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ABSTRACT

In the field of blind source separation, formulation of closed-
form estimators constitutes an important framework. In
this work, we present an optimal composition of third- and
fourth-order cumulants leading to a closed-form ICA esti-
mator for a pair-wise blind source separation. We introduce a
free weight parameter in combining the cumulants and eval-
uated its optimal value such that the mean-square estimation
of Givens rotation is minimized. We have shown that the
optimal value of weight parameter depends on the statisti-
cal knowledge of the mixing signals and additive Gaussian
noise. Computer simulations have been performed to illus-
trate the behavior of the proposed optimized closed-form es-
timator for the maximization of the weighted contrast.

1. INTRODUCTION

1.1 Blind Source Separation: Problem

The problem of blind source separation (BSS) consists of re-
covering a set of unobserved signals, so-called sources, from
another set of observed signals which are mixtures of the
sources [1, 2]. The term “blind” signifies that (typically) very
few assumptions are made about the sources and the mix-
ing process. The problem of BSS arises in many signal pro-
cessing applications like communications, array processing,
speech analysis and speech recognition [2]. In all these in-
stances, the underlying assumption is that several linear mix-
tures of unknown, random, zero mean, and statistically in-
dependent signals, called sources, are observed; the problem
consists of recovering the original sources from their mix-
tures without a priori information of coefficients of the mix-
tures and knowledge of the sources. The principle involved
in the solution to this problem is called independent compo-
nent analysis (ICA), which can be viewed as an extension
of the widely known principal component analysis (PCA).
Nowadays, the independent component analysis (ICA) has
become an active field of research that has attracted great in-
terest because of its large number of applications in diverse
fields.

1.2 Closed-Form Solutions

In the fundamental real-valued two-source scenario, the
problem reduces to the identification of a single parameter,
the unknown angle characterizing the Givens-rotation mix-
ing matrix. A variety of closed-form methods for the es-
timation of this angle have been proposed in the literature

[3, 4, 5, 6, 7, 8, 9, 10, 11]. These estimators consist of sim-
ple formulas involving straightforward operations on certain
statistics of the whitened sensor output. Most of these share
the common feature of being based on the fourth-order statis-
tics of the whitened sensor output.

In an M-dimensional case, M > 2, ICA can be carried
out by applying the two-signal estimators to each whitened
signal pair over several sweeps until convergence [12]. This
iterative approach is reminiscent of the Jacobi optimization
technique for matrix diagonalization. It works through a se-
quence of sweeps on the whitened data until a given orthog-
onal contrast is optimized; sweep is defined to be a one com-
plete pass through all the M(M−1)/2 possible pairs of dis-
tinct indices. In simple words, the Jacobi- iteration spans the
whole set of rotation matrices in a sequential manner. The
updating step on a pair, say (a,b), partially undoes the effect
of previous optimizations on pairs containing either a or b
[13]. For this reason, it is necessary to go through several
sweeps before optimization is completed.

1.3 Motivation and Contribution

It is interesting to notice that all of the aforesaid closed-
form estimators were based on fourth-order statistics. No-
tice that asymmetric sources arise in many practical scenar-
ios, such as in sonar signal processing [14] or source sepa-
ration of urban images [15] (see also [16]). In some cases,
digitized speech signals have non-zero skewness; and sepa-
ration of such signals gets benefit from third-order statistics
[17]. Also, in biomedical applications, skewness is some-
time more important to just non-Gaussianity for certain cat-
egories of signals, say, certain artifacts (like eye-blinking)
and, some known components in electrocardiograms and
electroencephalograms are not symmetric.

Due to the importance of asymmetry, we present a
weighted form of third- and the fourth-order contrast (3)
which is capable of handling the symmetric and asymmetric
sources jointly in an optimal manner. Extending the results
in our previous work [18], in this work, we obtain a closed-
form ICA estimator in the presence of additive noise. The
proposed weighted contrast, the closed-form estimator and
the derivation of optimal weight parameter is described in
Sections 2-3, and the performance comparisons are provided
in Section 4. We conclude briefly in Section 4. All simu-
lations were done with MATLAB; analytical calculations in
Section 2-3 were supported by Symbolic toolbox of MAT-
LAB.
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2. PROPOSEDWORK

2.1 System Model

Consider an M-input M-output memoryless channel de-
scribed by

x(n) = As(n)

where n ∈ Z is the discrete time, x(n) is an M× 1 vector of
the observed signals, s(n) is an M× 1 vector of the (orig-

inal) statistically independent sources, and A ∈ R
M×M is

an unknown (invertible) mixing matrix. The goal of blind
source separation (BSS) is to determine a separation matrix
B ∈ R

M×M such that

y(n) = Bx(n) = BAs(n) = Cs(n)

recovers the source signal up to a permutation and scal-
ing, where C ia a global matrix representing a mixing-
nonmixing structure. Source separation is typically carried
out in two-step. First, whitening or standardization projects
the observed vector x(n) on the signal subspace and yields a
set of second-order decorrelated, normalized signals z(n) =
Wx(n) such that E[zzT ] = IM . As a result, the source and
whitened vectors must be related through a unitary transfor-
mation

z(n) = Qs(n).

The separation problem thus reduces to the computation of
unitary matrix Q, which is accomplished in a second step.
The ICA approach to BSS consists of computingQ such that
the entries of the separator output

y(n) = Cs(n) = QTWx(n) = QTz(n) = Q̃z(n)

are as independent as possible.
The separability condition for BSS problem has been

studied in [12], and it was pointed out that for statistically
independent non-Gaussian sources, the separation can be
achieved by restoring the independence. In [12], the mu-
tual information (MI) was suggested as a tool to measure
the independence of the output signals, and the Edgeworth
expansion was used to approximate the probability density
function in the MI criterion. The Edgeworth expansion of
the MI of a standardized (i.e. after whitening) real variable,
up to an additive constant I0 and as a function of standardized
cumulants, is given as follows [12]:

−I[y]≈ I0+∑
i

(
4κ2

iii(y)+ κ2
iiii(y)

+7κ4
iii(y)−6κ2

iii(y)κiiii(y)
) (1)

where κiii(y) and κiiii(y) are the third-order and fourth-order
marginal cumulants of each entry of y, i.e., κiii(y) = E[y3i ]

and κiiii(y) = E[y4i ]− 3E2[y2i ]. A cumulant of order higher
than two qualifies as a contrast [12]. That is, the maximiza-
tion of specific cumulantswould result into a successful blind
separation for particular type of sources. For example, if
the sources are asymmetrical then the maximization of third-
order cumulant κ2

iii(y) would be enough to ensure successful
separation; similarly, for symmetric sources, the maximiza-
tion of fourth-order κ2

iiii(y) would be sufficient [12], i.e.,

J (y) =





∑
i

κ2
iii(y), for asymm. sources

∑
i

κ2
iiii(y), for symm. sources

(2)

Equation (2) is discriminating over the set of random vectors
y provided there is at most one null third-order (resp. fourth-
order) marginal cumulant for asymmetrical (resp. symmetri-
cal) sources [12, 19]. There exist number of ways to find the

nonmixing matrix Q̃ such that the contrast (2) is maximized;
for example, [12, 19]. Just recently, Blaschke &Wiskott [20]
showed that the joint use of third- and fourth-order cumulants
is an admissible choice for a contrast:

J (y) = ∑
i

(
4κ2

iii(y)+ κ2
iiii(y)

)
(3)

The Blaschke-Wiskott’s ICA algorithm is known as Cu-
BICA. We are referring to [20] due to its simple presenta-
tion; otherwise, the joint use of third- and fourth-order cu-
mulants for ICA has been investigated earlier by a number of
researchers, like [21].

2.2 Weighted Contrast

In this section,a weighted contrast comprising third- and the
fourth-order cumulants is presented as a generalization of (3)
for the blind separation of mixture of symmetric and asym-
metric sources, viz

J (y) =
M

∑
i=1

(
wS,iκ

2
iii(y)+wK,iκ

2
iiii(y)

)
(4)

The contrast (4) does not arise directly from the MI crite-
rion, but it is a weighted combination of two solutions (cf.
(2)) that are not only contrast, but also provide a good ap-
proximation to MI under specific assumptions. However,
in the absence of those assumptions, it is possible to ob-
tain better results using (4) with appropriately selecting the
values of free parameters. The algebraic nature of cumu-
lants is tensorial (with symmetry) [22]; thanks to the mul-
tilinearity of cumulants κ···(y) in κ···(z), the criterion (4)
becomes an implicit function of the elements of the uni-

tary matrix Q̃, we obtain κiii(y) = ∑ jkl Q̃i jQ̃ikQ̃ilκ jkl(z)

and κiiii(y) = ∑ jklm Q̃i jQ̃ikQ̃ilQ̃imκ jklm(z), where the unitary

transformation matrix Q̃ = QT is modeled as Givens rota-
tion φµν which is a rotation around the origin within the
plane of two selected components µ and ν . The estima-
tion of the plane rotation φµν is obtained by an iterative
Jacobi method over the set of orthonormal matrices. The
orthonormal transforms are thus obtained as a sequence of
plane rotations. Each plane rotation is applied to a pair of
coordinates, such that, yµ ← (yµ cosφµν + yν sinφµν ) and
yν ← (−yµ sinφµν + yν cosφµν ), while leaving the other co-
ordinates unchanged. Thus, the Jacobi approach considers
a sequence of two-dimensional ICA problems. Considering
the subspace of only two selected components, the Givens
rotation matrix becomes:

Q̃ =

[
cosφ sinφ
−sinφ cosφ

]

That is, forM = 2, we get

J (y) =wS,1κ2
111(y)+wS,2κ2

222(y)

+wK,1κ
2
1111(y)+wK,2κ2

2222(y)
(5)

Now we have only four free parameters to determine in a
pairwise fashion. In the blind scenario, where we usually

1463



have no a priori knowledge of mixing signals, tuning of these
free parameters is not simple. Interestingly, the study of the
single weight parameter for the optimized use of a fourth-
order contrast function has been studied in [23, 24, 25]. Mo-
tivated by the convincing results reported in these works, we
also limit our search to a single weight parameter. We se-
lect wS,1 = wS,2 = 1 and wK,1 = wK,2 = β , which lead to the
following contrast:

J (y) =κ2
111(y)+ κ2

222(y)

+ β
(
κ2
1111(y)+ κ2

2222(y)
) (6)

2.3 A Closed-Form Estimator

Owing to [20], it is possible to express the contrast (6) as the
function of φ as follows:

J (φ) = A0+A4 cos(4φ + φ4)

+A8 cos(8φ + φ8)
(7)

where A0, A4 and A8 are positive constants. Note that the
first term A0 plays no role in the estimation of φ . Similarly
constantsA8 and φ8 do not comprise of third-order statistical
information and contribute no significant role if the mixing
sources are asymmetrical in nature (the detailed expressions
for A0, A8 and φ8 can be obtained in [20] for the specific
case β = 1). The constant φ4 in the middle term, however,
comprise of third- and fourth-order statistics and can be used
to obtain a closed form estimator for the separation of mixed
symmetrical/asymmetrical sources. The angle φ that max-
imizes A4 cos(4φ + φ4) is (refer to [21] for theoretical de-
tails):

φ̂ =−
φ4
4

=−
1

4
arctan(S0+ βS1,C0 + βC1) (8)

which exploits the relations S0 + βS1 = sinφ4 and C0 +
βC1 = cosφ4. Also arctan(y,x) is the unique angle α ∈

(−π ,π ] for which cos(α) = (x/
√
x2+ y2) and sin(α) =

(y/
√
x2 + y2). ConstantS0,S1,C0 and C1 are computed as:

S0 = 24
(
κ111(z)κ112(z)−κ122(z)κ222(z)

)

S1 = 4
(
7
(
κ1111(z)κ1112(z)−κ1222(z)κ2222(z)

)

+6κ1122(z)
(
κ1112(z)−κ1222(z)

)

+ κ1111(z)κ1222(z)−κ1112(z)κ2222(z)
)

C0 = 6
(

κ2
111(z)+ κ2

222(z)−3
(
κ2
112(z)+ κ2

122(z)
)

−2
(
κ111(z)κ122(z)+ κ112(z)κ222(z)

))

C1 = 7
(
κ2
1111(z)+ κ2

2222(z)
)
−36κ2

1122(z)

−2κ1111(z)κ2222(z)−32κ1112(z)κ1222(z)

−12
(
κ1111(z)κ1122(z)+ κ1122(z)κ2222(z)

)

−16
(
κ2
1112(z)+ κ2

1222(z)
)

If we consider β = 1, then the closed-form estimator (8)
provides an equivalent formulation of ICA algorithm as Cu-
BICA34a [20]; however, note that unlike CuBICA34a, the
proposed expression (8) is a closed-form. In the next sec-
tion, we study the optimal estimation of parameter β .

3. THE OPTIMUMWEIGHT PARAMETER

The optimum value of the weight parameter β in (8) can be
obtained by performing small error analysis; i.e., the value of
β is optimum if it minimizes the asymptotic (large-sample)
mean-square error in the estimation of Givens rotation. First,
we consider that the mixing matrix is orthonormal so that
the prewhitening stage is not necessary. Further, the asymp-
totic analysis is carried out for the case of two real sources.
In practice, the mixing model in Section 2 should also take
into account a possible additive noise. This is considered
hereafter because we want to take into account both the mea-
surement noises and errors resulting from the first stage of
whitening. Hence, now, the mixing model we consider reads
x = As + g, where g is the vector of additive noise. In a
two-source scenario, each noise gi, i ∈ {1,2} is a zero-mean,
independent and identically distributed Gaussian random sig-
nal with equal power, i.e., E[g21] = E[g22] = σ2. Moreover,
gi, i ∈ {1,2} are assumed statistically mutually independent
and independent of the sources si, i ∈ {1,2}.

Now, we have to estimate an angle φ according to the

maximization of J (·), i.e., φ̂ = argmaxφ J (φ), where φ̂

is an estimate of the true (separation) value φ̃ . In practice,
the maximization of contrast function does not provide the

exact value of the parameter φ̃ , since the true cumulants are
actually approximated by the sample estimates. Replacing
the expectations by sample averages leads to the empirical

version of J (y), which is denoted Ĵ (y) and is given by

Ĵ (φ) = κ̂2
111(y)+ κ̂2

222(y)+ β
(
κ̂2
1111(y)+ κ̂2

2222(y)
)

where κ̂iii(y) = 1
N ∑N

k=1 y
3
i (k), and κ̂iiii(y) = −3 +

1
N ∑N

k=1 y
4
i (k), i = 1,2. As a result, an estimation error

is involved in the estimation of the true value φ̃ . The

estimated angle φ̂ is actually the solution of the estimating

equation Ĵ ′(φ̂ ) = ∂Ĵ (φ̂ )/∂φ |
φ=φ̂

= 0. Approximating

this derivative around the true value φ̃ by means of its Taylor
series expansion yields:

Ĵ ′(φ̂ )≈ Ĵ ′(φ̃)+Ĵ ′′(φ̃ )(φ̂ − φ̃)

where Ĵ ′′(φ̃) = ∂Ĵ ′(φ)/∂φ |
φ=φ̃

and Ĵ ′(φ̃) =

∂Ĵ (φ)/∂φ |
φ=φ̃

. Assuming φ̂ to be in the neighbor-

hood of φ̃ , we obtain Ĵ ′(φ̃)≈−Ĵ ′′(φ̃ )(φ̂ − φ̃). The mean
square error (m.s.e.) is given by

m.s.e. =
E[(Ĵ ′(φ̃ ))2]

(E[Ĵ ′′(φ̃)])2

When φ̂ = φ̃ , y = s+g′, where g′ = Cg. The m.s.e. expres-
sion is generalized and is thus valid for any two-dimensional
contrast for ICA problem. Further, the strong law of large

number ensures that Ĵ ′′(φ̃ ) converges with probability one
to its expected value. As N→ ∞, we have

E[Ĵ ′′(φ̃ )]→−2(B0+B1β )

B0 and B1 are defined in (10). Next we obtain

E
[
(Ĵ ′(φ̃ ))2

]
→

4

N
(A0−2A1β +A2β

2)
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where A0, A1 and A2 are defined in (10). The m.s.e. de-
pends on the statistics of the sources and on the parameter
β . We now easily derive the optimum value of β , denoted
β ∗, such that the m.s.e. is minimum by solving the equation
∂

∂β m.s.e. = 0, i.e.,

β ∗ =
A0B1+A1B0

A2B0+A1B1
. (9)

where

A0 = 9
(
B0σ

6 +3B0σ
4+(3B0+d0)σ2

+B0+d0−2c20
)

A1 = 12
(
d1σ6+(3d1−10d0)σ4

−(d3−d2−3d1+20d0)σ2

−d3+d2+d1−10d0)

A2 = 16
((

15
4
B1−18c1

)
σ8+(15B1−72c1)σ6

+
(
d5−d4+ 90

4
B1−108c1

)
σ4

+(d7+d6+2d5−2d4−72c1+15B1)σ2

+d7+d6+d5−d4−2c21−18c1+ 15
4
B1

)

where auxiliary variables are defined as

B0 = 3
(
κ2
111(s)+ κ2

222(s)
)

B1 = 4
(
κ2
1111(s)+ κ2

2222(s)
)

c0 = κ111(s)κ222(s)

c1 = κ1111(s)κ2222(s)

d0 = κ2
111(s)κ1111(s)+ κ2

222(s)κ2222(s)

d1 = 3
(
κ2
111(s)κ2222(s)+ κ2

222(s)κ1111(s)
)

d2 = κ2
111(s)κ

2
2222(s)+ κ2

222(s)κ
2
1111(s)

d3 = κ111(s)κ1111(s)κ11111(s)

+ κ222(s)κ2222(s)κ22222(s)

d4 = 6
(
κ2
1111(s)κ2222(s)+ κ2

2222(s)κ1111(s)
)

d5 = 15
(
κ3
1111(s)+ κ3

2222(s)
)

d6 = 10
(
κ2
111(s)κ

2
1111(s)+ κ2

222(s)κ
2
2222(s)

)

d7 = κ2
1111(s)κ111111(s)+ κ2

2222(s)κ222222(s)

which indicates that the β ∗ depends on the statistics of
mixing source and additive noise, and is independent of the
coefficients of unknown mixing matrix. Hence, given the
source and noise statistics, we can obtain a contrast with min-
imum asymptotic m.s.e. Finally, with the help of β ∗ (9), the
optimum value of Givens rotation is estimated as:

φ̂∗ =−
1

4
arctan(S0 + β ∗S1,C0 + β ∗C1) (10)

The closed-form optimized estimator (10) is named Opti-
mized Composite-Order ICA (OCOICA).

4. SIMULATION RESULTS

In order to illustrate the potential of the proposed estima-
tor OCOICA, some computer simulations are now presented.

We intend to compare the performance of the OCOICA with
three existing ICA algorithms including the third-order cu-
mulant based ICA (Com3) [19], the fourth-order cumulant
based ICA (Com4) [12], and the CuBICA [20]. The perfor-
mance measure, interference-to-signal ratio (ISR), has been
used in our simulation to characterize quantitatively the resti-
tution quality. The performance index reads

ISR=
M

∑
i=1

(
∑n

j=1 |ci j|
2

max j |ci j|2
−1

)
(11)

where ci j represents the element (i, j) of the global mixing-
nonmixingmatrixC. In the two-signal case, the ISR approx-
imates the m.s.e. of the angle estimates around any valid sep-
aration solution [25]. Random sources with desired skewness
and kurtosis are generated by Fleishman’s power distribution
method [26]. All sources are drawn with zero-mean and unit-
variance.

We estimated the ISR performance as a function of sam-
ple size. The mixing matrix was taken to be of order 2× 2.
Matrices (A) are generated from normal distribution with
zero-mean and unit-variance. The condition number of A
is constrained to be less than 50. Two cases are considered –
no noise σ = 0 and with noise σ = 0.0316 [i.e., SNR=30dB].
The mixture is first whitened via PCA based on the singu-
lar value decomposition of the observed data matrix. The
curves have been averaged over 2000 independent Monte
Carlo runs. The weight parameter β has been computed
from the statistical knowledge of whitened-sources. Results
are depicted in Figure 1 comparing the performance of the
OCOICA with those of Com3, Com4 and CuBICA.

In Figure 1(a), original sources are highly asymmetric
in nature, that is why Com3 is performing better than Com4
and CuBICA, while in Figure 1(b), original sources are mod-
erately skewed and CuBICA is performing better than Com4
and Com3. Notice that, the OCOICA is performing better
than Com3, Com4 and CuBICA algorithms in both noise-
free and noisy scenarios. Finally notice that the improvement
in ISR reduction achieved by the proposed estimator is con-
sistent even though the free parameter β has been computed
from whitened-sources.

5. CONCLUSIONS

This work explores the combination of third- and fourth-
order cumulant based tensor diagonalization in an optimal
sense and comes up with a closed-form estimator. Computer
simulation for the separation of real-valued sources is pro-
vided. The proposed estimator is shown to be outperforming
three existing ICA algorithms. The proposed closed-form
estimator can handle symmetric and asymmetric distributed
sources, and exhibits better performance.
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