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ABSTRACT
Reverberation can significantly reduce the intelligibility
and degrade naturalness of speech signals in hands-free
communications. One method to achieve dereverber-
ation is to perform identification and inverse filtering
of multichannel acoustic systems. In this approach, we
will show that the ‘energy’ of the components of a mul-
tichannel inverse filtering system play a key role in its
robustness to channel noise and system identification er-
rors, where the ‘energy’ of an MA filter is defined as the
sum of the squared coefficients of it. The energy of the
components of inverse filtering systems obtained from
multiple-input/output inverse theorem (MINT) is usu-
ally high, resulting in non-robust inverse filtering sys-
tems. In this paper, the characteristics of acoustic chan-
nels which give rise to high energy in the components of
inverse filtering systems are investigated. Specifically,
the features of channel zeros that cause the compo-
nents of inverse filtering systems to be of high energy
are shown.

1. INTRODUCTION

In hands-free communications, speech signals can be dis-
torted by room reverberation, resulting in reduced in-
telligibility to listeners. One method to achieve derever-
beration is to perform identification and inverse filtering
of multichannel acoustic systems. The methodology is
illustrated in Fig. 1. Consider a clean speech signal
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Figure 1: Illustration of identification and inverse filter-
ing of acoustic systems.

s(n) propagating through an M -channel acoustic sys-
tem, the channels of which are characterized by their
impulse responses hm = [hm(0) hm(1) · · · hm(L−1)]T ,
m = 1, · · · ,M , where {·}T denotes the transpose oper-
ation. Using the noisy reverberant speech signals

xm(n) = s(n) ∗ hm(n) + ηm(n), (1)

estimates of the room impulse responses (RIRs) hm

can be obtained with blind system identification tech-
niques such as in [1], [2], [3] and [4], where ∗ de-
notes linear convolution, and ηm(n) is the channel
noise of the mth channel. Then, with the estimates
ĥm = [ĥm(0) ĥm(1) · · · ĥm(L − 1)]T , an inverse fil-
tering system g = [gT

1 gT
2 . . . gT

M ]T , which is formed
by stacking column vectors of the components gm =
[gm(0) gm(1) . . . gm(Li − 1)]T , can be designed with
some chosen equalization algorithm. Then, by summing
up the outputs of gm with input xm(n), we expect a
good estimate, ŝ(n), of s(n) can be obtained.

In practice, system identification usually induces
some errors into the estimates due to the existence of
channel noise. The estimate of the mth channel can be
written as

ĥm = hm + em, (2)
where em = [em(0) em(1) · · · em(L−1)]T is the system
identification error vector of the mth channel.

Given the multichannel estimates ĥm, where M ≥
2, an inverse filtering system g can be obtained using
the multiple-input/output inverse theorem (MINT) [5]
in the case that ĥm do not share any common zeros [5].
This means a g can be obtained so that

M∑
m=1

ĥm(n) ∗ gm(n) = d(n− τ), (3)

where d(n) is the delta function and τ is a delay.
Using MINT, the inverse filtering system g can be

obtained by
g = H+d, (4)

where H = [H1 · · · HM ] is defined as the system matrix
formed by the convolution matrices Hm, {·}+ denotes
pseudo inverse, and

d = [0 . . . 0︸ ︷︷ ︸
τ

1 0 . . . 0]T (5)

is an (L+Li−1)×1 vector. Hm is an (L+Li−1)×Li

convolution matrix of hm

Hm =




hm(0) 0 · · · 0
hm(1) hm(0) · · · 0

...
. . . . . .

...

hm(L− 1) · · · ...
...

0 hm(L− 1)
. . .

...
...

...
. . .

...
0 . . . 0 hm(L− 1)




.
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The minimum length of the components gm should be
used to ensure such an inverse filtering system can be
obtained is Li = Lc, where Lc = d L−1

M−1e is the critical
length.

Using such an inverse filtering system g to filter the
observations xm(n), an estimate ŝ(n) can be obtained

ŝ(n) =
M∑

m=1

xm(n) ∗ gm(n)

=
M∑

m=1

(s(n) ∗ hm(n) + ηm(n)) ∗ gm(n)

=
M∑

m=1

(s(n) ∗ (ĥm(n)− em(n)) + ηm(n)) ∗ gm(n)

= s(n−τ)−
M∑

m=1

(s(n)∗em(n)− ηm(n))∗gm(n).(6)

In (6), the first term is the desired (delayed) original
speech signal, and the second term forms distortion to
the speech signal.

It has been shown in [6], [7], [8] and [9] that the dis-
tortion caused by system identification errors or chan-
nel noise is usually very strong, making the estimated
speech signal ŝ(n) unsatisfactory. It can be seen that, in
such situations, this inverse filtering system g obtained
from MINT is not robust to channel noise and system
identification errors. In [9], it is assumed that the RIRs
are exactly known and the robustness of g to channel
noise is considered. It is believed in [9] that reducing
the energy of gm is the key to make g more robust to
channel noise. The energy of gm is defined as

Egm
=

Li−1∑
n=0

g2
m(n), (7)

and the energy of g is defined as

Eg =
M∑

m=1

Egm . (8)

In fact, we can see in the second term of (6) that no
matter if only channel noise exists, or both channel noise
and system identification errors exist, Egm

play a key
role in the robustness of the inverse filtering system.

In this paper, we will investigate the characteristics
of the RIRs that make the inverse filtering system ob-
tained from MINT be of high energy. More specifically,
the features of the zeros of the RIRs that cause the in-
verse filtering systems to be of high energy will be de-
scribed. It has been shown in [9] that lengthening the
components gm and introducing delay can help to re-
duce the energy, so the effect of Li and τ in reducing
the high energy caused by the different features of the
zeros will also be studied.

The remainder of this paper is arranged as follows.
In Section 2, the features of zeros of acoustic channels
will be summarized. In Section 3, the relationship be-
tween the features of the channel zeros and the energy
of the inverse filtering system will be investigated. In
Section 4, we will draw some conclusions.
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Figure 2: An example showing the distribution of the
zeros of a typical RIR.

2. SUMMARY OF FEATURES OF
CHANNEL ZEROS

In this Section, we summarize the features of zeros of the
RIRs. For a typical RIR of thousands taps, the zeros of
it have the following features:
1. The angles θ of the zeros are approximately uni-

formly distributed on (−π, π] and the modulus r of
most of the zeros is close to 1 [10]. Our studies have
shown that the modulus r of most of the zeros lies
in (0.995, 1.002).

2. The modulus of a few zeros is evidently greater than
1. The modulus of such zeros can be r > 1.03.

3. Among multiple channels, near-common zeros usu-
ally exist.

Here we use the definition of [11] that a cluster of near-
common zeros is defined when M zeros from M different
RIRs are located in the same vicinity in the z-plane, the
vicinity being characterized by a small ‘tolerance’ δ.

In Figure 2 we give an example showing the distribu-
tion of the zeros of a RIR from the MARDY database
[12]. The length of this RIR is L = 2000. In Fig. 2,
the zeros, the angles of which are in [0, π], are shown;
complex conjugates of these zeros are not shown for ex-
plicitness. It can be seen in this figure that there are
two zeros of modulus greater than 1.05.

In Fig. 3, we give an example analysis of number
of clusters of near-common zeros against the tolerance δ
between two MARDY channels. The clusters are iden-
tified with the clustering algorithms described in [11].
It can be seen that since most of the zeros are close to
the unit circle, near-common zeros that are within the
vicinity of δ > 10−5 commonly exist.

In the next Section, the effect of the inter-channel
commonality δ and the modulus r on the energy of the
inverse filtering systems will be studied.

3. INTER-CHANNEL COMMONALITY OF
ZEROS AND ENERGY OF INVERSE

FILTERING SYSTEMS

In this Section, the relationship between the inter-
channel commonality of the zeros of RIRs and the energy
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Figure 3: An example showing the number of clusters
of near-common zeros against the tolerance δ.
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Figure 4: Zeros of the RIRs used to obtain the experi-
mental results of Fig. 5.

of the inverse filtering systems will be investigated ex-
perimentally. The RIRs used in the experiments are all
from MARDY database and are truncated to L = 128.
For the sake of comparison of the energy of the inverse
filtering systems in different cases, all the RIRs used are
normalized to be of unit energy.

3.1 Clusters of near-common zeros close to the
unit circle

The zeros of the two RIRs h1 and h2 used in this ex-
periment are shown in Fig. 4. Since these two RIRs are
truncated to L = 128, there is no cluster of zeros within
vicinity of δ of order 10−5 between these two channels.
The closest pair of zeros between these two channels is
of δ = 3.54 × 10−3 (Case 1). To study the effect of the
near-common zeros, we experiment by moving a zero of
h2 at the angle of θ = 0.6812π towards a zero of h1

at θ = 0.6823π and make these two zeros within the
vicinity of δ = 3 × 10−5 (Case 2). The modulus of this
pair of near-common zeros is r = 0.983. The frequency
responses of filters g1 and g2 obtained from (4) with
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Figure 5: The frequency responses of g1 and g2 for Case
1 and Case 2.

Li = Lc and τ = 0 are shown in Fig. 5. It can be seen
in Fig. 5 that, compared with Case 1, the frequency
responses of g1 and g2 have a strong peak at the nor-
malized frequencies around 0.68π in Case 2. In addition,
it is found that Eg1 and Eg2 in Case 2 are much higher
than that obtained with RIRs of Case 1. In Case 1,
Eg1 and Eg2 are 6.60 and 6.70 respectively; with near-
common zeros of δ = 3 × 10−5 in Case 2, Eg1 and Eg2

are as high as 814.53 and 698.54.
We also studied the effect of increasing Li and in-

troducing τ in reducing the high energy caused by near-
common zeros. The delay used is the best delay, i.e., the
delay with which (4) gives a g of the lowest Eg. All the
experiment data obtained in this paper is listed in Table
1. We can see in Case 2 that with delay, Eg1 and Eg2

have not been reduced, but with increasing the length
to be Li = 3Lc, Eg1 and Eg2 have been greatly reduced
to 5.34 and 5.81.

3.2 Zeros of large modulus

Now we study the effect of zeros of r > 1.03. The zeros
of the RIRs are shown in Fig. 6. The closest pair of zeros
between these two channels is of δ = 3.27×10−3. It can
be seen from Fig. 6 that at angles around 0.02π and
0.81π, both of the two channels have zeros of r > 1.03
(Case 3). The two zeros at angle 0.02π are in the vicinity
of δ = 6.86×10−3; the modulus of them is r = 1.045 and
r = 1.048. The zeros at angle 0.81π are of δ = 2.14 ×
10−2, the modulus of them is r = 1.053 and r = 1.032.
Compared with the near-common zeros of δ = 3× 10−5

in Case 2, the tolerance δ of these two clusters is much
larger. However, these clusters of zeros also cause g
to be of high energy. With Li = Lc and τ = 0, Eg1

and Eg2 are 899.40 and 1197.85. Experimenting with
Li = 3Lc, Eg1 and Eg2 are still as high as 477.86 and
839.26. It can be seen therefore that increasing Li does
not help significantly with respect to the zeros of large
modulus. On the other hand, controlling the delay has
very significant value. With Li = 3Lc and best delay,
Eg1 and Eg2 are reduced to 2.16 and 2.79, which are
substantially reduced.

The frequency responses of g1 and g2 with Li = 3Lc
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Figure 6: Zeros of the RIRs used to obtain the experi-
mental results of Fig. 7.
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Figure 7: The frequency responses of g1 and g2 for Case
3.

are shown in Fig. 7. It can be seen in Fig. 7 that
there are two peaks. One peak is at low frequencies
corresponding to the cluster of zeros at 0.02π and the
other is at frequencies around 0.81π corresponding to
the cluster at 0.81π. Controlling the delay is very helpful
in suppressing these peaks.

Compared with δ = 3× 10−5 and r = 0.983 in Case
2, we can see that with relatively larger δ = 6.86×10−3,
cluster of zeros of large modulus r = 1.045 can also cause
strong peaks in the frequency responses of gm.

In the next experiment, another example will be
given showing the effect of clusters of zeros of large mod-
ulus. The frequency responses of gm corresponding to
the RIRs of the zeros shown in Fig. 8 are shown in Fig.
9. The length of gm used to obtain the experimental re-
sults of Fig. 9 is Li = 3Lc. It can be seen in Fig. 8 that
at the angle of 0, h1 has a zero of r = 1.23 and h2 has
a zero of r = 1.27 (Case 4). The modulus r of these two
zeros is much larger than that of the clusters in Case 3.
The tolerance of these two zeros is δ = 4× 10−2. How-
ever, in the frequency responses in Fig. 9, we can see
that the peak at low frequencies corresponding to this
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Figure 8: Zeros of the RIRs used to obtain the experi-
mental results of Fig. 9.
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Figure 9: The frequency responses of g1 and g2 for Case
4.

cluster of zeros is weaker than the peak at low frequen-
cies in Case 3. This shows that, though the modulus of
these zeros is much larger than that in Case 3, since δ
is larger in this example, the resulting Egm is smaller.
This indicates that in the cases of zeros of large modu-
lus, compared with r, the inter-channel commonality δ
is more important in influencing the energy of inverse
filtering systems. This observation also agrees with the
fact that the peak around 0.81π in the frequency re-
sponses of g1 and g2 is weaker than the peak at low
frequencies in Case 3.

We can see from Table 1 that although increasing the
length Li and introducing delay τ can help to reduce
the energy caused by these special zeros, they cannot
eliminate the effect caused by them.

4. CONCLUSIONS

In this paper, the relationship between the inter-channel
commonality of zeros of multichannel acoustic systems
and the robustness of their inverse filtering systems to
channel noise and system identification errors is investi-
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Li
Eg1 Eg2

τ = 0 best τ τ = 0 best τ

Case 1 Lc 6.60 3.10 6.70 2.04
3Lc 5.20 0.56 5.71 0.53

Case 2 Lc 814.53 814.53 698.54 698.54
3Lc 5.34 1.32 5.81 1.42

Case 3 Lc 899.40 39.06 1197.85 51.12
3Lc 477.86 2.16 839.26 2.79

Case 4 Lc 216.38 3.84 201.36 5.24
3Lc 147.62 0.77 142.09 0.85

Table 1: Energy of the components of the inverse filter-
ing systems.

gated. Clusters of near-common zeros close to the unit
circle cause strong peaks in the frequency responses of
the components of the inverse filtering systems and make
the components be of high energy. The normalized fre-
quencies of these peaks correspond to the angles of these
clusters. Clusters of zeros of large modulus also cause
strong peaks in the frequency responses of the compo-
nents of the inverse filtering systems at corresponding
frequencies. To cause peaks of equivalent amplitude, the
inter-channel commonality of the zeros in the clusters of
larger modulus can be lower than the inter-channel com-
monality of the clusters of smaller modulus.

REFERENCES

[1] L. Tong and S. Perreau, “Multichannel blind iden-
tification: From subspace to maximum likelihood
methods,” Proc. IEEE, vol. 86, pp. 1951–1968,
1998.

[2] Y. Huang and J. Benesty, “Adaptive multi-channel
least mean square and Newton algorithms for blind
channel identification,” Signal Process., vol. 82, pp.
1127–1138, 2002.

[3] ——, “A class of frequency-domain adaptive ap-
proaches to blind multichannel identification,”

IEEE Trans. Signal Processing, vol. 51, pp. 11–24,
2003.

[4] S. Gannot and M. Moonen, “Subspace meth-
ods for multimicrophone speech dereverberation,”
EURASIP Journal on Applied Signal Processing,
vol. 2003, no. 11, pp. 1074–1090, 2003.

[5] M. Miyoshi and K. Kaneda, “Inverse filtering of
room acoustics,” IEEE Trans. Acoust., Speech, Sig-
nal Processing, vol. 36, pp. 145–152, 1988.

[6] P. A. Naylor and N. D. Gaubitch, “Speech dere-
verberation,” in Proc. Int. Workshop Acoust. Echo
Noise Control, 2005.

[7] N. D. Gaubitch and P. A. Naylor, “Equalization of
multichannel acoustic systems in oversampled sub-
bands,” to appear in IEEE Trans. Audio, Speech,
Language Processing, 2009.

[8] T. Hikichi, M. Delcroix, and M. Miyoshi, “Inverse
filtering for speech dereverberation less sensitive to
noise,” in Proc. Int. Workshop Acoust. Echo Noise
Control, 2006.

[9] ——, “Inverse filtering for speech dereverberation
less sensitive to noise and room transfer function
fluctuations,” EURASIP Journal on Advances in
Signal Processing, vol. 2007, 2007.

[10] X. Lin, N. D. Gaubitch, and P. A. Naylor, “Two-
stage blind identification of SIMO systems with
common zeros,” in Proc. European Signal Process-
ing Conf., 2006.

[11] A. W. H. Khong, X. Lin, and P. A. Naylor, “Algo-
rithms for identifying clusters of near-common ze-
ros in multichannel blind system identification and
equalization,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, 2008.

[12] J. Y. C. Wen, N. D. Gaubitch, E. A. P. Ha-
bets, T. Myatt, and P. A. Naylor, “Evalua-
tion of speech dereverberation algorithms using
the MARDY database,” in Proc. Int. Workshop
Acoust. Echo Noise Control, 2006.

198


