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ABSTRACT

This paper proposes an algorithm for modeling the co-
variance of the spectrum in the prior distributions of
non-negative matrix factorization (NMF) based sound
source separation. Supervised NMF estimates a set of
spectrum basis vectors for each source, and then rep-
resents a mizture signal using them. When the ex-
act characteristics of the sources are not known in ad-
vance, it is advantageous to train prior distributions
of spectra instead of fixed spectra. Since the frequency
bands in natural sound sources are strongly correlated,
we model the distributions with full-covariance Gaus-
sian distributions.  Algorithms for training and ap-
plying the distributions are presented. The proposed
methods produce better separation quality that the ref-
erence methods. Demonstration signals are available at
wwWw.cs.tut.fi/ tuomasv.

1. INTRODUCTION

Sound source separation has applications in the analy-
sis and manipulation of audio signals, since individual
sources can be recognized or modified more efficiently
than polyphonic mixtures. Recently, non-negative ma-
trix factorization (NMF) has been successfully used in
audio source separation [7, 9, 10].

In NMF, the spectrum vector s} of a sound source
n in frame t is approximated as a weighted sum

st~ S bigi (1)

i€Sy

of spectral basis vectors b;. Here S,, denotes the set of
basis vector indices of source n and g;; the gain of the
ith basis vector in time frame ¢,= 1,...,T. The index
sets are disjoint, i.e., each source is presented with a
separate set of basis vectors. Both the gains and basis
vectors are restricted to be entry-wise non-negative.

The spectral vector x; of the mixture signal is a sum
of N sources, i.e.,

x =Y s, (2)

which results to approximation

N
Xt ~ Z Z bigi.i. (3)

n=14i€S,
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In the supervised NMF, the basis vectors of each
source are trained using trainig data where the source
is present in isolation. The basis vectors are then fixed
and gains are estimated by minimizing the error of the
approximation (3). This procedure can lead to good sep-
aration results when appropriate training data is avail-
able [7].

When the exact characteristics of a source are not
known a priori, it is advantageous to adapt the basis
vectors [9]. Instead of fixed basis vectors, we can train
prior distributions p(b;) for them. This can be viewed
as maximum a posterior (MAP) estimation, where the
objective p(X|G, B)p(G)p(B) to be maximized consists
of the observation model p(X|G, B) which measures the
error of the approximation (1), and p(G) and p(B) are
the priors of the gains and basis vectors, respectively.
Here X, G, and B are matrices where all the observa-
tion vectors, gains, and basis vectors are grouped into
their respective matrices. A generic formulation for the
use of priors, adaptation, and MAP estimation in the
separation is given in [5]. Instead of MAP estimation,
full Bayesian treatment can also be used with appropri-
ate priors [6].

The previous work [9] trained Gamma priors for the
basis vectors since the Gamma distribution is a conju-
gate prior of the Poisson distribution which was used in
the observation model. The work assumed a prior where
the entries are statistically independent from each other,
since this leads to computationally efficient algorithms.
The assumption is unrealistic, since in natural audio
spectra the frequencies are strongly dependent on each
other. In this paper we propose an algorithm which al-
lows modeling of the spectral covariance. The algorithm
for training the priors is presented in Section 2, and the
algorithm for performing the separation is presented in
Section 3. In Section 4 the proposed method is shown
to clearly improve the separation quality compared to
previous methods where the covariance is not modeled.

2. TRAINING FULL-COVARIANCE
PRIORS

The training is done using material where each source
is present in isolation. In the previous work [9] we ob-
served that it is beneficial to assume that each obser-
vation vector s} of the training data is produced by a
single basis vector. This means that in (1) only a sin-
gle gain g;; in each frame is non-zero. Training with
the above assumption leads to basis vectors which cor-
respond to entire spectra of target sources, instead of
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parts of the spectra.

Prior distribution p(B) of basis vectors can be ef-
ficiently learned by first normalizing the training data,
and then estimating a mixture model for the normal-
ized observations. The normalization effectively cancels
out the gains so that the single non-zero gain becomes
approximately unity. FEach component in the mixture
model corresponds to a single basis vector and models
its distribution.

Observations sy in our system are the square roots
of energies measured on 80 frequency bands spaced uni-
formly on the mel scale (see Section 4 for details about
the feature extraction). For natural sounds sources, the
logarithms of energies measured in frequency bands are
well modeled with normal distributions. However, fre-
quency bands are usually strongly correlated. In many
applications, discrete cosine transform is used to reduce
the correlation. For example, mel-frequency cepstral co-
efficient features which are widely used in audio classi-
fication, are calculated this way.

Here we model the full covariance of basis vectors by
training a full-covariance Gaussian mixture model for
the log-spectrum features. First, log-spectral vectors of
the training data are calculated and normalized so that
the norm of each vector equals unity. The distribution
of the normalized vectors y; is modeled using a Gaussian
mixture model

p(yi) = D wiN(yps pi, ), (4)

€S,

where each Gaussian 7 has weight w;, and N is a Gaus-
sian distribution with mean vector p; and full covariance
matrix X;. The number of components in S,, is chosen
beforehand and fixed.

The parameters are estimated by the expectation
maximization (EM) algorithm, which is initialized by
k-means clustering. Since the covariance matrices may
become singular, the inverses of the covariance matri-
ces are calculated by using the eigenvalue decomposition
3; = UAUT, where the eigenvalues in V are restricted
above 1079 times the largest eigenvalue. Furthermore,
only 3 EM-algorithm iterations are used.

Each mixture component distribution is used as a
prior for a log-basis vector, i.e.

p(log(b;)) = N (log(b;); p;, 34). (5)

Here log(b;) denotes the element-wise logarithm of vec-
tor b;. The basis vectors are assumed to be independent
from each other. Figure 1 illustrates an example mean
vector and covariance matrix. The mean of the distri-
bution has peaky shape in the low frequencies, which
means that it corresponds to a harmonic spectrum. In
the covariance matrix, harmonic frequencies have rela-
tively large strong correlations.

The algorithm can be made more efficient by decor-
relating the dimensions of the normalized log-spectrum
yi vectors and reducing the number of dimensions by
principal component analysis. Once the model (4) has
been trained for the decorrelated vectors, the means and
variances can be projected back to the original feature
space.
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Figure 1: The mean vector (upper panel) and covari-
ance matrix (lower panel) of an example log-basis vec-
tor. Dark color indicates positive correlation and light
color negative correlation.

3. SEPARATION ALGORITHM

The separation algorithm maximizes the likeli-
hood of the sources by maximizing the objective
p(X|G,B)p(G)p(B). The negative logarithm of the
objective is

L =D(X||G,B) + Ly(G) + Ly(B), (6)

where the terms D, Ly, Ly account for the observation
model p(X|G, B), prior of gains p(G), and prior of basis
vectors p(B), respectively.

3.1 Objectives

We use a Poisson observation model, which negative log-
arithm is the divergence [9]. We use a gradient descent
algorithm (explained later) in the estimation of the ba-
sis vectors, and the gradient of the divergence may have
unbounded large terms, causing convergence problems.
We circumvent the problem by adding a small constant
€ to the model in the right side of Eq. (3). This can
be viewed as a small noise floor in the model, and the
resulting divergence is defined as

T F N
DX||G,B)=) > d (xt,f,Z > bisge +e) ,
t=1f=1

n=1 ZESn

where d(p,q) = plog(p/q) —p + q. x5 and b; § denote
the fth entry of vectors x; and b;, respectively.

The model is slightly similar to the augmented diver-
gence [8, pp. 34-48], but for simplicity € is here added
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only to the model, not to the observations. In our sys-
tem € had value which was 10~2 times the mean of the
entries of X. However, the method is not sensitive to
the exact value of e.

We use use an i.i.d. exponential distribution for the
gains, and therefore the negative log of p(G) (with the
terms independent of the gains omitted) equals

N T
Ly(G) = A Z Z th,i; (7)

n=1:e8§, t=1

where A\ is the rate parameter of the distribution.

Term p(B) corresponds to the full-covariance multi-
variate Gaussian distribution trained for each log(b;) in
the training phase. We write the negative logarithm of
the prior as a function of log(b;)

N
Ly(B) = 3 3 3 (los(by) — ) TS (log(bi) — ;)
n=11€8,

where the terms independent of the basis vectors are
omitted. The above is very similar to the term used by
Wilson et al. in [10] to model the joint distribution of
gains.

3.2 Iterative algorithm

The objective (6) is minimized using an iterative algo-
rithm, where the gains and basis vectors are updated
by turns. The gains are updated using multiplicative
update

I‘;rbi

TTh, £ (8)

gt,i < Gt,i

where

N
ry =x./ lz Z bigi: + €|, 9)

n=14€8,,

./ denotes element-wise division, and 1 is a all-one col-
umn vector.

Estimation of basis vectors is more problematic. Ba-
sically the algorithm proposed in [2] and used in [10]
could be used here. The entries of the basis vector
are heavily correlated, but multiplicative updates es-
sentially update each element independently from each
other. For a prior with strong covariance structure the
update should be taken into the direction of the negative
gradient.

We use gradient descent, which resulted to better
convergence and results than the update proposed in
[2]. The gradient of the divergence with respect to basis
vector ¢ is

V:D(X||G,B) =) b/ (1 —
t

where 3 denotes element-wise division. The gradient of
the negative log-prior with respect to basis vector 7 is
ViLy(B) = [£7 " (log(b; +¢) — p;)]./(b; +¢).  (10)
Also here we add small constant € to ensure numerical
stability.
The whole iterative estimation algorithm is given as
follows.

Xt >
N b
Don=1 2ies, Pigi T €

1. Initialize each basis vector b; with the distribution
mean exp(p;). Initialize the gains with random pos-
itive values.

2. Calculate gradient V; = V;D(X||G,B) + V,;L;(B)
with respect of each basis vector b;.
Update basis vectors into the negative direction of
the gradient as b; «— b; — aV;. Negative entries
of the basis vectors are set of zero. Step size « is
adapted by increasing it after iterations when the
cost (6) decreased, and decreasing when the cost in-
creased.

4. Update gains using multiplicative update rule (8).

e

The steps 2-4 are repeated until the algorithm converges.
In practise we found it advantageous to use the moment
term of the gradient, so that the effective gradient in
Step 3 is the sum of the gradient of the current and
previous iteration.

In total the computation time of the proposed
method is a couple of times the computation time of
the NMF algorithm [9] where independent Gamma dis-
tributions are used for each entry of b;, and multiplica-
tive update rules were used for both the gains and basis
vectors.

3.3 Source reconstruction

Under the Poisson model assumption, the expected
value of the magnitude spectrum vector of each compo-
nent is the ratio of its gain times the basis vector to the
sum of all the gains times the basis vectors. [1, Section
2.1.1]. Therefore, the expected value of the spectrum
vector produced by source n is given as

> ics, Jtibi
N )
Don=t 2ies, 9tibi T €

where .x denotes element-wise multiplication.

(11)

é?:Xt.*

4. SIMULATIONS

The proposed method was evaluated in separating sig-
nals consisting of a random male and a random female
speaker. We use signals from the Grid corpus, [3], which
consist of short sentences spoken by 34 speakers. 300
random test signals were generated. In each test signal,
a random male speaker and a random female speaker
were chosen. Three random sentences from both speak-
ers were concatenated, and the speakers were mixed at
equal power level.

Magnitude spectrum vectors were calculated as fol-
lows.  First, the signal was filtered using a high-
frequency emphasis filter. Then the signal was win-
dowed into 32 ms frames with a Hamming window with
50 % overlap between adjacent frames. In each frame,
the energy within 80 Mel-frequency bands was calcu-
lated. The algorithm operates on the square roots of
the energies. The data representation is similar to the
one used in [7] and [9].

In the training phase a model for both genders was
trained. Each test speaker at time was excluded from
the training data in order to simulate a situation where
training data from a particular speaker is not available,
but a gender model was in hand. This leave-one-out
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training resulted in 18 male and 16 female models in
total. Every 10th sentence (in the alphabetical order)
of the training data was used to keep the computation
time moderate.

4.1 Algorithms

The following algorithms were tested:

e FULL method is the proposed method where full-
covariance priors and gradient descent are used to
separate the sources.

e DIAG is otherwise similar to the proposed method,
but diagonal covariance matrices are used in the pri-
ors.

e GAMMA method trains Gamma mixture models in-
stead of Gaussian mixture models as explained in [9],
and uses multiplicative updates to estimate param-
eters in the separation phase.

e SINGLE method allows only a single gain from each
source to be non-zero in each frame. The parameters
of this model were estimated by testing all the pos-
sible active component pairs, and selecting the one
which resulted to the lowest divergence.

e SPEAKER method uses the proposed method,
but the priors are trained for each test speaker.
This studies a speaker-dependent separation setting
where the test speakers are known in advance.

All the algorithms were tested with 30 and 70 basis vec-
tors per speaker. In all the algorithms, the observation
model and the prior were balanced by scaling the term
L, with a scaling factor 10 which resulted in approxi-
mately the best performance in the case of all the algo-
rithms.

We also used sparseness factor A which produced ap-
proximately the best results. Normalizing each basis
vector to unity norm and scaling the distributions ac-
cordingly by multiplying the scale parameter was also
found to improve the results slightly.

The SINGLE method evaluates the effect of the
training phase assumption that a single component is
active in each frame also in the separation phase. The
above assumption is similar to the graphical models used
in multi-talker speech recognition [4], where the combi-
nation of most likely state transition paths for the ob-
servation sequence is estimated.

4.2 Testing

Given a particular test signal, the prior sets learned for
male and female speakers were combined, and the gains
and basis vectors were estimated. All the algorithms
except SINGLE were tested with fixed and adaptive ba-
sis vectors: fixed basis vectors used the means of the
distributions without basis vector adaptation, whereas
adaptive basis vectors denote methods where prior dis-
tributions are used.

The magnitude spectrum vectors of the male and fe-
male speaker in each frame were reconstructed according
to Eq. (11). The quality of separation was measured by
the signal-to-noise ratio (SNR) of the separated spectro-
grams. The SNRs were averaged over both the speakers
in all the test signals.

Table 1: Signal-to-noise ratios of the tested methods
in dB, obtained with fixed and adaptive basis vectors
and with either 30 or 70 components per source. The
best speaker-independent algorithm in each column is
highlighted with bold face font.

30 components 70 components

method fixed adaptive fixed adaptive

GAMMA 6.55 6.73 6.95 7.04

FULL 6.60 6.94 7.05 7.29

DIAG 6.54 6.86 7.02 7.15

SINGLE 6.37 — 6.82 —

SPEAKER 6.74 7.01 6.75 6.92
4.3 Results

The average signal-to-noise ratios of each of the tested
algorithm are illustrated in Table 1. In comparison with
the other speaker-independent methods the proposed
method produces better results. Even when fixed ba-
sis vectors are used the SNRs are slightly higher, but
when adaptation is used the difference becomes more
prominent.

With 30 components per source the speaker-
dependent SPEAKER method produces better results
than speaker-independent methods, but interestingly it
performs worse when 70 components are used. The rea-
son for this might be that there is not enough speaker-
specific data to train reliably 70 basis vectors.

It is interesting to note that the SINGLE method
resulted to slightly worse SNR than the proposed NMF
methods, which means that modeling the observation as
a weighted sum of basis vectors instead of a single basis
vector is beneficial at least when the quality is measured
by the SNR.

5. CONCLUSIONS

We have proposed a method to model the covariance
of the spectrum in the prior distributions of the non-
negative matrix factorization based sound source sepa-
ration. Since the frequencies of natural sound sources
are strongly correlated, we have to use an algorithm
which is able to take into account the correlation. The
gradient descent algorithm used in our system is able to
produce good results while being computationally fea-
sible. In comparison with the previous methods where
frequency bins were assumed statistically independent
from each other, the proposed covariance modeling tech-
nique leads to significantly better separation quality.

Acknowledgment

This work has been funded by the Academy of Finland.
The author would like to thank Taylan Cemgil for his
helpful comments.

REFERENCES

[1] A. T. Cemgil. Bayesian inference in non-
negative matrix factorisation models. technical re-

1936



port CUED/F-INFENG/TR.609. Technical report,
University of Cambridge, July 2008.

A. Cichocki, R. Zdunek, and S. Amari. New algo-
rithms for non-negative matrix factorization in ap-
plications to blind source separation. In Proceedings
of IEEE International Conference on Audio, Speech
and Signal Processing, Toulouse, France, 2006.

M. P. Cooke, J. Barker, S. P. Cunningham, and
X. Shao. An audio-visual corpus for speech percep-
tion and automatic speech recognition. Journal of
the Acoustical Society of America, 120(5), 2006.

J. R. Hershey, S. J. Rennie, P. A. Olsen, and T. T.
Kristjansson.  Super-human multi-talker speech
recognition: A graphical modeling approach. Com-
puter Speech and Language, 2009. In press.

A. Ozerov, P. Philippe, F. Bimbot, and R. Gribon-
val. Adaptation of Bayesian models for single chan-
nel source separation and its application to voice /
music separation in popular songs. IEEE Transac-

tions on Audio, Speech, and Language Processing,
15(5), 2007.

S. J. Rennie, J. R. Hershey, and P. A. Olsen. Ef-
ficient model-based speech separation and denois-
ing using non-negative subspace analysis. In Pro-
ceedings of IEEE International Conference on Au-
dio, Speech and Signal Processing, Las Vegas, USA,
2008.

M. N. Schmidt and R. K. Olsson. Single-channel
speech separation using sparse non-negative matrix
factorization. In Proceedings of the International

Conference on Spoken Language Processing, Pitts-
burgh, USA, 2006.

T. Virtanen. Sound Source Separation in Monaural
Music Signals. PhD thesis, Tampere University of
Technology, 2006. Available at http://www.cs.
tut.fi/~tuomasv.

T. Virtanen and A. T. Cemgil. Mixtures of gamma
priors for non-negative matrix factorization based
speech separation. In Proceedings of the 8th In-
ternational Conference on Independent Component
Analysis and Blind Signal Separation, 2009.

K. W. Wilson, B. Raj, and P. Smaragdis. Regular-
ized non-negative matrix factorization with tempo-
ral dependencies for speech denoising. In 9th An-
nual Conference of the International Speech Com-

munication Association (Interspeech 2008), Bris-
bane, Australia, 2008.

1937



