markov chain is monitored by the
estimatedpotential scale reduction factor (PSRF),

√
R̂ =

√
V̂
W

(8)

As T → ∞, the total variance estimation̂V should de-
crease while the within-sequence varianceW might increase,
and finally PSRF should theoretically decline to 1. IfR̂ is
large, it indicates the posterior distribution should be further
explored. Once PSRF close to 1, we assume the Markov
chain convergences to the target distribution.

2.2 RJMCMC and Convergence Assessment

In the MCMC approach, the dimension of the parameter
space is fixed. However, in many cases, the dimensional-
ity is unknown and hence the joint posteriorp(k,θk|Y ) of the
model indicatork and the parameter vector of modelk forms
the objective of inference. The RJMCMC algorithm pro-
posed by [4] is an effective solution to this Bayesian model
determination problem. RJMCMC is an extension of the
Metropolis-Hastings algorithm that allows jumps between
models with different dimensions in addition to within-
model parameter updates. By satisfying thedimension-
matching requirement, the relationship between the current
and proposal states is defined and the corresponding accep-
tance probability is derived. Still following the Metropolis-
Hastings steps withp(k,θk|Y ) as the target distribution, a sin-
gle serial Markov chain is constructed which explores both
the within-model state space and between-model mixing.

Convergence assessment for RJMCMC becomes much
more difficult as some models may be seldom visited and
hence a convergence diagnostic for these models is almost
impossible to estimate. To circumvent this, [5] extended the
work of [2] by splitting the variance not only between se-
quences but also between models. Letx be the scalar sum-
mary of the parameters of interest. Suppose the total num-
ber of samples of modelm in chain i is K(i,m), and xk

im
stands for thekth observation of modelm in chain i with
i = 1, ..., I,m = 1, ...M andk = 1, ...,K(i,m). The total vari-
ance ofx is estimated by

V̂ =
1

IT −1

I

∑
i=1

T

∑
t=1

M

∑
m=1

(xk
im − x···)

2 (9)

wherex··· is the total average for all the samples drawn inI
chains. Ifx·i· is the sample average in chaini, the within-
model variance is defined as:

Wc =
1
I

I

∑
i=1

M

∑
m=1

K(i,m)

∑
k=1

(xk
im − x·i·)

2

∑M
m=1 K(i,m)−1

(10)

Then, the variance is split between and within models.
The between-model varianceBm, between-model within-
chain varianceBmWc; within-model varianceWm and within-
model within-chain varianceWmWc are:

Bm =
∑M

m=1 (x··m − x···)
2

M−1
(11)
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BmWc =
∑I

i=1 ∑M
m=1 (x·im − x·i·)

2

I(M−1)
(12)

Wm =
1
M

I

∑
i=1

M

∑
m=1

K(i,m)

∑
k=1

(xk
im − x··m)2

∑I
i=1 K(i,m)−1

(13)

WmWc =
1

IM

I

∑
i=1

M

∑
m=1

∑K(i,m)
k=1 (xk

im − x·im)2

K(i,m)−1
(14)

From these six statistics, three ratios are created, between
V̂ andWc, Wm andWmWc; Bm and BmWc respectively. As
the RJMCMC chain is much more complex than the MCMC
counterpart, all of the original six parameters are monitored
to gain insight into the chain mixing rather than just eval-
uate how close these three ratios are to 1. The conclusion
obtained in [5] is that althougĥV andWc have stabilized, the
other four statistics may show dramatic sudden changes in
value and differ significantly from one when one chain visits
a rather improbable model. This phenomenon indicates that
even though some chains have already approach the steady
states, they may have not visited some models. From this
point of view, more iterations may be required to further en-
hance the between-model mixing.

3. PARALLEL MCMC FOR VARYING-DIMENSION
PROBLEMS

The considerable merit of RJMCMC for across-model simu-
lation is that the joint posterior inference for(k,θk) can be
obtained directly from a single serial chain. However, to
obtain adequate mixing within and between models, a suf-
ficiently long run is required, as discussed above. Our ba-
sic premise is that parallel within-model MCMC chains mix
better and converge faster than serial RJMCMC chains, and
offer coarse grain parallelism that conforms well to the de-
sirable characteristics of parallel SIMD programming. We
would expect the within-model chains to have a shorter burn-
in period and chain length as each chain only needs to explore
one particular parameter subspace and poor mixing between
models is also circumvented. Therefore, each within-model
MCMC chain proceeds in parallel, with target distribution
p(θk|k,Y ), and the results from separate chains are combined
to construct the posterior inference fork. The within-model
posterior densityp(θk|k,Y ) is defined by the parallel MCMC
runs, and Bayesian model selection is computed by pairwise
comparisons,

p(k1|Y )

p(k2|Y )
=

p(k1)

p(k2)

p(Y |k1)

p(Y |k2)
(15)

where the first ratio on the right-hand side is of prior prob-
abilities, and the second ratio is theBayes factor for model
k1 andk2 [6]. To estimate the posterior model probability
p(k|Y ), we require themarginal likelihood of modelk

p(Y |k) =

∫
p(θk,Y |k)dθk (16)

As p(k|Y ) is the normalizing factor of the posterior den-
sity, we can expressp(Y |k) as:

p(Y |k) =
p(θk,Y |k)
p(θk|Y,k)

=
p(Y |k,θk)p(θk|k)

p(θk|Y,k)
(17)

Equation 17 holds for any fixed parameter point ofθk, say
θ ∗

k , and now the target becomes the estimation ofp(θ ∗
k |Y,k)

from MCMC runs since we can easily obtain the conditional
prior densityp(θ ∗

k |k) and the likelihood valuep(Y |k,θ ∗
k ).

According to [7, 8], although we can choose anyθk, pa-
rameter points with high density are likely to provide more
accurate estimation ofp(θ ∗

k |Y,k). Considering the output of
parallel MCMC runs, theθ ∗

k corresponding to the posterior
mode or maximum likelihood estimate can be selected.

In [7, 8], thep(θ ∗
k |Y,k) estimate is a sample average us-

ing either the Gibb’s sampler or Metropolis-Hastings algo-
rithm. Although these are valid in general, the computa-
tion time can grow as the number of mixture components
increases since extra MCMC chains are constructed for the
marginal posterior estimation. Our alternative method is that
when there have been sufficient samples in each parameter
subspace as the chains converge to the stationary distribu-
tion, we can directly estimate the posterior densityp(θk|Y,k)
using kernel density estimation techniques.

To summarise, parallel generation of multiple within-
model chains has the following advantages. Since the sepa-
rate MCMC chains are independent, inter-communication is
not required and time is not spent in message passing among
processors except for initialization and between model selec-
tion. Even if computer failures appear, other processors can
proceed without interruption; each sequence is still serial,
and therefore the desired limiting distribution can be guaran-
teed. Proper parallelization methods for MCMC chains can
also be applied to further speed up single chain generation.

4. EXPERIMENTAL RESULTS

Our motivation for RJMCMC analysis has been the inter-
pretation of LiDAR data for 3D imaging. We have already
shown [9] that RJMCMC methods can lead to dramatically
improved measurement accuracy, resolution, and sensitivity,
but at the cost of much greater complexity. In this paper, we
use the coal mining disaster data in [4] as an exemplar, fre-
quently used for multiple change-point problems (see Figure
1). Our goal here is to analyze the joint posterior density for
2k +1 parameters containing change-point positions and the
Poisson rate in modelk, with k the number of change points.
This allows us to compare our results with other published
work on this established benchmark, but also has similari-
ties with the more complex problem of LiDAR analysis [9]
in that the final data can be considered as a multiplicity of
distinct returns (change points or optical reflections).

We use the RJMCMC sampler of [4] and restrict the max-
imum number of change points to be 6 for comparison with
[6], since the rangek = 1, ...,6 covers most of the posterior
probability. To compare the convergence diagnostics and
parameter estimations between within-model chains and a
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Figure 1: Coal mining disaster data, year 1851-1962: dates
of disasters, cumulative counting process (solid curve) and
posterior mode of Poisson rate fork = 2 (dotted curve)

trans-model chain, the proposal distributions we choose for
MCMC samplers are the same as for the RJMCMC chain but
prohibit between-model jumps.

4.1 Convergence assessment

In the context of the coal mining disaster problem, the
specific target of the RJMCMC sampler is to achieve the
Bayesian analysis of bothk and the corresponding 2k+1 pa-
rameters. We aim to carry out the convergence assessment
on each individual parameter rather than their scalar sum-
mary, in which case the convergence diagnostics defined in
[5] are not satisfactory. To compare the convergence of RJM-
CMC and MCMC chains, we refer to the RJMCMC simula-
tion results in [6]. These indicate that the chain has safely
converged at 1,000,000 iterations and that 200,000 samples
provide very similar posterior density estimation results.

To assess the convergence for MCMC chains, we gener-
ate four separate sequences for each model, and analyze the
diagnostic statistics defined in [2] every 100 iterations after
the burn-in period (500 samples). The chain length is set
to be 15,000 and Figure 2 presents two examples of PSRF
values for parameter sets in modelk = 2 andk = 6. The pa-
rameter solution fork = 2 is also shown in Figure 1. Here,
the convergence of a MCMC chain means that the PSRF’s
for all the parameters reduce to less than 1.2.

It is found that fork = 1, ...,6, within-model chains con-
verge at 350, 5400, 10300, 9900, 9500 and 14400 separately,
which means 15000 is a safe length. The reason that the
chains with higher dimension might converge slower than
lower dimensional chains is that only one single parameter is
updated in each iteration and therefore to provide sufficient
samples for each dimension, more iterations are required.
Unfortunately, this goes against the load balancing require-
ment for parallel implementation efficiency. This problem
could be overcome by updating one set of parameters instead
of one parameter in one iteration, or modifying the proposal
distribution to improve the acceptance rate to achieve better
mixing performance and in turn shorten the chain length as
well as the convergence length differences.
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Figure 2: Diagnostic plots of̂R for 2k + 1 parameters in the
within-model MCMC sequences (k = 2 andk = 6) for the
coal mining disaster data. Dotted curve is the convergence
threshold with PSRF= 1.2

Figure 3: Timing results for within-model MCMC chains
and trans-model RJMCMC chains measured in seconds

4.2 Simulation efficiency

To evaluate the parallel improvement, we set the number of
iterations for within-model chains to be 15,000 to achieve
more accurate estimation of the posterior densityp(θk|Y,k),
which is in turn used for the Bayes factor calculation, and
the length of RJMCMC chain to be 200,000. The timing re-
sults are shown in Figure 3. Using 6 processors in a Beowulf
network [10] including 32 Intel Pentium 4 3GHz processors
with distributed memories, the speed-up of the longest pro-
cess(k = 3) is 13.04. Although this appears super-linear, the
computations are not exactly equivalent. First the processse-
rial chain performs 2.22 more iterations in total. This would
reduce the speed-up to a more plausible 5.87. Moreover, the
algorithms are not equivalent, since we cannot predict how
much time the serial chain spends in each parameter dimen-
sion, so any comparison can only be approximate and may
vary from run to run. Nevertheless, there is near-linear par-
allel advantage due to the coarse grain parallelism.
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Figure 4: p(k|Y ) obtained from RJMCMC histogram, nu-
merical calculation using RJMCMC samples and numerical
calculation using MCMC samples

4.3 Posterior distribution of model indicator

Figure 4 compares the results ofp(k|Y ) obtained from the
RJMCMC chain and parallel within-model MCMC chains.
First, for the RJMCMC chain, we construct a histogram for
k using the direct sampling results. This can be compared to
the results presented in [4] and [6] which differ and do in fact
come from different numbers of iterations. We then com-
pare the histogram to the results computed from the Bayes
factor using the RJMCMC chain by selecting samples be-
longing to different models, i.e. using the same set of sam-
ples. The differences between thep(k|Y ) estimates result
from the approximation of the marginal posterior densities
p(θk|Y,k) in each model. When we apply the Gaussian ker-
nel smoother to the histogram ofθk, bias is introduced in
the p(θk|Y,k) approximation, and therefore there is bias in
p(θ ∗

k |Y,k) for a chosenθ ∗
k . This in turn gives a biased es-

timation of p(Y |k) using Equation 17 and finally the biased
p(k|Y ) obtained from Equation 15. We also compare the re-
sults ofp(k|Y ) using samples from the RJMCMC and multi-
ple MCMC chains. Since they are analyzed in the same way,
the results illustrate the differences of within-model sam-
ples from within-model and trans-model chains. The point
is that in RJMCMC chains, because of the between model
jumps, samples belonging to one particular subspace could
be treated as the connection of separate sub-chains. In con-
trast, MCMC chains provide the continuously serial samples
in each model.

5. CONCLUSIONS AND FUTURE WORK

We have implemented a method for parallel MCMC chains
of different fixed dimension, and compared the results to the
prototypical serial RJMCMC chain which allows dimension-
changing moves. Comparing the convergence diagnostics of

trans-model and within-model chains, the parallel, multiple
within-model chains method improves simulation efficiency
because the MCMC chains converge faster than the RJM-
CMC chains. In a parallel MCMC implementation, propos-
als are made, accepted or rejected within a fixed dimension,
but in serial RJMCMC, the sample space for a givenk is
explored using steps between different dimensions, which
means that the exploration path must be quite different. This
warrants further investigation. There is also a differencein
the dimensional prediction of the serial RJMCMC and par-
allel MCMC methods, whether the number of iterations in
each dimension or the Bayes factor is used respectively, and
this two must be addressed in determining the correct distri-
bution for k. This particular parallel strategy is simple and
has obvious benefits, as no communication is necessary dur-
ing chain generation. In this context, there are many further
improvements that could be made, notably in load balancing
between chains for differingk since the number of parameter
estimations are different in each chain, or in parallelising the
individual chains using other methods.
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