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ABSTRACT 
New linearly independent quaternary transforms over Ga-
lois Field (4) called Generalized Fixed Polarity Helix trans-
forms are introduced here. Their definitions based on recur-
sive equations are described. Various properties of quater-
nary helix transform matrices, their mutual relations as well 
as their butterfly diagrams and computational costs versus 
quaternary Reed-Muller transform are also discussed.  

1. INTRODUCTION 

The algebra of linearly independent transforms constructed 
on the basis of different binary and ternary functions in Ga-
lois Field (GF)(2) and GF(3) have been developed in [1, 2]. 
Linearly independent logic has proved to be not only of 
great theoretical value, but also of practical value, to the 
design of fine-grain and cellular automata types of Field 
Programmable Gate Arrays (FPGAs) and different Pro-
grammable Logic Devices (PLDs) with XOR gates. 

In this article, Fixed Polarity Quaternary Helix (FPQH) 
transforms are proposed that are based on four new trans-
forms, which have very regular structure that results in their 
fast computation and some interesting properties. These 
transforms are named quaternary helix transforms due to 
their symmetrical structure along the diagonal in the trans-
form matrices similar to our previous GF(3) article [3]. Rela-
tions and properties between different helix matrices are also 
shown. Butterfly diagrams and properties of these quaternary 
helix transforms are also discussed. As analyzed in computa-
tional costs, the introduced helix transforms are much faster 
in calculation of their spectra than Quaternary Reed-Muller 
transform (QRM) [4]. The concept of FPQH transforms is 
also extended into general case where each transform pos-
sesses n4  different polarity expansions. They are named 
Generalized Fixed Polarity Quaternary Helix (GFPQH) 
transforms. 

2. BASIC DEFINITIONS 

Definition 1. Let nM  be a nn 44 ×  matrix with columns cor-
responding to some quaternary functions of n-variable over 
GF(4). If the set of columns is linearly independent with re-
spect to bit-by-bit GF(4) operations, then nM  has one unique 

inverse 1−
nM , and is said to be linearly independent, i.e. 

 

  nnn IMM =⋅ −1  ( )1  

where nI  is a nn 44 ×  identity matrix and all the operations 
are performed over GF(4) as described in Tables 1 and 2. 

The linearly independent transform based on Definition 1 
can be described by the following general formulae per-
formed over operations in GF(4): 
  FAM n =⋅  ( )2  
and 
  AFM n =⋅−1  ( )3  

where [ ]TnfffF 1410 ...,,,
−

=  is a column vector defin-
ing the truth vector of a quaternary function )( nxf  in natural 

quaternary ordering, nM  is a matrix of order nN 4=  defined 
by any linearly independent set of n-variable quaternary 
functions and [ ]TnaaaA 1410 ...,,,

−
=  is the spectral coef-

ficient column vector for the particular transform matrix nM  

with the inverse 1−
nM  while T is the matrix transpose opera-

tor.  
Formula (2) can be written as 
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where ig   represents the truth vector of an n-variable quater-
nary function over GF(4), such that the matrix 

[ ]Tn ngggM
1410 ...,,,
−

= , 140 −≤≤ ni , and the sym-
bol ∑  is the addition performed over GF(4). 
Definition 2. Let nM  be a matrix of order N following 
Definition 1. Additionally, nM  can be partitioned into 16 

11 44 −− × nn  submatrices 1−nM  as shown in the following 
equation, 
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Table 1 −Additions over GF(4) 

+ 0 1 2 3 
0 0 1 2 3 
1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 
 

Table 2 −Multiplications over GF(4) 

* 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 3 1 

3 0 3 1 2 
 
 

3. FIXED POLARITY QUATERNARY HELIX 
TRANSFORMS 

In this section, four basic FPQH transforms will be pre-
sented. They are denoted as Right-Positive-Helix (RPH), 
Left-Positive-Helix (LPH), Right-Negative-Helix (RNH) 
and Left-Negative-Helix (LNH) transforms based on their 
different function expansions. All presented helix transforms 
follow strictly Definitions 1-2. 

The kernel matrix of RPH transform is 
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In all the matrices and equations, the parameter 
}3,2,1{∈x . 

RPH is the transform matrix relating the truth vector F  
and spectral coefficients’ vector A . It can be verified using 
(2) that 

00 af RPH =  

2101 axaaxf RPH ⋅++⋅=  

22 af RPH =  

323 aaxf RPH +⋅= . 

By (3) it can be obtained that 
00 fa RPH =   

2101 fxffxa RPH ⋅++⋅=  

22 fa RPH =  

323 ffxa RPH +⋅= . 

It is clear, that the basic RPH transform matrix is a self-
inverse matrix. For order N, RPH transform is extended by 

using Kronecker product [5, 6], which is performed over 
GF(4) as shown in the following formula, 
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Property 1. Let RPH-1 be the inverse of RPH transform of 
order N, then 
  nn RPHRPH =−1 . ( )8  

The function expansion of the basic LPH transform can 
be derived from the expansion of the basic RPH transform 
by interchanging subscripts of the coefficients’ vector ele-
ments ia  )30( ≤≤ i  between 0 and 3 ( )30 aa ⇔ ,  and be-
tween 1 and 2 ( )21 aa ⇔ , as shown below: 

30 af LPH =  

3211 axaaxf LPH ⋅++⋅=  

12 af LPH =  

103 axaf LPH ⋅+= . 

The LPH matrix can be obtained by horizontally flipping 
the RPH matrix of the same order N. The basic LPH trans-
form matrix is given by 

  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

001
0010

10
1000

1

x

xx
LPH . ( )9  

The basic LPH transform matrix is also a self-inverse 
matrix so Property 1 applies to it too.  

By interchanging subscripts of the truth vector’s 
minterms jf  )30( ≤≤ j  between 0 and 3 ( )30 ff ⇔ ,  and 

between 1 and 2 ( )21 ff ⇔  in the function expansions of 
RPH and LPH transforms, the results are the expansions of 
RNH and LNH transforms, respectively. The basic transform 
matrices of RNH and LNH can be derived from the basic 
matrices of RPH and LPH by flipping the matrices along 
their diagonals. The transform matrices of RNH and LNH 
are also the inverse matrices of each other as shown in the 
following property.  
Property 2. Let RNH-1 and LNH-1 be the inverses of RNH 
and LNH transforms of order N, then 
  nn LNHRNH =−1 . ( )10  
and 
  nn RNHLNH =−1 . ( )11  

In our previous article [2], a fast algorithm was intro-
duced based on decomposition of partial transform matrices. 
This method is also applied to the four introduced FPQH 
transforms and used to derive their forward and inverse but-
terfly diagrams. In Table 3, all FPQH transforms together 
with their forward butterfly diagrams for n=2 are presented. 
From Properties 1 and 2, the inverse butterfly diagrams of the 
four FPQH transforms can be also easily derived. The dashed 
lines correspond to the values of the parameter x. 
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For general case, all quaternary helix expansions can be 
extended into n4  different polarity expansions, which are 
called Generalized Fixed Polarity Quaternary Helix 
(GFPQH) transforms. Let k

nRPH  represent the k-th polar-
ity of the RPH transform. For order N, the generalized RPH 
transform k

nRPH  can be derived by 
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For 1=n  and 1=k , the new expansions are  
21010 01 axaaxff

RPHRPH
⋅++⋅==  

001 01 aff
RPHRPH

==  

3232 01 aaxff
RPHRPH

+⋅==  

223 01 aff
RPHRPH

== . 

In the matrix form, 
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Table 3 −FPQH transforms and their corresponding butterfly 
diagrams for n = 2 
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The inverse matrix is 
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Similarly, for polarities 2=k  and 3=k , the basic 
RPH<k> transform matrices are obtained by re-ordering  the 
rows of the forward matrix RPH<0> while the inverse matri-
ces RPH-1 are derived by re-ordering their  columns. 
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and 
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For order N, the generalized inverse RPH transform 

( ) 1−k
nRPH  can be derived by 
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The concept of GFPQH can be easily extended to other 
three FPQH transforms. For any n-variable quaternary func-
tion ( )nxf , the k-th polarity spectrum kf  can be obtained 
from the original quaternary function ( )nxf  by the follow-
ing equation performed over GF(4) 

  ( ) fRPHf
k

n
k ⋅= −1 . ( )18  

4. COMPUTATIONAL COST 

The number of non-zero elements in the matrix of FPQH 
transforms determines the additions required to calculate the 
spectrum. The four FPQH transforms have the same compu-
tational cost due to their close relations.  

The total number of 2-place additions to compute FPQH 
transforms of any n-variable quaternary function by direct 
matrix computational method is 
  nn

nS 47 −= . ( )19  
Based on the fast transform method presented in [2], the 

additions are reduced to 
  11 43)447(' −− ⋅=−⋅⋅= nnn

n nnS . ( )20  
Table 4 gives the comparison of the computational costs 

between the FPQH transforms and QRM transform both in 
the direct matrix computation method and through the fast 
transform algorithms as described in [4]. 

419



5. CONCLUSION 

The concept of GFPQH transforms over GF(4) is considered 
for the first time in this paper. Various properties for the he-
lix transforms have been described. In order to make the 
calculation of these quaternary expansions efficient, the ma-
trix decomposition and corresponding butterfly diagrams are 
also shown. In addition, the computational costs for FPQH 
transforms are compared with QRM transform. The GFPQH 
transforms can also be the bases of new quaternary word 
decision diagrams in a manner similar to the ones developed 
in [7]. 
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Table 4 −Computational costs 

 QRM QRM-1 FPQH 

n 
direct fast direct fast direct fast 

nn 413 −  149 −⋅ nn  nn 411 −  147 −⋅ nn  nn 47 −  143 −⋅ nn  
1 9 9 7 7 3 3 
2 153 72 105 56 33 24 
3 2133 432 1267 336 279 144 
4 28305 2304 14385 1792 2145 768 
5 370269 11520 160027 8960 15783 3840 
6 4822713 55296 1767465 43008 113553 18432 
7 62732133 258048 19470787 200704 807159 86016 
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