
DECISION DIAGRAM BASED COMPUTATION OF LINEARLY INDEPENDENT

TERNARY ARITHMETIC TRANSFORM SPECTRA

Cicilia C. Lozano and Bogdan J. Falkowski

School of Electrical and Electronic Engineering

Nanyang Technological University

Block S1, 50 Nanyang Avenue, Singapore 639798

email: cicilia@ntu.edu.sg; efalkowski@ntu.edu.sg

Tadeusz Łuba

Institute of Telecommunications

Warsaw University of Technology

Nowowiejska 15/19, 00-665, Warsaw, Poland

luba@tele.pw.edu.pl

ABSTRACT

Classes of fastest linearly independent ternary arithmetic (FLITA)

expansions have been proposed recently. They operate in arithme-

tic domain and have been shown to be useful for optimization of

ternary functions representation. All FLITA transforms possess fast

forward and inverse transforms and therefore can be calculated by

fast transform method. However, it has been shown that for ma-

nipulation of large functions it is more advantageous to start from

decision diagrams rather than truth vector. Hence in this paper

new algorithm to obtain FLITA spectrum from ternary decision

diagram is presented. It is developed based on the new notations

for spectrum of an FLITA transform introduced here. The algo-

rithm derives each spectral coefficient independently from each

other, allowing the coefficients to be calculated in parallel manner.

By starting from decision diagram, the algorithm enables the

FLITA expansion to be computed for large functions for which the

fast transform based algorithm may fail.

1. INTRODUCTION

Many problems in practice, such as transformation and optimiza-

tion of microprograms, routing, and scheduling, can be formulated

more naturally in terms of functions of multiple-valued variables

[1], [2]. Multiple-valued logic also plays an important role in re-

versible logic synthesis for quantum computing [2], [3]. The sim-

plest case of the multiple-valued logic is the three-valued or ternary

logic. Besides being used to deal with ternary circuits, such as ter-

nary multiplexer or ternary ROM, ternary logic has also been ap-

plied to solve problems related to binary circuits by formulating the

problems in terms of ternary functions. Examples of such problems

include the detection of hazard in binary logic circuits, evaluation

of logic functions in the presence of unknown inputs, as well as

AND-EXOR circuit minimization.

Fastest linearly independent ternary arithmetic (FLITA) trans-

forms are one of the spectral arithmetic expansions that have been

proposed to represent and manipulate ternary functions. The trans-

forms were first introduced in [4] and have since been extended in

[5]. FLITA transforms belong to the broader class of LITA trans-

form, which encompasses all ternary arithmetic polynomial repre-

sentations whose basis functions are linearly independent over Ga-

lois field (3) (GF(3)) [2]. The word ‘fastest’ in FLITA transforms

was used to denote the fact that the transforms have low computa-

tional cost, which is lower than that of the arithmetic counterpart of

the more well known fixed polarity Reed-Muller transform over

GF(3) [2]. In addition to [4] and [5], other FLITA transforms have

also been presented in [6]. Compared to the transforms in [5] the

FLITA transforms introduced in [6] have slightly higher computa-

tional costs but more regular structures. It has been shown that for

some ternary functions the expansions based on the transforms in

[6] have smaller number of nonzero terms compared to those based

on the transforms in [4] and [5]. It should be noted that for spectral

expansions it is desirable to have a small number of nonzero terms

as this often corresponds to simpler hardware implementation or

smaller storage requirement. It also generally leads to smaller com-

plexity for algorithms that take the spectral coefficients as their

starting point. All FLITA transforms have fast forward and inverse

transforms. Similar to other arithmetic expansions, FLITA trans-

forms are useful for parallel processing of multi-output ternary func-

tions.

Decision diagrams are modern data structures for representa-

tion and manipulation of large functions. In digital design they have

been used in many applications including circuit optimization, test-

ing, fault simulation, time-driven analysis, estimation of power dis-

sipation, decomposition, and verification [2]. Many variants of deci-

sion diagrams have been introduced to better suit specific applica-

tions or functions with specific properties [2], [7]. Decision dia-

grams have also been introduced for multiple-valued functions. The

simplest among them is the multiple-valued decision diagram

(MDD) [1], [2], [8] or also known as multiple-place decision dia-

gram. MDD is similar to binary decision diagram (BDD) [2], [7],

except that each node may represent multiple-valued function (the

outgoing edges may assume the values of 0, 1, …, 1−p for p-

valued function) and that the terminal values are not restricted to

only 0 or 1. For some functions, the compactness of the MDD can

be improved by introducing edge values as well as cylic negations

and complement edge operations [8], which correspond to edge

values and edge negations in BDD. MDD has been applied for se-

quential logic synthesis [1] whereas edge-valued MDD has been

shown to be efficient for representing one and two-variable elemen-

tary functions [9].

Applicability of a spectral transform depends to some extent on

the availability of efficient ways to calculate its spectrum. In [4]−[6]

the fast calculation of FLITA spectrum from the truth vector has

been presented. However, for large functions it is impractical to

work on the truth vector due to the large memory space required to

store the information. Hence, in this paper an algorithm to obtain

FLITA spectrum from MDD representing ternary functions is pre-

sented. The algorithm is based on the new notations for the FLITA

spectral coefficients introduced here and it employs a matching

process similar to that used in [10].

2. FLITA TRANSFORM AND SPECTRA

In this section several basic definitions for ternary functions and

general LITA transforms are first given in Definitions 1−5. New

definitions and properties used in the proposed algorithm are sub-

sequently presented. The new definitions and properties are derived

based on a particular FLITA transform [4], [6] whose definition is

given in Definition 6. However, they can be easily modified for

other FLITA transforms.

Definition 1. An n-variable ternary function is a mapping

() },2,1,0{}2,1,0{ −→= n
nXf

r
 where []11 ,,, XXXX nnn K

r

−= and

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 973

‘−’ denotes a don’t care value. When the outputs of the function

always take values from the set {0, 1, 2} for all possible input val-

ues, the ternary function is a completely specified function. Other-

wise, it is an incompletely specified function.

Definition 2. The ternary variable iX)1(ni ≤≤ can assume a

value of 0, 1, or 2. In polynomial expansions the variable iX is

represented by its literal iS

iX , which is defined as





∉

∈
=

. if 0

 if 1

ii

iiS

i SX

SX
X i

(1)

The set iS is called the true set of the literal iX , where

}2,1,0{∈iS . When iS contains only one element j, the literal }{ j
iX

is simply written as j
iX .

Definition 3. A logical product of literals 11

11
SS

n
S
n XXX nn K−

− is a

product term. When all iS)1(ni ≤≤ contains only one element the

product term is a minterm. Otherwise it is a cube. Note that the lit-

eral
}2,1,0{

iX is always equal to 1 and therefore can be dropped

from the product term.

Definition 4. Let nT be a n3 × n3 matrix with rows corresponding

to minterms and columns corresponding to the truth vectors of n3 n-

variable ternary switching functions. If the set of ternary switching

functions are linearly independent over GF(3), then nT has only one

inverse in GF(3) and is said to be a LITA matrix. A LITA matrix

nT is a nonsingular square matrix with respect to arithmetic addi-

tions and multiplications and has a unique arithmetic inverse
1−

nT .

Definition 5. Let []TnfffF
1310 ..., ,,

−
= be the truth column vec-

tor of a ternary function ()nXf
r

 in natural ternary ordering and

[]TncccC
1310 ..., ,,

−
= be the coefficient column vector (spectrum)

of ()nXf
r

 for a LITA transform nT , where T represents matrix

transpose operator. Then, for any LITA transform nT

 CTF n

rr
⋅= (2)

and FTC n

rr
⋅=

−1
. (3)

Definition 6. The forward and inverse matrices for the FLITA

transform discussed in this paper are given by the recursive equa-

tions

















=

−−−

−−−

−−−

111

111

111

nnn

nnn

nnn

n

TOY

OTO

OOT

T (4)

and

















−

=
−
−−−

−
−
−−

−−
−
−

−

1
111

1
1
11

11
1
1

1

nnn

nnn

nnn

n

TOY

OTO

OOT

T (5)

where 1−nO denotes a zero matrix of size 11 33 −− × nn and 1−nY

denotes a 11 33 −− × nn matrix with all zero elements except for one

element at the bottom left corner of the matrix which is equal to 1.

In order to derive the algorithm to calculate the FLITA spectral

coefficients from decision diagrams, it is useful to first understand

the relation between the individual spectral coefficient and the func-

tion being represented. In the following several definitions and

properties are given to show the relation more clearly. They are

developed based on the observation that the rows in 1−
nT defined in

(5) can be divided into (n + 1) groups according to the number of

nonzero elements inside them and that rows with the same number

of nonzero elements have the same pattern of 0, 1, and 1− , which

in turn corresponds to the function represented by the corresponding

spectral coefficients. The number of nonzero elements in the rows

ranges from 1 to)1(+n .

Definition 7. Each row in 1−
nT represents an arithmetic function on

a subset of the truth vector of the ternary function being operated

upon. Let the functions represented by the rows of 1−
nT be denoted

by
)(l

kC and the spectral coefficients ic)130(−≤≤ n
i be

mapped to an alternative representation)(l

kc such that

 FCc
l

k

l

k

r
⋅=

)()(
. (6)

The parameters k and l are called the degree and order of the func-

tion
)(l

kC , respectively, where nk ≤≤0 , 1320 1 −⋅≤≤ −−knl for

nk ≠ , and 0=l for nk = .

Property 1. The mapping from the notation ic)130(−≤≤ n
i to

)(l

kc can be performed according to the following rules: A spectral

coefficient ic is mapped to)(l

kc with k = j iff 133mod −= jji

and 133mod 11 −≠ ++ jji . Once k is obtained, l can be calculated

as

)3/int()3/int(1+−= kk
iil . (7)

Conversely,)(l

kc can be mapped back to ic by

 () 133)2/int(−+⋅+= kk
lli . (8)

Definition 8. Let ()'1−
nT be defined as 1−

nT that has been reordered

such that the rows are arranged in ascending values of k and l.

Property 2. According to Definition 8, the function
)(l

kC is located

at the i-th)130(−≤≤ n
i row of ()'1−

nT where

 li
kkn +−⋅= −)13(3 . (9)

Property 3. The matrix ()'1−
nT has a regular structure which allows

it to be represented by a layered Kronecker matrix equation as

follows:

 ()

[] 



































⊗⊗

⊗




⊗

⊗




⊗

⊗




⊗

=

−

−−

−

−

n

n

jjn

n

n

tI

tI

tI

tI

T

r

r

M

r

M

r

 1

010
001

010
001

010
001

0

10

1

01

'1 (10)

where jI)10(−≤≤ nj denotes an identity matrix of size

jj 33 × , ⊗ denotes Kronecker product [2], [7], and jt
r

)10(−≤≤ nj represents a row vector with j3 elements. The

vectors jt
r

 are recursively defined by

974

 []() jjj stt
rrr

+⊗= −1 100 (11)

where]1[0 =t
r

,]1[0 −=s
r

, and [] 1 001 −⊗= jj ss
rr

.

Example 1. For n = 2, the matrices 1−
nT and ()'1−

nT are given by

 T

101000001
010000000
001000000
000101000
000010000
000001000
000000101
000000010
000000001

1
2



























−−

−

−

=− () T .

101000001
000101000
000000101
010000000
001000000
000010000
000001000
000000010
000000001

'1
2



























−−
−

−

=−

Let []
1310 '..., ,',''

−
= ncccC

r
 be the spectral coefficient vector ob-

tained as the result of () FTn

r
⋅

− '1
. Then, by comparing the matrices

1
2
−T with ()'1

2
−T , the relations between the spectral coefficients ic ,

ic' , and)(l

kc can be obtained as shown in Table 1 where the three

notations in the same row represent the same spectral coefficient.

Note that the same relations can also be derived from (7)−(9).

Definition 9. An)(kn − variable standard trivial function u and a

function kv are defined for each function
)(l

kC where u is a single

ternary cube of the form





=

≠
=

+−

+−
+−

nk

nkXXX
XXXu

knn l
k

l
n

l
n

knn
for1

for
),,,(

11

11
11

K
K

(12)

and kv is a function on the decomposition of the transformed func-

tion ()nXf
r

 with respect to the ternary variables iX , ki ≤≤1 , as

follows:

()() { }







=

≠−
=

∑
≤≤−∈

−
−−

.0for1

0for
1|33

1
1

1
1

2
1

2
1

2

k

kff
Xfv kjL

XXXXXX

nk
jk

lkl
k

kl
kkk KKr

(13)

In the above,
1

1
1

1
lkl

k
kl

k XXX
f

K−
−

 denotes the cofactor of f with respect

to the cube 11

11

ll

k

l

k XXX kk K−

− = ()1111 ,,, lXlXlXf kkkk === −− K

and the digits 11 ,,, lll nn K− are obtained by

321)2/int(,,, llll knn =>< +− K , 2mod1 llk =+ , and

311 ,,, Llll kk =>< − K where the symbol 3>< i represents the

ternary number representation of i.

Table 1 − Conversions between ic , ic' , and)(l

kc

ic')(l

kc ic

0'c)0(

0c 0c

1'c)1(
0c 1c

2'c)2(

0c 3c

3'c)3(

0c 4c

4'c)4(

0c 6c

5'c)5(

0c 7c

6'c)0(

1c 2c

7'c)1(
1c 5c

8'c)0(

2c 8c

Property 4. All
)(l

kC functions with the same k value have the

same associated function kv . On the other hand, the function u

for
)(l

kC functions with the same value of l varies, where the size

of the cube represented by u (the number of minterms it covers)

increases with k but does not change with n. Furthermore, from

(10) and Definition 9, it can be deduced that kv is closely related

to the vector kt
r

 whereas the function u is related to the location

of the vector kt
r

. Thus we can say that the value of the spectral

coefficient)(l

kc is the value of the function kv evaluated over the

window function u of
)(l

kC .

Example 2. For k = 2 kv ()() 0
1

0
2

0
1

2
2

2
1

2
2 XXXXXXn fffXf −−=

r

whereas kv ()() 0
1

0
2

0
3

0
1

0
2

2
3

0
1

2
2

2
3

2
1

2
2

2
3 XXXXXXXXXXXXn ffffXf −−−=

r

for k = 3. Also, for k = 1 and l = 5 the function u of
)(l

kC is equal to

1
2

2
3 XX if n = 3 and is equal to 1

2
2
3

0
4 XXX if n = 4.

3. TERNARY DECISION DIAGRAMS

An MDD is a rooted, acylic directed graph representation of multi-

ple-valued functions. It is an extension of the well-known BDD for

which the variables and the terminal values are allowed to have

more than two possible values. When the MDD represents a com-

pletely specified ternary function as given in Definition 1, such

MDD is said to be a ternary decision diagram (TDD). Some terms

and notations for TDDs used in this paper are reviewed below [1],

[2], [8].

Definition 10. A TDD is a graphical representation of a ternary

function which consists of a set of nodes V connected by directed

edges E. Each node V in TDD represents a particular ternary func-

tion ()Vf . The nodes pointed by the outgoing edges of a particular

node V are said to be the children of V. TDD is obtained by recur-

sively deriving the children of each node V through application of

the multi-valued Shannon decomposition [1], [2] until a terminal

value is reached.

Definition 11. The nodes in TDD can be classified into nontermi-

nal nodes and terminal nodes. A nonterminal node V is labeled by a

ternary variable var(V) = iX (ni ≤≤1) where i is said to be the

index of node V (index(V)). Each terminal node has three outgoing

edges labeled by 0, 1, and 2 where the node pointed to by the edge

with label j })2,1,0{(∈j represents the cofactor of the function

()Vf with respect to j
iX ,)(Vf j

iX
. Unlike nonterminal node, a

terminal node V is labeled by a constant value value(V) = j

})2,1,0{(∈j . It represents a constant function and it does not have

any outgoing edges.

Definition 12. The topmost node in TDD is called the root node.

The incoming edge of the root node is labeled by the function rep-

resented by TDD (()nXf
r

).

Definition 13. Each set of directed edges which connect the root

node to a terminal node forms a path. Each path represents a prod-

uct term where the value of the terminal node reached by the path

is the value of ()nXf
r

 for the input variables assignment given by

the product term. If pV is the set of the nodes encountered along

the path and label ()(WE) denotes the label of the edge emanating

from node pVW ∈ along the path, then the product term repre-

sented by the path is given by ()∏
∈ pVW

WElabel
WindexX

)(
)(.

975

Definition 14. A reduced decision diagram is a decision diagram in

which the redundant nodes (nodes whose outgoing edges all point

to the same node) are deleted and the isomorphic subgraphs are

merged. A decision diagram is ordered if each variable is encoun-

tered at most once in every path and the variables are encountered

in the same order in every path when traversing from the root node

to the terminal node. A TDD that is both reduced and ordered is

called the reduced ordered TDD (ROTDD).

4. ALGORITHM TO CALCULATE FLITA

SPECTRAL COEFFICIENTS FROM ROTDDS

Based on the definitions for FLITA transform and ROTDD pre-

sented in Sections 2 and 3, an algorithm to calculate the FLITA

spectral coefficients from ROTDDs has been derived. The algo-

rithm works by examining every path in the ROTDD and determin-

ing whether the function output value for the product term repre-

sented by the path has an influence on the value of the spectral

coefficient being considered. The determination is performed

through a matching process, where the literals of the ternary vari-

ables along the path are matched with the corresponding literals in

the functions u and kv of the spectral coefficient. Two variables,

index1 and index2, are utilized in the matching process where in-

dex1 (index2) is used to keep track of the largest (smallest) index of

the variables in kv with 0 (2) value. A path is said to match a spec-

tral coefficient if the value of the spectral coefficient is dependent

on the terminal value reached by the path, i.e., if the product term

of the path covers at least one minterm which falls within the win-

dow function u and has cube 11

11
ll

k
l
k XXX kk

K
−

− that matches one of the

cubes in kv . The number of such minterms within a matching path

can be determined from index1 and index2. Every time a matching

path is found, the algorithm calculates the contribution of the path’s

terminal value to the spectral coefficient and accumulates them in

the temporary variable temp. At the end of the algorithm, the value

contained in temp is the value of the spectral coefficient.

Algorithm to calculate the spectral coefficient)(l

k
c

Step 1: Initialize temp to zero.

Step 2: Traverse all paths from the root node down to the terminal

nodes. For each path carry out the matching process shown in Step

3.

Step 3: Check whether the path being considered matches)(l

kc .

Initialize index1 and index2 with 0 and 1+k , respectively;

For each directed edge from node V1 to V2 labeled by j in the path

{ If (var(V1) appears in the function u of
)(l

kC)

 { If (the literal of var(V1) in u = j

VindexX)(1
)

 Go to match_ok;

 Else

 Go to match_not_ok;}

 Else

 { If (j =1)

 Go to match_not_ok;

 Else

 { If (j = 0)

 { If (max(index1, index(V1)) = index(V1))

 index1 = index(V1);}

 Else // (j = 2)

 { If (min(index2, index(V1)) = index(V1))

 index2 = index(V1);}

 If (index1 > index2)

 Go to match_not_ok;}}

match_ok:

 If V2 is a terminal node

 The path matches)(l

kc . Go to Step 4;

 Else

 Continue with the next edge;}

match_not_ok:

 The path does not match)(l

kc . Continue to the next path;

Step 4: Determine the contribution of the matching path to the

value of)(l

kc .

If (index1 = 0)

 temp = temp − ((index2 − 2) × value(V2));

Else

 temp = temp − ((index2 − index1) × value(V2));

If (the current path is not the last path)

 Continue to the next path;

Else

)(l

kc = temp;

Example 3. Let ()nXf
r

 be a three-variable ternary function with

truth vector F
r

 = ,1,0,2,2,0,2,0,0,0,2,1,2,2,0,2,1,1,1,2,2,2,1,2,0[

]0,2,1 . By (10), it can be easily obtained that

]3,2,0,1,0,0,0,0,1,2,1,0,2,0,2,0,0,1,2,0,2,1,1,2,2,2,0[' −−−=C
r

. The

function ()nXf
r

 can also be represented by the ROTDD shown in

Fig. 1, where the ordering is 132 XXX << and there are a total of

21 paths. Given the ROTDD, the elements of 'C
r

 for ()nXf
r

 can

also be calculated using the algorithm presented in Section 4. Table

2 lists the paths that contribute to the value of all)(l

kc , k > 0, their

contributions, as well as the final spectral coefficient values. Note

that the listed paths are those paths that reach match_ok in the algo-

rithm. The rest of the paths reach match_not_ok and therefore do

not affect the value of temp. Comparing the spectral coefficient

values in the table with the corresponding elements of 'C
r

 obtained

by (10), it can be verified that they are the same.

Figure 1 – ROTDD for ()nXf
r

.

2X

3X 3X 3X

1X 1X 1X 1X 1X

0 1 2

0
1

2

0 1, 2 0 1
2 0

1

2

0 2

1

1 0, 2 0, 2 1 0 1
2 0 1

2

976

5. CONCLUSIONS

New equation for FLITA spectral coefficients has been presented

which reveals more clearly the relations between the individual

spectral coefficient with the function being transformed. A layered

Kronecker matrix equation for the transform has also been given.

As layered Kronecker matrix structure is very closely related to the

pseudo-Kronecker type decision diagrams, the given equation can

be helpful in obtaining spectral transform decision diagrams for

FLITA expansions. An algorithm to calculate FLITA spectral coef-

ficients from ROTDDs has also been derived based on the new

definitions. By leveraging on the compactness of the ROTDD rep-

resentation, the given algorithm allows FLITA spectral coefficients

to be computed with less memory requirement and computational

cost compared to the fast transform method [4], [6], especially for

large functions. The algorithm presented here can also be imple-

mented for MDD with edge value and/or cyclic negation and com-

plement edge operations. The difference is only in the determina-

tion of the terminal value associated with a path. Similar to the

concept of polarity used in optimization of transforms such as

Reed-Muller, Arithmetic, and Haar, the FLITA expansions with

permutation [6] are simply the equivalent FLITA expansion when

the input variables are modified through unary cyclic addition and

complement operators. Hence, the concept introduced here can also

be directly extended for them.

REFERENCES

[1] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-

Vincentelli, Synthesis of Finite State Machines: Functional

Optimization. Boston: Kluwer Academic Publishers, 1997.

[2] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S.

Stankovic, Decision Diagram Techniques for Micro- and

Nanoelectronic Design Handbook. Boca Raton: CRC Press,

2006.

[3] A. N. Al-Rabadi, Reversible Logic Synthesis: From

Fundamentals to Quantum Computing. New York: Springer-

Verlag, 2004.

[4] B. J. Falkowski and C. Fu, “Properties and experimental

results of fastest linearly independent ternary arithmetic

transforms,” IEEE Trans. Circuits Syst. I, vol. 53, pp.

858−866, April 2006.

[5] B. J. Falkowski, C. C. Lozano, and T. Łuba, “Properties and

relations of new fastest linearly independent arithmetic

transforms for ternary functions,” in Proc. 15th IEEE

European Signal Processing Conf., Poznan, Poland,

September 2007, pp. 2129−2133.

[6] C. C. Lozano, B. J. Falkowski, and T. Łuba, “Ternary

polynomial expansions based on generalized fastest linearly

independent arithmetic transforms,” in Proc. 15th IEEE Int.

Conf. Mixed Design of Integrated Circuits and Systems,

Poznan, Poland, June 2008, pp. 297−302.

[7] R. S. Stankovic and J. T. Astola, Spectral Interpretation of

Decision Diagrams. New York: Springer-Verlag, 2003.

[8] D. M. Miller and R. Drechsler, “On the construction of

multiple-valued decision diagrams,” in Proc. 32nd IEEE Int.

Symp. Multiple-Valued Logic, Boston, Massachusets, USA,

May 2002, pp. 245−253.

[9] S. Nagayama and T. Sasao, “Representations of two-variable

elementary functions using EVMDDs and their applications

to function generators,” in Proc. 38th IEEE Int. Symp.

Multiple-Valued Logic, Dallas, Texas, USA, May 2008, pp.

50−56.

[10] B. J. Falkowski and C. H. Chang, “Efficient algorithms for

forward and inverse transformations between Haar spectrum

and binary decision diagram representations of Boolean

functions,” in Proc. 13th IEEE Int. Phoenix Conf. Computers

and Communications, Phoenix, Arizona, USA, April 1994,

pp. 497−503.

Table 2 − Spectral coefficients computation for ()nXf
r

Spectral coefficient u kv Contributing paths index1 index2 Contribution to temp Final value

)0(
1c 0

2
0
3 XX

0
1

2
1 XX

ff −

0,0,0 132 === XXX 1 2 0))0)12((=×−−
1

2,0,0 132 === XXX 0 1 1))1)21((=×−−

)1(
1c 1

2
0
3 XX 0,1 32 == XX 0 2 0))2)22((=×−− 0

)2(
1c 0

2
1
3XX

0,1,0 132 === XXX 1 2 2))2)12((−=×−−
0

2,1,0 132 === XXX 0 1 2))2)21((=×−−

)3(
1c 1

2
1
3XX

0,1,1 132 === XXX 1 2 2))2)12((−=×−−
0

2,1,1 132 === XXX 0 1 2))2)21((=×−−

)4(
1c 0

2
2
3 XX

0,2,0 132 === XXX 1 2 2))2)12((−=×−−
0

2,2,0 132 === XXX 0 1 2))2)21((=×−−

)5(
1c 1

2
2
3 XX

0,2,1 132 === XXX 1 2 2))2)12((−=×−−
−1

2,2,1 132 === XXX 0 1 1))1)21((=×−−

)0(
2c 0

3X

0
1

0
2

0
1

2
2

2
1

2
2

XX

XXXX

f

ff

−

−

0,0,0 132 === XXX 2 3 0))0)23((=×−−
0

0,2 32 == XX 0 2 0))1)22((=×−−

)1(
2c 1

3X
0,1,0 132 === XXX 2 3 2))2)23((−=×−−

−2
1,2 32 == XX 0 2 0))0)22((=×−−

)0(
3c 1

0
1

0
2

0
3

0
1

0
2

2
3

0
1

2
2

2
3

2
1

2
2

2
3

XXXXXX

XXXXXX

ff

ff

−−

−

0,0,0 132 === XXX 3 4 0))0)34((=×−−

−3
0,2,0 132 === XXX 2 3 2))2)23((−=×−−

0,2,2 132 === XXX 1 2 1))1)12((−=×−−

2,2,2 132 === XXX 0 1 0))0)21((=×−−

977

