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Abstract. Parallel implementation of Markov Chain potential for speed-up.
Monte Carlo (MCMC) algorithms for Bayesianinference has  The objective of parallel MCMC is to make use of
been effective but is usually restricted to the case whege ththe conditional independence structure of underlying mod-
dimension of the parameter vector is fixed. We propose asls combined with parallel computing strategies and MCMC
efficient parallel solution for the varying-dimension pledn  properties. Current algorithms can be classified into two
by constructing multiple within-model MCMC chains and main categories: one is parallelization of a single chain,
then combining the separate results to analyze the posteriand the other is parallel generation for multiple different
distribution of dimensionality. We aim for parallel spegp- chains. Although some of these methods have shown con-
by reducing the length of the burn-in period and the indi-vincing parallel performance, most of them are restricted
vidual chains in comparison with a serial, reversible jumpto the case where the dimensionality of the parameter vec-
MCMC (RIMCMC) algorithm. The parallel methodology is tor is fixed. The development of parallel methodologies for
illustrated with application to a benchmarking, changenpoi varying-dimension signals remains comparatively neglict
problem. We address parallel computation for Bayesian model se-
lection with respect to the above considerations. The de-
1. INTRODUCTION signed method takes advantage of the faster convergeece rat
present in within-model chains than in a trans-model chain.
Recently, parallel computing has received impetus duedto thSpeed-up is therefore achieved by running shorter MCMC
increasing availability of cheap computing power and netchains in parallel rather than a serial RIMCMC chain. In
working. The great potential is to split a task into sub-gask Section 2, we introduce MCMC and RIMCMC algorithms
which are then distributed onto multiple processors and exeassociated with corresponding diagnostic methods. In Sec-
cuted concurrently. Consequently, both the computatioati  tion 3, our proposed solution for the varying-dimensiortpro
and memory space requirement on individual machines anem is presented. Section 4 presents the results from a spe-
reduced, offering the possibility to cope with previously i  cific benchmarking example, and in Section 5, we summarise
tractable calculations in a number of application areasnCo our results and suggest future work.
plex statistical model analysis becomes attractive, apain
ticular, we are concerned with parallel MCMC implementa- 2. MCMC AND RIMCMC ALGORITHMS
tion in the context of Bayesian inference.
This presents challenges in implementation and statist?-1 MCMC and Convergence Assessment
cal analysis. For example, a principal factor affecting-parThe objective of Bayesian inference is to estimate the pos-
allel performance is inter-processor communication. Whererior distribution of a parameter sét based on the prior
increasing the number of processors, the speed may sloowledge of the statistical model and observationsing
down dramatically due to additional communications overBayes’s formula as:
head. Therefore, it is crucial to design algorithms with a
relatively low message passing frequency and coguaeu- p(Y|6)p(6)
larity [1]. MCMC is serial by nature and does not easily mi- p(Y)
grate onto a parallel system; a particular concern is whethe ) ) o )
a parallel implementation produces the invariant distitou  Wherep(6) is the prior distribution or6 andp(Y|6) is the
of interest. Moreover, since MCMC estimation is based orlik€lihood function. o
trajectory averaging, another significant task is to redbee The basic idea of MCMC analysis is to construct a
correlation among random number streams on separated pMark_ov chalnlwhose limiting dlstnbgtlon is the |nvar|an$<_j _
cessors that can arise by assigning identical random numblfoution 7t of interest, and then estimate the characteristics
seeds to each machine [1]. Since the serial MCMC sampl&tf 7T using sample path averages. In the context of Bayesian
is the prototype of parallel MCMC, its statistical propesti inference,is p(6[Y). When@ is of fixed dimension, the
such as the burn-in period and mixing performance could fiMetropolis-Hastings algorithm is used as follows:
nally determine the selection of a parallel strategy and thel. Initialize the Markov chain witl®y and set = 0.

p(olY) = (1)
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2. Fort =1 to the maximum number of iterations, repeatThe convergence of the Markov chain is monitored by the

(@)to(d): estimatecpotential scale reduction factor (PSRF),
(a) Propose a new sam#¥éfromq(-| ). Py
(b) Calculate the acceptance probabilitio;, 6'). VR= \/ v (8)
(c) Draw arandom variablefrom a uniform distribution W
U(0,1). As T — o, the total variance estimatioi should de-

!/
(d) Ifu< a,(etve ), accept the proposed state and sef, o6 while the within-sequence variaiiéenight increase,
&1 = 0'. Otherwise remain in the current state and,, g finally PSRF should theoretically decline to 1.Rifs
seth1 =& large, it indicates the posterior distribution should beter

The proposal probability(-|6) can be in any form, but explored. Once PSRF close to 1, we assume the Markov
may affect the Markov chain mixing performance and conchain convergences to the target distribution.
vergence rate. The expression of the acceptance prolabilit

for Bayesian inference is, 2.2 RIJMCMC and Convergence Assessment
. p(6'[Y)q(66") In the MCMC approach, the dimension of the parameter
a(é,o') =min{1, } (2)  space is fixed. However, in many cases, the dimensional-

/
P(&Y)a(o'l) ity is unknown and hence the joint posterjulk, 6¢|Y) of the

If the chain is constructed properly, igoes to infinity, ~model indicatok and the parameter vector of modgbrms
the generated sequent@;}, j = 1,2, ... should converge to the objective of inference. The RIMCMC algorithm pro-
the target distributiont. However, in practice, we can only posed by [4] is an effective solution to this Bayesian model
produce a finite number of samples, and it is therefore impordetermination problem. RIJMCMC is an extension of the
tant to choose the chain length appropriately and assess tMgtropolis-Hastings algorithm that allows jumps between
convergence of the Markov chain to the stationary distribumodels with different dimensions in addition to within-
tion. model parameter updates. By satisfying tfienension-

The convergence diagnostic presented in [2, 3] compare®atching requirement, the relationship between the current
the samples drawn from several independent sequences whd proposal states is defined and the corresponding accep-
different starting points and quantitatively evaluatesitiix- ~ tance probability is derived. Still following the Metrop®f
ing by analyzing the within-sequence and between-sequent#astings steps witp(k, 6|Y) as the target distribution, a sin-
variance. The idea is that as the number of samples increas@e serial Markov chain is constructed which explores both
each individual chain will explore larger parts of the paeam the within-model state space and between-model mixing.
ter space, and consequently, the overall variance andnwithi ~ Convergence assessment for RIMCMC becomes much
sequence variance will both converge to the true model varimore difficult as some models may be seldom visited and
ance. Assume that we simuldte- 2 independent sequences hence a convergence diagnostic for these models is almost
initialized with over dispersed starting points, each ofgjign  impossible to estimate. To circumvent this, [5] extendesl th
2T and discard the firSE samples treated as tharn-inpe-  work of [2] by splitting the variance not only between se-
riod. For any scalar functior(8), we label thetth obser- quences but also between models. kdéte the scalar sum-
vation in chaini asx and calculate the between-sequencemary of the parameters of interest. Suppose the total num-
varianceB: ber of samples of modeh in chaini is K(i,m), andxX,
stands for thek" observation of modein in chaini with

T & i=1,..,I,m=1..Mandk=1,..K(i,m). The total vari-
B= -1 i;(xi —X) () ance oixis estimated by
where R 1 1L I M .
_ o1l vz—IT_l_ZZZ(xrm—x._)z 9)
X=x Z X, andx = I—_in (4) iS1E1me1
o = *1. . . = wherex . is the total average for all the samples drawn in
The within-sequence varian@¢ is estimated by: chains. Ifx is the sample average in chainthe within-
L model variance is defined as:
= — K -, .
W=, 2 § () W 1 : % (Iz'm)M(Xikm;xi-)2 (10)
I i;m:l k=1 Zmle(lam)_l
where . . . o
1 — Then, the variance is split between and within models.
512: T-1 (X} -X) (6) The between-model variand®n, between-model within-
t=T+1 chain varianc®,\W;; within-model varianc&\, and within-
The variance ok in the target distributiorV is estimated by: model within-chain varianc&{W; are:
. T-1 1B M (Xm—X.)?
V=—-"W+(1+>)= 7 Bn="-——"—"" 11
T W (147 ) m i) (11)
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B e — Zle ZMnrbl (X{m—Xi'.)2 (12) As p(K|Y) is the normalizing factor of the posterior den-

I(M—1) sity, we can express(Y k) as:
i, : YK p(Y[k, 6 p(6k|K)
1L MK ) prv[l = PO _ a7
Wi = — —m (13) p(6[Y,k JEAAN
K Mi;n;l kZ:L SioiK(i,m) —1 (Gdv.k) (Bdv.k)
_ Equation 17 holds for any fixed parameter point&pf say
1 LM gREM ke )2 6y, and now the target becomes the estimatiop(@|Y, k)
W = =2 i;ﬁgl kflK(hmn)q_ 1'm (14)  from MCMC runs since we can easily obtain the conditional

prior densityp(6; |k) and the likelihood valu@(Y |k, 6;).

From these six statistics, three ratios are created, batwee According to [7, 8], although we can choose &y pa-
v andWe, Wi andWipWe; Bm and Bm\We respectively. As —rameter points with high density are likely to provide more
the RIMCMC chain is much more complex than the MCMcaccurate estimation qf(6;|Y,k). Considering the output of
counterpart, all of the original six parameters are moeiior Parallel MCMC runs, thej; corresponding to the posterior
to gain |ns|ght into the chain mixing rather than just eva|-m0de or maximum likelihood estimate can be selected.
uate how close these three ratios are to 1. The conclusion N [7, 8], the p(6(|Y,k) estimate is a sample average us-
obtained in [5] is that althought andW have stabilized, the ing either the Gibb’s sampler or Metropolis-Hastings algo-
other four statistics may show dramatic sudden changes fithm. Although these are valid in general, the computa-
value and differ significantly from one when one chain visitstion time can grow as the number of mixture components
a rather improbable model. This phenomenon indicates thaficreases since extra MCMC chains are constructed for the
even though some chains have a|ready approach the Sted@@rginal pOSterior estimation. Our alternative methotha t
states, they may have not visited some models. From thighen there have been sufficient samples in each parameter
point of view, more iterations may be required to further en-subspace as the chains converge to the stationary distribu-

hance the between-model mixing. tion, we can directly estimate the posterior dengitg|Y, k)
using kernel density estimation techniques.
3 PARALLEL MCMC EOR VARYING-DIMENSION To summarise, parallel generation of mul_tiple within-
PROBLEMS model chains has the following advantages. Since the sepa-

rate MCMC chains are independent, inter-communication is
The considerable merit of RIMCMC for across-model simuhot required and time is not spent in message passing among
lation is that the joint posterior inference f¢k, 6¢) can be processors except for initialization and between modelsel
obtained directly from a single serial chain. However, totion. Even if computer failures appear, other processans ca
obtain adequate mixing within and between models, a suferoceed without interruption; each sequence is still eria
ficiently long run is required, as discussed above. Our baand therefore the desired limiting distribution can be guar
sic premise is that parallel within-model MCMC chains mix teed. Proper parallelization methods for MCMC chains can
better and converge faster than serial RIMCMC chains, aralso be applied to further speed up single chain generation.
offer coarse grain parallelism that conforms well to the de-
sirable characteristics of parallel SIMD programming. We 4. EXPERIMENTAL RESULTS
would expect the within-model chains to have a shorter burno
in period and chain length as each chain only needs to explo
one particular parameter subspace and poor mixing betwe
models is also circumvented. Therefore, each within-mod
MCMC chain proceeds in parallel, with target distribution bu
p(6k|k,Y), and the results from separate chains are combinegl
to construct the posterior inference for The within-model
posterior densityp(6|k,Y) is defined by the parallel MCMC
runs, and Bayesian model selection is computed by pairwi

ur motivation for RIMCMC analysis has been the inter-
etation of LIDAR data for 3D imaging. We have already
Rown [9] that RIMCMC methods can lead to dramatically
proved measurement accuracy, resolution, and semgitivi
t at the cost of much greater complexity. In this paper, we
e the coal mining disaster data in [4] as an exemplar, fre-
quently used for multiple change-point problems (see Egur
1). Our goal here is to analyze the joint posterior density fo
SSk+1 parameters containing change-point positions and the

comparisons, Poisson rate in modé&l with k the number of change points.
This allows us to compare our results with other published
p(I|:1|Y) = D(::l) p(Y|I|:1) (15) work on this established benchmark, but also has similari-

plkelY)  plke) p(Ylkz) ties with the more complex problem of LIiDAR analysis [9]

where the first ratio on the right-hand side is of prior prob-in that the final data can be considered as a multiplicity of

abilities, and the second ratio is tBayes factor for model d|st\|/r\1/<ét r:;utw:égﬁggﬂecp;?;s gr%F?t[f]a;\;%szcstgggtS})ﬁe max-
ki andky [6]. To estimate the posterior model probability . u P ' X

. i L imum number of change points to be 6 for comparison with
p(k]Y), we require thenarginal likelihood of modelk [6], since the rang& = 1,...,6 covers most of the posterior

- probability. To compare the convergence diagnostics and
p(Y[k) = / P(6k, Y [K)d6k (16)  parameter estimations between within-model chains and a
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Figure 1: Coal mining disaster data, year 1851-1962: dates
of disasters, cumulative counting process (solid curve)) an 100
posterior mode of Poisson rate for= 2 (dotted curve) 80
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trans-model chain, the proposal distributions we choose fo 40
MCMC samplers are the same as for the RIMCMC chain but 20
prohibit between-model jumps. )
% 100 150
4.1 Convergence assessment Convergence test times (k=6)

In the context of the coal mining disaster problem, the R

specific target of the RIMCMC sampler is to achieve thdrigure 2: Diagnostic plots dR for 2k+ 1 parameters in the
Bayesian analysis of bothand the corresponding2-1 pa-  within-model MCMC sequencek & 2 andk = 6) for the
rameters. We aim to carry out the convergence assessmarttal mining disaster data. Dotted curve is the convergence
on each individual parameter rather than their scalar sunthreshold with PSRE 1.2

mary, in which case the convergence diagnostics defined in

[5] are not satisfactory. To compare the convergence of RIM- | pvemc | k=1 | k=2 | k=3 | k=4 | k=5 | =6
CMC and MCMC chains, we refer to the RIMCMC simula-
tion results in [6]. These indicate that the chain has safely
converged at 1,000,000 iterations and that 200,000 samples
provide very similar posterior density estimation results

To assess the convergence for MCMC chains, we geneF.igure 3: Timing results for within-model MCMC chains
ate four separate sequences for each model, and analyze g&d trans-model RIMCMC chains measured in seconds
diagnostic statistics defined in [2] every 100 iteratiortetaf
the burn-in period (500 samples). The chain length is set
to be 15,000 and Figure 2 presents two examples of PSRE5  simulation efficiency
values for parameter sets in modtet 2 andk = 6. The pa-
rameter solution fok = 2 is also shown in Figure 1. Here, To evaluate the parallel improvement, we set the number of
the convergence of a MCMC chain means that the PSRF&erations for within-model chains to be 15,000 to achieve
for all the parameters reduce to less than 1.2. more accurate estimation of the posterior denpitgk|Y, k),

It is found that fork = 1, ...,6, within-model chains con- which is in turn used for the Bayes factor calculation, and
verge at 350, 5400, 10300, 9900, 9500 and 14400 separatetlie length of RIMCMC chain to be 200,000. The timing re-
which means 15000 is a safe length. The reason that thmults are shown in Figure 3. Using 6 processors in a Beowulf
chains with higher dimension might converge slower thametwork [10] including 32 Intel Pentium 4 3GHz processors
lower dimensional chains is that only one single parameter iwith distributed memories, the speed-up of the longest pro-
updated in each iteration and therefore to provide sufficiencess(k = 3) is 13.04. Although this appears super-linear, the
samples for each dimension, more iterations are requiredomputations are not exactly equivalent. First the prosess
Unfortunately, this goes against the load balancing requir rial chain performs 2.22 more iterations in total. This wbul
ment for parallel implementation efficiency. This problemreduce the speed-up to a more plausible 5.87. Moreover, the
could be overcome by updating one set of parameters insteatfjorithms are not equivalent, since we cannot predict how
of one parameter in one iteration, or modifying the proposainuch time the serial chain spends in each parameter dimen-
distribution to improve the acceptance rate to achievesbett sion, so any comparison can only be approximate and may
mixing performance and in turn shorten the chain length agary from run to run. Nevertheless, there is near-linear par
well as the convergence length differences. allel advantage due to the coarse grain parallelism.

6.7758 | 6.8051 | 6.9262 | 6.7864 | 6.8514 | 6.7584
RIMCMC 90.3120
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trans-model and within-model chains, the parallel, midtip
within-model chains method improves simulation efficiency

I hist f k (RIMCMC .
09} n Dczci?;?:ji(kl(y) (MCMC)) 1 because the MCMC chains converge faster than the RIM-
o8l [ calculated P(K|Y) (RIMCMC) | CMC chains. In a parallel MCMC implementation, propos-

als are made, accepted or rejected within a fixed dimension,
but in serial RIMCMC, the sample space for a gikeis

06 1 explored using steps between different dimensions, which
S sl ] means that the exploration path must be quite differents Thi
& warrants further investigation. There is also a differeimce
the dimensional prediction of the serial RIMCMC and par-

03f 1 allel MCMC methods, whether the number of iterations in
ozl ] each dimension or the Bayes factor is used respectively, and

this two must be addressed in determining the correct distri

o1y I H I 1 | bution fork. This particular parallel strategy is simple and
0 1H . 3 : " has obvious benefits, as no communication is hecessary dur-

Number of change points ing chain generation. In this context, there are many furthe

improvements that could be made, notably in load balancing
Figure 4: p(k]Y) obtained from RIMCMC histogram, nu- between chains for differingsince the number of parameter

merical calculation using RIMCMC samples and numerica?St!mat'ons are d|ﬁgrent In each chain, or in parallefsine
calculation using MCMC samples individual chains using other methods.
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