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ABSTRACT
We consider a wireless sensor network (WSN) deployed over
a large geographical area, where a querying node wishes to
perform a estimation of a localized phenomenon. We for-
mulate the problem as a joint optimization of sensor selec-
tion and routing structure where we minimize the estimation
distortion subject to a total communication power constraint
for the WSN. Two scenarios are analyzed: measurement for-
warding and estimation-and-forward at the nodes. We show
that the optimization problems corresponding to these sce-
narios are both NP-hard and we propose two approximation
algorithms. First, we present a sensor selection algorithm for
a predefined routing structure based on a primal relaxation
and then, a greedy approximation algorithm that jointly opti-
mizes the sensor selection and routing structure. Numerical
results show good performance of these algorithms in both
estimation scenarios.

1. INTRODUCTION

Wireless Sensor networks (WSN) have recently attracted a
large amount of research [1][2]. In such networks, tiny and
inexpensive devices with sensing and communication capa-
bilities are deployed densely over large geographical areas
to perform a wide variety of tasks, ranging from monitor-
ing and detection to parameter estimation or tracking [1]. As
the devices are usually battery-powered, only limited energy
is available to perform these tasks, thus power-efficient al-
gorithms need to be developed. When comparing sensing,
computation and communication costs, the latter has been
shown to be the most energy consuming phase[2].

Even though sensor networks usually cover a large geo-
graphical area, many interesting phenomena are in fact local-
ized. Consider, for instance, applications such as forest fire
detection or the estimation of a parameter from a spatially
localized point source. Intuitively, in these settings, sensor
nodes that are located far away from the source will have
significantly less informative measurements than the nodes
that are closer to it. Direct transmission of the measurements
from all the nodes to a fusion center would certainly result in
an inefficient use of the energy resources.

We will consider the scenario where the network is per-
forming the distributed estimation of a deterministic param-
eter generated by a localized source. There is a clear need to
tackle the problem of jointly determining which set of sen-
sors needs to be activated, which operations have to be made
at each node, and to whom the information should be routed
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to. These decisions have to take into account both the cost
of communication between the nodes, as well as the quality
of the cooperative task to be performed, in this case, that the
estimation quality should satisfy a certain degree of perfor-
mance.

There has already been a certain amount of research in
the area of sensor selection for wireless sensor networks.
The work in [3] has investigated mechanisms for selecting
sensors for cooperative target localization and tracking. De-
cisions are made based on the expected conditional entropy
of the posterior target localization distribution. In [4, 5, 6],
joint sensor selection and rate allocation schemes are devel-
oped. The authors in [7] propose a centralized algorithm that
deals with correlated measurements by selecting at each time
step the most informative sensor. Complexity and optimality
results for families of utility functions are presented in [8].

Most of this previous work do not take into account the
multihop nature of the WSN. Power savings are derived from
the fact that we are activating a limited number of sensors
(cardinality of set), but the cost of actually communicating a
measurement through a path of the multihop network to the
querying node is simplified or ignored. However, it is indeed
very different to activate a sensor far away from the querying
node than activating a node that is close to it. The incorpora-
tion of the communication costs in the sensor selection algo-
rithms leads, in fact, to a more complex joint sensor selection
and routing problem, as the communication costs depend on
the routing structure, creating a strong interplay between the
routing and the aggregated estimation at each node. To the
best of our knowledge, this problem has not been considered
yet in the literature.

The main contributions of this paper are the following.
We formally define the joint sensor selection and routing
problem, and give characterize its complexity. We also pro-
vide two algorithms: a sensor selection algorithm based on
a simple relaxation for a fixed routing structure, and a dis-
tributed greedy approximation algorithm for the sensor selec-
tion and routing problem. The paper is structured as follows.
In Section 2, we present the network, signal models and the
estimation scenarios that we use in our work. In Section 3,
the joint sensor selection and routing problem is formulated
and results on complexity are shown. In Section 4, the algo-
rithms are presented, whose numerical performance is shown
in Section 5.

2. PROBLEM SETTING

Let us assume that we have a spatially localized event repre-
sented by a certain parameter to be estimated and that there
is a certain querying node, whose goal is to get the best pos-
sible estimate. Motivated by the fact that power is a severe

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 774



constraint in WSNs, our problem consists of choosing jointly
the optimal set of sensors and multihop tree routing struc-
ture in order to get the best possible estimate at the querying
node for a given constraint in the total power to be spent by
the WSN. The distortion measure will depend on the signal
model and estimator used, and the cost of delivering a mea-
surement to the querying node will depend on the network
topology.

2.1 Network Model
We model the wireless sensor network as a directed graph
G = (V,E), with N + 1 = |V | nodes including a special root
node r ∈V , labeled node N +1, that plays the role of a query-
ing node where the final estimate is to be obtained. An edge v
between nodes i and j of the graph represents a communica-
tion link between this pair of nodes. This model is inherently
assuming that the interference between nodes is negligible.
Nevertheless, this approximate network model has been used
in previous work, since the drawn conclusions are still very
useful for the design of real WSNs [9]. Moreover, this as-
sumption is realistic in a scenario where the communication
across the different links is orthogonal or where the nodes are
equipped with directional antennas.

In order to transmit the data to the querying node, node i
will send it through a specified multihop path on the WSN.
This path (routing structure) has to be optimized in our prob-
lem. The cost incurred when using a specific link v between
nodes i and j is assumed to be a nondecreasing function of
the distance between the corresponding nodes fc(di, j), where
di, j represents the distance between nodes i and j. This ap-
proximate communication cost model has been experimen-
tally supported [10].

2.2 Signal Model
For the sake of simplicity, we will consider a simple linear
model1 where a node i makes scalar observations yi ∈ R of
an unknown deterministic parameter θ ∈ R distorted by a
scalar hi ∈ R and corrupted by additive Gaussian noise:

yi = hiθ +ni i = 1, . . . ,N (1)

Moreover, ni ∈R are taken to be independent and identically
distributed ni ∼N (0,σ2). We will assume that the scalar hi
captures the attenuation inherent to the physics of the prop-
agation of the signal of interest from the source to the sens-
ing node (i.e. an acoustic or electrical signal). This value
of hi will be a non-increasing function of the distance from
the node i to the source of the parameter that we are inter-
ested to measure. It is intuitive to think that a sensor closer
to the region of interest will receive a greater average power
of the signal than a sensor that is far away. It is furthermore
assumed to be known by the node, by using some sort of pre-
calibration through pilot signals. The random variable ni will
capture the disturbance of the sensing device and the possible
interferences that are present in the medium.

2.3 Estimation Strategies
Given measurements of the form of (1), the optimal estima-
tor is given by the well-known BLUE (Best Linear Unbiased
Estimator) [11]. The natural measure of estimation quality is

1The generalization of the results of this paper to more complex estima-
tion scenarios is part of our current research and will be presented elsewhere.

given by the mean squared error (MSE). In our setting, the
estimator is given by:

θ̂ =
∑

N
k=1 hiyi

∑
N
k=1 h2

i
(2)

and the associated MSE has the expression:

MSE
θ̂

=
(

∑
N
k=1 h2

i
σ2

)−1

(3)

Moreover, the BLUE estimator has an important advan-
tage: it can be easily implemented in a sequential fashion
when the measurement noises are independent [11]. When a
node is sending its measurement to the fusion center through
a multihop path, it can either simply forward the data it re-
ceives from its children nodes in the routing tree, or fuse the
measurements and forwarding only the aggregated estimate.
This leads us to define two scenarios (Figure 1):

y1

y2

y1

y2

Measurement Forwarding Estimation-and-Forward

y3 f(y1, y2, y3)
y2

y1

Figure 1: Illustration of the two possible scenarios, depend-
ing on the type of computation an intermediate node per-
forms

A. Measurement forwarding at intermediate nodes: In this
scenario, the nodes simply forward the measurements
they receive towards the querying node along the chosen
multihop routing tree. The querying node is responsible
to perform the final estimation, and no aggregated esti-
mation is calculated in the intermediate nodes.

B. Estimation-and-forward at intermediate nodes: In this
scenario, a sequential estimation approach is considered.
For a given routing structure, an intermediate node takes
the estimates he receives from the active links and fuses
its measurement with it. Then, it forwards this resulting
fused estimation to its parent on the routing tree.
The second scenario has several interesting advantages

over the first one. First of all, this second scheme is more
power efficient as an active node in a route has only to for-
ward the fused estimation (one information data to be trans-
mitted), instead of forwarding its own measurement plus the
measurements from the other nodes that are further away
from the querying node on the routing tree. Moreover, we
have the fact that the intermediate nodes in the route have an
estimation of the parameter, which gets better as the node is
closer (in number of hops) to the querying node.

3. SENSOR SELECTION AND COMMUNICATION
FOR DISTRIBUTED ESTIMATION

Once we have defined the communication cost and the sens-
ing model, the problem can now be well formulated. Let us
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assign a variable xk to each of the sensors. These variables
are used to denote the status of the sensor. They take the
value xk = 1 if sensor i is active and xk = 0 otherwise. Our
problem can be formulated as an optimization problem where
we want to minimize the distortion (MSE) of our estimation
subject to a total power constraint:

min
{xk,parentk}

MSE
θ̂

=
(

∑
N
k=1 xkh2

k
σ2

)−1

(4)

subject to
N

∑
k=1

xkck ≤ P

xk ∈ {0,1}

with variables xk and parentk, the latter one representing the
parent node of node k. In this formulation, ck defines the
communication cost of activating node k. Moreover, we have
to ensure that the routing structure determined by the set
{parentk} is actually a tree rooted at the querying node N +1.

3.1 Measurement Forwarding
In this first scenario, the estimation and routing tasks clearly
decouple as the intermediate nodes in the route only forward
the measurements to the querying node, that is, at each in-
termediate node, since there is no fusion of estimates, there
is no reduction of transmission data and the measurements
generated at each node have to travel all the way up to the
querying node. Therefore, for each given sensor, the optimal
way to send its measurement to the querying node is to do it
over the shortest path tree. In this simple case, the problem
(4) simplifies and becomes:

max
{xk}

MSE−1
θ̂

=
∑

N
k=1 xkh2

k
σ2 (5)

subject to
N

∑
k=1

xkck =
N

∑
k=1

xk ∑
(i, j)∈SPTk

fc(di, j)≤ P

xk ∈ {0,1}

Notice that parentk is no longer a variable as the optimal
routing structure is already fixed (SPT).

3.2 Estimate-and-Forward
This scenario is very interesting because it creates a strong
interplay between sequential estimation and routing. More-
over, it is more challenging to solve as now the routing struc-
ture is clearly tied to the sensor selection. Notice that the
cost incurred by selecting a certain node k is simply the cost
of communicating the information from this node to its par-
ent, as the information is fused at each node, and only one
information piece is forwarded to the next node in the tree.
In this case, the problem in (4) becomes:

max
{xk, parentk}

MSE−1
θ̂

=
∑

N
k=1 xkh2

k
σ2 (6)

subject to
N

∑
k=1

xkck =
N

∑
k=1

xk fc(dk,parentk)≤ P

xi ≤ x j , where j = parenti
xk ∈ {0,1}

where parentk is chosen such that the resulting tree is rooted
at the querying node. The second constraint ensures that no
node is selected if its parent on the tree is not selected.

We can also cast this problem in an equivalent network
flow formulation as follows. Let A be the RN+1×|E| (node
N +1 is the sink) incidence matrix of the network, where |E|
denotes the number of edges in the network. Moreover, let
f ∈ R|E| be the vector of information flows in the network,
where fi j denotes the flow going from node i to node j. I (i)
is the set of incoming flows to node i. The auxiliary vector
variables s, d∈RN+1 represent the inflow/outflow operations
at each of the nodes. With this notation, the problem can be
equivalently formulated as:

max
{xk},{ fi j}

N

∑
k=1

xkh2
k (7)

subject to Af = s−d
si = xi i = 1, . . . ,N, sN+1 = 0
di = ∑

k∈I (i)
fki, dN+1 ≥ 1

∑
(i, j)∈E

ci j fi j ≤ P

fi j + f ji ≤ 1 ∀i 6= j
fi j,xi ∈ {0,1}

The first constraint ensures flow conservation in the net-
work. The second one indicates that an active (selected) sen-
sor generates flow into the network and that the sink node
does not take any measurement. The third one captures the
idea of data fusion at each node when using a sequential esti-
mator (only one fused estimation exits the node) and ensures
that the sink node has at least one incoming flow of infor-
mation. The fourth constraint reflects the power constrained
nature of the network (ci j denotes the cost of sending infor-
mation from node i to node j). Finally, the fifth constraint
prevents length-two cycles in a link.

3.3 Complexity
Lemma 1. The joint optimization problem of sensor selec-
tion and routing structure (5) and (7) are NP-Hard.

Proof. Both problems are 0-1 integer linear programs, thus
NP-Hard. This follows using a reduction from 3SAT problem
[12].

4. APPROXIMATION ALGORITHMS

The fact that our problem is NP-Hard, motivates us to find
good approximation algorithms that can yield solutions close
to the optimal value with a reasonable (polynomial) com-
putational complexity. Next, we present two different algo-
rithms.

4.1 Fixed-tree relaxation-based algorithm
The first algorithm assumes that a routing structure is already
fixed, and that only sensor selection has to be performed.
This algorithm is well suited to the measuring forwarding
scenario presented in Section 3.1 where the optimal routing
tree is the SPT or the case where we could be restricted, for
the sake of simplicity, to a fixed simple routing structure in
the WSN.
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In this case, we perform a relaxation [13] of the prob-
lem (5) and (6), depending on the scenario that is consid-
ered, with the desired routing tree, by simply relaxing the
constraints xk ∈ {0,1} by 0 ≤ xrel

k ≤ 1. For instance, the re-
laxation of problem (5) becomes:

max
{xrel

k }
MSE−1

θ̂
=

∑
N
k=1 xrel

k h2
k

σ2 (8)

subject to
N

∑
k=1

xrel
k ck =

N

∑
k=1

xrel
k ∑

(i, j)∈Path-to-sinkk

fc(di, j)≤ P

0≤ xrel
k ≤ 1

This is a simple linear program that can be easily solved
in polynomial time [13]. Solving this problem provides us
with an upper bound on the optimal value of our problem as
we are optimizing over a larger constraint set that includes
the original constraint set. At the same time, we can use the
solution to the problem (8) in order to construct an approxi-
mation to the optimal of the original problem (5). This can
be done sorting the optimal values {x?rel

k } in descending or-
der and select the subset corresponding to the largest x?rel

k
that still satisfy the power constraint inequality. Notice that
this approximation algorithm will give us a lower bound on
the optimal value of the original problem. By calculating the
gap between the upper and lower bound we can assess the
performance of the algorithm.

Algorithm 1. Fixed-tree Relaxation-based Algorithm
• Solve linear program in (8)
• Sort the set optimal values {x?rel

k } in descending order
• Select the subset of sensors corresponding to the largest

xrel
k that still satisfy the power constraint inequality

• Compute optimality gap

4.2 Greedy Approximation Algorithm
The algorithm presented in the previous section is tailored to
the situations where the routing structure is fixed and the esti-
mation is performed only at a fusion center (centralized algo-
rithm). We now present a distributed greedy approximation
algorithm that performs a joint sensor selection and routing.
As the routing tree does not need to be fixed, this algorithm
is well suited to the estimation-and-forward scenario.

The idea of the algorithm is as follows. We start from the
node that first detects the phenomenon (on average the one
with the largest SNR, i.e., the largest hi). The best way to
send this measurement to the querying node is using the cor-
responding path on the SPT. This motivates us to select this
path as an initialization of the algorithm. All the intermedi-
ate nodes in the path are selected. Then, each of the selected
nodes calculates an objective function for all its 1-hop neigh-
bors. This objective function is a combination of the com-
munication cost incurred when selecting the corresponding
idle sensor and the information gain of that sensor. For each
sensor k, the importance of the communication cost vs. the
information gain is controlled through a weight, denoted as
γk in the algorithm. While there is still available power, the
algorithm selects the node (over all the idle neighbors of the
selected sensors) that minimizes this objective function. Af-
ter a new node is selected, a backtracking is performed. We
check if an alternative route through the new selected sensor

is more power efficient (see Figure 2). Finally, we update
the term γk that determines the relative importance of the
communication cost and the information gain in the objec-
tive function of the algorithm. We use the following update
scheme. If the node information gain of the last selected sen-
sor is greater than the gain in the preceding step, the value of
γk+1 is lowered as we are heading in the correct direction to
the location of the event and more importance is given to the
power efficiency. Otherwise, the value of γk+1 is increased
to try to head towards the correct direction. The formal de-
scription of the algorithm is given as follows:

Sink node

New selected sensor

Selected sensors

Sink node

Figure 2: Successful backtracking operation performed by
the algorithm

Algorithm 2. Greedy Approximation Algorithm
• Build Pathd−SPT from detection node d to the querying

node
• S← nodes in Pathd−SPT , T← Pathd−SPT
• P← cost Pathd−SPT
• While P≤ Pmax

– Ni: node i neighbors
– {ik, lk}= argmin{i∈S,l∈Ni,l /∈S}

(
fc(di,l)− γkh2

l

)
– T = T∪ (ik, lk),S = S∪{lk},P = P+ fc(dik,lk)
– If parentik ∈ Nlk & fc(dlk,parentik

) < fc(dik,parentik
),

Then update parentlk =parentik , parentik =lk,
P = P− fc(dik,parentik

)+ fc(dlk,parentik
)

– Update γk. If hlk ≥ hlk−1 decrease γk+1. Else, increase
γk+1

– k=k+1
• EndWhile

5. NUMERICAL RESULTS

In order to test the performance of our algorithms, we show
numerical simulations. We test our algorithms using 100
different network topologies. Each topology consists of
N = 100 nodes randomly placed in a square region centered
at [0,0]. The network connectivity is based on a Euclidean
distance model, and we assume that all the nodes have the
same communication range. The sink node N + 1 is placed
at [0,0] and the target t is set to be at [4,4]. The cost of com-
munication between nodes i and j is given by fc(di, j) = dα

i, j
with α = 4. Moreover, we take the measurement coefficient
at node i to be inversely proportional to the distance from i to
the target, i.e hi = 1/di,t . For each topology, we have run our
algorithms for a range of maximum power constraints.
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Figure 3: MSE estimation performance for the proposed al-
gorithms

In Figure 3, we show the obtained values of MSE vs.
total available power. First of all, as we already expected,
we can observe that the estimation-and-forward strategy is
much more energy efficient than the measurement forward-
ing one. As a performance assessment of the relaxation algo-
rithm when the routing tree is fixed, we have calculated the
mean sub-optimality gap, which is 4.5%.

Moreover, when considering the estimation-and-forward
scenario, we see that the SPT routing structure is not optimal.
Our greedy approximation algorithm outperforms the quasi-
optimal solution with the SPT by a 25-45%, depending on
the available power. An example of the resulting sensor se-
lection and transmission structure after having run the greedy
approximation algorithm in a test topology is shown in Fig-
ure 4. Moreover, we also show with error bars the set where
the 90% of our simulation results have fallen into. The less
the available power, the better our algorithm behaves with re-
spect to the SPT routing. This is an important result in the
context of WSNs, since these networks have usually severe
power constraints.
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Figure 4: Example of the greedy approximation algorithm
run in a specic topology for Pmax= 16
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