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ABSTRACT
This paper presents a comprehensive performance anal-

ysis of the optimal widely linear (WL) minimum variance
distorsionless response (MVDR) beamformer for the recep-
tion of an unknown signal of interest (SOI) corrupted by
potentially second order (SO) noncircular background noise
and interference. The SOI, whose waveform is unknown, is
assumed to be SO noncircular with arbitrary noncircularity
properties. In the steady state and for SO noncircular SOI
and/or interference, this WL beamformer is shown to always
improve the signal to interference plus noise ratio (SINR)
and the symbol error rate (SER) performance at the ouput of
both the well-known Capon’s beamformer and a WL MVDR
beamformer introduced recently in the literature.

1. INTRODUCTION

Conventional beamforming approaches aim at finding a lin-
ear and time invariant (TI) complex filter w, such that its

output y(t)
def
= wHx(t) corresponds to a SO estimate of a SOI

coming from a particular direction and potentially corrupted
by interference plus background noise, where x(t) is the vec-
tor of the complex envelopes of the signals observed at the
output of the sensors. Although SO optimal for stationary
observations, whose complex envelopes are necessarily SO
circular [2], this conventional approach becomes suboptimal
for nonstationary signals, omnipresent in radio communica-
tion contexts, whose complex envelope may also become SO
noncircular [2] such as BPSK, ASK, MSK or GMSK signals
for example. More precisely, for nonstationary observations,
the optimal complex filters become time variant, and under
some conditions of noncircularity, WL [3], i.e., of the form
y(t) = w1(t)Hx(t)+w2(t)Hx(t)∗.

Recently, a TI WL MVDR beamformer has been intro-
duced and deeply analyzed in [4]. However, although more
powerful than the Capon’s beamformer for SO noncircular
interference, this WL beamformer remains suboptimal for a
SO noncircular SOI, since it does not exploit the SO noncir-
cularity of the latter. To overcome this limitation, the op-
timal TI WL MVDR beamformer for the reception of an
unknown SOI with arbitrary noncircularity properties, cor-
rupted by potentially SO noncircular background noise and
interference has been introduced recently in [5]. This new
WL MVDR beamformer takes into account the potential SO
noncircularity of both the SOI and interference.

The purpose of this paper is to present a comprehen-
sive performance analysis of this optimal WL MVDR beam-
former for which only preliminary performance’s study and
adaptive implementations have been presented in [5]. The

paper is organized as follows. The observation model and
the statement of the problem are given in Section 2. A review
of the optimal WL MVDR beamformer is derived in Section
3 with its equivalent TI WL generalized sidebobe canceller
(GSC) structure. The performance of this WL beamformer,
in terms of both output SINR and SER, are presented in de-
tails in Sections 4 and 5 respectively.

2. HYPOTHESES, DATA STATISTICS AND
PROBLEM FORMULATION

Let us consider an array of N narrow-band sensors and de-
note by x(t) the vector of complex amplitudes of the signals
at the output of these sensors. Each sensor is assumed to re-
ceive a SOI corrupted by a total noise (potentially composed
of interference and background noise). Under these assump-
tions, the observation vector x(t) can be written as follows

x(t) = s(t)s+n(t), (1)

where s(t) and s correspond to the complex envelope, as-
sumed zero-mean and potentially SO noncircular, and the
steering vector, such that its first component is equal to one,
of the SOI respectively. The vector n(t) is the total noise
vector, assumed zero-mean, potentially SO noncircular and
statistically uncorrelated with s(t). The SO statistics of the
noncircular observation x(t) which are considered in this pa-
per are defined by

Rx
def
= < E[x(t)x(t)H ] >= πsss

H +Rn,

Cx
def
= < E[x(t)x(t)T ] >= πsγsss

T +Cn,

where < . > denotes the time-averaging operation, with re-
spect to the time index t, over the observation window,

πs
def
=< E[|s(t)|2] > is the time-averaged power of the SOI re-

ceived by the first sensor, γs
def
=< E[s(t)2]>/ < E[|s(t)|2]>def

=
|γs|e2iφs such that 0 ≤ |γs| ≤ 1, is the time-averaged SO non-

circularity coefficient of the SOI, Rn
def
=< E[n(t)n(t)H ] >

and Cn
def
=< E[n(t)n(t)T ] >.

In order to introduce WL filters in the following,

we define the extended observation vector by x̃(t)
def
=

[x(t)T ,x(t)H ]T and using (1) we obtain

x̃(t) = s(t)s̃1 + s(t)∗s̃2 + ñ(t)
def
= S̃ s̃(t)+ ñ(t), (2)

where ñ(t)
def
= [n(t)T ,n(t)H ]T , s̃1

def
= [sT ,0T

N ]T , s̃2
def
=

[0T
N ,sH ]T , S̃

def
= [s̃1, s̃2] and s̃(t)

def
= [s(t),s(t)∗]T . The SO
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statistics of x̃(t) considered in this paper correspond to the

time-averaged matrix Rx̃
def
=< E[x̃(t)x̃(t)H ] > given, under

the previous assumptions, by Rx̃ = S̃Rs̃S̃
H + Rñ where

Rs̃
def
=< E[s̃(t)s̃(t)H ] > and Rñ

def
=< E[ñ(t)ñ(t)H ] > can be

written as

Rñ =

(
Rn Cn
C∗

n R∗
n

)
. (3)

We consider a TI WL spatial filter w̃
def
= [wT

1 ,wT
2 ]T whose

output is defined by

y(t) = w̃H x̃(t) = s(t)w̃H s̃1 + s(t)∗w̃H s̃2 + w̃H ñ(t). (4)

The problem is then to find the TI WL MVDR spatial filter w̃
which generates the best SO estimate of the SOI s(t), whose
waveform and content are unknown.

3. OPTIMAL WL MVDR BEAMFORMERS

3.1 Optimal WL beamformer not taking into account
SOI noncircularity

When γs is unknown, a first philosophy is to built a WL
MVDR beamformer which does not require the knowledge
or the estimation of this coefficient. An efficient way to gen-
erate, in the output y(t), a non-null SOI without any distor-
tion whatever the correlation between s(t) and s(t)∗, is to
minimize the time-averaged output power w̃HRx̃w̃ under the
constraints:

w̃H s̃1 = 1 and w̃H s̃2 = 0.

The TI WL filter solution to this problem is the so-called
WL MVDR1 beamformer introduced and analyzed in [4] and
defined by

w̃MVDR1 = R−1
x̃ S̃[S̃HR−1

x̃ S̃]−1f ,

with f
def
= [1,0]T . For a SO circular noise vector n(t), this

WL beamformer reduces to the well-known Capon’s MVDR
beamformer defined by

wCapon
def
=

(
sHR−1

x s
)−1

R−1
x s. (5)

In the presence of SO noncircular interference sources, the
WL MVDR1 beamformer outperforms the performance of
the Capon’s beamformer. It is also able to process more
sources than the latter in the presence of at least two rectilin-
ear interferers. But this WL MVDR1 beamformer does not
exploit the potential SO noncircularity of the SOI. To over-
come this limitation, a new WL MVDR beamformer which
takes into account the potential SO noncircularity of the SOI
and which is presented in Section 3.2, has been introduced in
[5].

3.2 Optimal WL beamformer taking into account SOI
noncircularity

For γs 6= 0, s(t)∗ is correlated with s(t) and contains both a
SOI and an interference component. Using an orthogonal de-
composition in the Hilbert space of random processes having
a finite time-averaged power and fitted with the inner product

(u(t),v(t))
def
=< E[u(t)v(t)∗] >, we obtain:

s(t)∗ = γ∗s s(t)+ [πs(1−|γs|2)]1/2s′(t), (6)

with < E[s(t)s′(t)∗] >= 0 and < E[|s′(t)|2] >= 1. Decompo-
sition (6) shows that, for a given time-averaged useful input

power πs, the time-averaged power of the desired signal com-
ponent of s(t)∗ is equal to πs|γs|2 and increases with |γs|. In
particular for a rectilinear SOI for the receiver (BPSK, ASK),
γs = e2iφs , s(t)∗ = e−2iφss(t) and s(t)∗ totally corresponds to
the SOI, whereas for a SO circular SOI (e.g., QPSK), γs = 0,

s(t)∗ = π1/2
s s′(t), and s(t)∗ totally corresponds to an interfer-

ence for the SOI. Using (6) in (2), x̃(t) can be written as

x̃(t) = s(t)(s̃1 + γ∗s s̃2)︸ ︷︷ ︸
s̃γ

+s′(t)[πs(1−|γs|2)]1/2s̃2 + ñ(t)︸ ︷︷ ︸
ñγ (t)

def
= s(t)s̃γ + ñγ(t) (7)

where s̃γ and ñγ(t) are the equivalent extended steering vec-
tor of the SOI, which now depends on γs, and the global noise
vector respectively for the extended observation vector x̃(t).
Using (7) into (4), we finally obtain

y(t) = w̃H x̃(t) = s(t)w̃H s̃γ + w̃H ñγ(t). (8)

From decomposition (8), we deduce that the optimal WL
MVDR beamformer, which optimally exploits the parame-
ters s and γs, corresponds to the WL filter w̃ which mini-
mizes the time-averaged output power w̃HRx̃w̃, under the
following constraint:

w̃H s̃γ = 1. (9)

This WL MVDR beamformer, called MVDR2 in the follow-
ing, is defined by

w̃MVDR2

def
= [s̃H

γ R−1
x̃ s̃γ ]

−1R−1
x̃ s̃γ = [s̃H

γ R−1
ñγ s̃γ ]

−1R−1
ñγ s̃γ ,

(10)
where the time-averaged first correlation matrix Rñγ of ñγ(t)
can be written from (7) as

Rñγ = [πs(1−|γs|2)]s̃2s̃
H
2 +Rñ. (11)

We verify that the beamformer w̃MVDR2 fits the Capon’s
beamformer (5) when both the SOI and the total noise are
SO circular (γs = 0, Cn = O). Equation (8) clearly displays
the SOI and the global noise uncorrelated parts of y(t). It is
then straightforward to introduce the SINR at the output of a
WL filter w̃ defined by

SINR[w̃]
def
=

πs|w̃H s̃γ |2
w̃HRñγ w̃

, (12)

and to prove that w̃MVDR2 maximizes this SINR and is also
proportional to w̃MMSE which minimizes the mean square
error

MSE[w̃]
def
=< E[|s(t)− w̃H x̃(t)|2] > . (13)

3.3 Equivalent TI WL GSC structure

It can be easily verified that the WL beamformer MVDR2
has an equivalent WL GSC structure [6] depicted on Fig.1.
w̃0 is a deterministic WL spatial filter such that w̃H

0 s̃γ =

1, whose output is given by y0(t) = w̃H
0 x̃(t). BH is full

rank (2N − 1)× 2N blocking matrix verifying BH s̃γ = 0,
whose output BH x̃ corresponds to the vector z̃(t). w̃a is a
WL spatial filter which generates the output ya(t) = w̃H

a z̃(t)
and which minimizes the time-averaged power of the output
y(t) = y0(t)− ya(t).
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w̃H
0 −+

x̃(t) y0(t) y(t)

BH w̃H
a

ya(t)
z̃(t)

Fig.1 Equivalent WL MVDR2 GSC structure.

4. SINR PERFORMANCE ANALYSIS

4.1 General SINR analysis

For a given source scenario, it is easy to compare the SINR
at the output of the Capon, MVDR1 and MVDR2 beamform-
ers without any particular computations. Indeed, wCapon,
w̃MVDR1 and w̃MVDR2 , all minimize the time-averaged output
power w̃HRx̃w̃ but under different constraints that satisfy

{w̃ = [wT
1 ,0T

N ]T ;wH
1 s = 1}

⊂ {w̃;w̃H s̃1 = 1 and w̃H s̃2 = 0} ⊂ {w̃;w̃H s̃γ = 1}.
Consequently, the inclusion principle implies that generally

SINRCapon ≤ SINRMVDR1 ≤ SINRMVDR2 . (14)

Let us now analyze the variation of SINRMVDR2 with respect
to γs. Using w̃ = w̃MVDR2 defined by (10), in (12), the SINR
at the output of the MVDR2 beamformer is given by

SINRMVDR2 = πss̃
H
γ R−1

nγ s̃γ . (15)

From (3), R−1
ñ can be written as

R−1
ñ =

(
A D
D∗ A∗

)
with

A = (Rn −CnR
∗
n
−1C∗

n)
−1

D = −ACnR
∗
n
−1.

Then, applying the Inversion Lemma to (11) and substituting
the previous expressions into (15), we obtain after simple al-
gebraic manipulations

SINRMVDR2 = πs
(
sHAs(1+ |γs|2)+2ℜ(γ∗s sHDs∗)

− |sHDs∗ + γss
HAs|2

[πs(1−|γs|2)]−1 + sHAs

)
. (16)

For a SO circular SOI (γs = 0), (16) gives

SINRMVDR2 = πs

(
sHAs− |sHDs∗|

π−1
s + sHAs

)
,

which has been given for the first time in [7] with the MMSE
criterion, which is always greater than SINRMVDR1 [4] and
which tends to SINRMVDR1 when πss

HAs � 1.
For a rectilinear SOI (|γs| = 1), (16) gives

SINRMVDR2 = 2πs
(
sHAs+ℜ(e−2iφssHDs∗)

)

= 2πs
(
sHAs−|sHDs∗|cos(2φ)

)

where 2φ def
= φds − 2φs + π with φds

def
= Arg(ds), with ds

def
=

sHDs∗. This expression corresponds to the SINR at the out-
put of the optimal receiver analyzed in [8].

For arbitrary values of |γs|, two cases must by distin-
guished:

If ds = 0, which occurs in particular for a SO circular to-
tal noise (Cn = O) or when s∗ is in the kernel of D, it is
straightforward to prove from (16) that SINRMVDR2 is an in-
creasing function of |γs|. The minimal value of SINRMVDR2

obtained for γs = 0 corresponds to πss
HR−1

n s = SINRCapon,
whereas its maximal value is obtained for |γs| = 1 and corre-
sponds to 2πss

HR−1
n s = 2SINRCapon.

Now if ds 6= 0, which occurs for a SO noncircular total
noise (Cn 6= O) provided that s∗ is not in the kernel of D,
the variation study of SINRMVDR2 with |γs| is more intricate.
We can prove that SINRMVDR2 is an increasing function of
|γs| for cos(2φ) ≤ 0, whereas for cos(2φ) > 0, there exists
a value of |γs| noted |γs,min|, such that SINRMVDR2 decreases
for 0≤ |γs| ≤ |γs,min| and increases for |γs,min| ≤ |γs| ≤ 1. This
shows in this case the existence of a parameter 0 < |γs,min|< 1
which minimizes SINRMVDR2 .

4.2 SINR for one interference source

In the presence of a single interference source,

Rn = π1j1j
H
1 +η2I and Cn = π1γ1j1j

T
1 ,

where γ1
def
= |γ1|e2iφ1 is the time-averaged SO noncircular-

ity coefficient of the interference. Then, SINRMVDR2 can be
computed and compared with the SINR at the output of the
Capon and MVDR1 beamformers.

4.2.1 Case of a rectilinear SOI (|γs|= 1) and a strong inter-
ference

For a rectilinear SOI and a rectilinear interference which
is assumed to be strong (i.e., ε1

def
= (jH

1 j1)π1/η2 � 1),
SINRMVDR2 becomes

SINRMVDR2 ≈ 2εs
(
1−|α1s|2 cos2(φ)

)
, (17)

whereas SINRCapon and SINRMVDR1 are given by

SINRCapon ≈ εs
(
1−|α1s|2

)
, |α1s| 6= 1 (18)

SINRMVDR1 ≈ εs

(
1− |α1s|2

2−|α1s|2
)

, |α1s| 6= 1. (19)

In these expressions εs
def
= (sHs)πs/η2 and α1s

def
=

jH
1 s/(jH

1 j1)
1/2(sHs)1/2. Expression (17), which has been ob-

tained in [8], shows in this case that the MVDR2 beamformer
discriminates sources by both direction of arrival (DOA) (for
N > 1) and phase, allowing in particular single antenna in-
terference cancellation (SAIC), contrary to the Capon and
MVDR1 beamformer which can discriminate sources only
by the DOA (for N > 1).

For rectilinear SOI and a strong non rectilinear interfer-
ence, provided |α1s| 6= 1, SINRMVDR1 ≈ SINRCapon given
by (18), whereas SINRMVDR2 ≈ 2 SINRCapon. In this case,
SINRMVDR2 is twice the SINR at the output of Capon and
MVDR1 beamformers due to the exploitation of the noncir-
cularity of the SOI.

4.2.2 Case of a non rectilinear SOI (|γs| 6= 1) and a strong
interference

For a non rectilinear SOI and a strong rectilinear interference,
SINRCapon and SINRMVDR1 are still given by (18) and (19)
respectively, whereas SINRMVDR2 becomes

SINRMVDR2 ≈ εs
(
[(2−|α2

1s|)(1+|γ2
s |)+2εs(1−|α2

1s|)(1−|γ2
s |)

−2|α1s|2|γs|cos(2φ)]/[2+ εs(2−|α2
1s|)(1−|γ2

s |)]
)

for arbitrary α1s. In particular for a strong (εs � 1) circu-
lar SOI (γs = 0), SINRMVDR2 ≈ 1 for |α1s| = 1, whereas
SINRMVDR2 ≈ SINRMVDR1 for |α1s| 6= 1 given by (19).
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Finally, for a non rectilinear SOI and a strong non recti-
linear interference SINRMVDR1 ≈ SINRCapon given by (18),
whereas SINRMVDR2 is given by

SINRMVDR2 ≈
(

1+
|γs|2

1+εs(1−|γs|2)(1−|α1s|2)

)
SINRCapon,

for |α1s| 6= 1. In this case SINRMVDR2 is an increasing func-
tion of |γs| varying from SINRCapon obtained for a circular
SOI to 2 SINRCapon obtained for a rectilinear SOI.

4.2.3 Illustrations

To illustrate the previous results, we consider that an array
of N = 2 omnidirectional sensors, equispaced half a wave-
length apart, receives a SOI, an interference and a back-
ground noise, whose DOAs are equal to π/3 and π/2 re-
spectively and such that πs/η2 = 10 dB and π1/η2 = 20 dB.
Note that for a single interference, 2φ = 2(φ1 − φs − φ1s),
where φ1s is phase argument of α1s, which means that
φ corresponds to the phase diversity between the interfer-
ence and the SOI for the considered array. Under these
assumptions, Fig.2 (a) and 2 (b) show the variations of
SINRCapon, SINRMVDR1 and SINRMVDR2 as a function of
|γs| for φ = 6π/15 (cos(2φ) < 0) and φ = π/15 (cos(2φ) >
0) respectively, for two different values of |γ1| (1 or 0.9).
We note the constant values of SINRCapon and SINRMVDR1
as |γs| increases. We also note the increasing value of
SINRMVDR2 with |γs| for cos(2φ) < 0 and the existence of a
value, 0 ≤ |γs,min| ≤ 1 of |γs|, which minimizes SINRMVDR2
for cos(2φ) > 0. We note in both cases, the increas-
ing value of SINRMVDR1 and SINRMVDR2 as |γ1| increases.
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Fig.2 SINRCapon, SINRMVDR1 and SINRMVDR2 as a function of |γs|, (1)
(MVDR2 |γ1| = 1), (2) (MVDR2 |γ1| = 0.9), (3) (MVDR1 |γ1| = 1), (4)
(MVDR1 |γ1| = 0.9), (5) SINRCapon.

4.3 SINR and MSE

Using decomposition (4) and the general expressions (12)
and (13) of the SINR and MSE, the following relation be-

tween the MSE and SINR criteria is easily proved.

MSE[w̃] = πs

(
|1− w̃H s̃γ |2 +

|w̃H s̃γ |2
SINR[w̃]

)
.

This relation is interesting since it shows that the WL filter
w̃ which minimizes MSE[w̃] under the constraint w̃H s̃γ = 1,
is also the WL filter which maximizes SINR[w̃] under the
same constraint, which finally corresponds to w̃MVDR2 . This
shows that, for WL filters verifying constraint (9), the intro-
duced SINR corresponds, to within a constant term, to the
inverse of the MSE.

5. SER PERFORMANCE ANALYSIS

In applications such as passive listening, the SOI waveform
is unknown, which prevents from implementing the optimal
WL receiver for demodulation purposes and which justifies
the approach considered in both [4] and this paper, valid
whatever the kind of SOI (digital or not). However, despite of
this fact and for a digital SOI, it is always possible to compute
and to analyze the SER after demodulation from the output
of Capon, MVDR1 or MVDR2 beamformer. Such an ana-
lyze allows to evaluate the pertinence of the chosen SINR
criterion to optimize the reception of noncircular SOI with
unknown waveform in the presence of noncircular interfer-
ences. More precisely, let us consider a linearly modulated
SOI corrupted by a single linearly modulated interference
and a Gaussian background noise. To simplify the analysis,
we assume that the SOI and interference have common 1/2
Nyquist pulse shapes, carriers and symbol rates and further-
more are perfectly synchronized. In the absence of frequency
offset, assuming an ideal symbol rate sampling so that inter-
symbol interference is removed at the output of a matched
filter to the pulse shaped filter, the sampled observation vec-
tor at the output of this filter can be written as

xv(kT ) = sk s+ jk j1 +n′(kT ), (20)

where T is the symbol period, sk =
√

πseiφs ak, jk =√
π1eiφ1 bk, ak and bk are the SOI and interference symbols,

and where n′(kT ) is an N-variate zero-mean circular Gaus-
sian random variable with E(n′(kT )n′(kT )H) = η2I.

In order to derive simple closed-form expressions of the
SER at the output of the considered beamformers, we only
consider in the following, the case of equiprobable BPSK
({−1,+1}) and QPSK ({±1,±i}) symbols for the SOI and
interference source. In the case of both QPSK SOI and in-
terference source, the MVDR2 beamformer reduces to the
Capon beamformer, so we only examine the SER in the three
following situations: both SOI and interference source are
BPSK, the SOI is BPSK and the interference source is QPSK,
and the SOI is QPSK and the interference source is BPSK for
which the outputs, y(kT ) = w̃H x̃(kT ), of a given WL beam-
former w̃ are respectively given by

y(kT ) = csak + c1
1bk +nk,

y(kT ) = csak + c2
1bk + c3

1b∗k +nk,

y(kT ) = csak + c′sa
∗
k + c1

1bk +nk,

where cs =
√

πseiφs , c1
1 =

√
π1eiφ1w̃H j̃γ with j̃γ

def
=

(jT
1 ,e−2iφ1jH

1 )T , c2
1 =

√
π1eiφ1w̃H j̃1 with j̃1

def
= (jT

1 ,0T
N)T , c3

1 =
√

π1e−iφ1w̃H j̃2 with j̃2
def
= (0T

N , jH
1 )T , c′s =

√
πse−iφsw̃H s̃2 and

nk = w̃H ñ′(kT ).
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For both BPSK SOI and interference, using the follow-
ing MLSE receiver (under the false assumption of circular
Gaussian total noise at the output of the output y(kT ))

âk = Sign [ℜ(c∗s y(kT ))] , (21)

we obtain by conditioning with respect to the interference
symbols

SER=
1
2

{
Q(

√
SNR+

√
INR)+Q(

√
SNR−

√
INR)

}
, (22)

with SNR = πs
2η2‖w‖2 and INR = 2π1[ℜ(ei(φ1−φs)wH j1)]2

η2‖w‖2 with

w̃ = (wT ,e−2iφswH)T and where Q(v)
def
=

∫ +∞
v

1√
2π e−u2/2du.

Note that expression (22) has been obtained in [8].
For BPSK SOI and QPSK interference, using receiver

(21), which is still the MLSE receiver under the false as-
sumption of circular Gaussian total noise at the output of the
output y(kT ), we obtain in the same way

SER =
1
4
{Q(

√
SNR1 +

√
INR1)+Q(

√
SNR1 −

√
INR1)}

+
1
4
{Q(

√
SNR1 +

√
INR2)+Q(

√
SNR1 −

√
INR2)},

with SNR1 = 2πs
η2[‖w̃‖2+2ℜ(e2iφswT

1 w2)]
and (INR`)`=1,2 =

2π1[ℜ(i`−1ei(φ1−φs)wT
1 j1)−(−1)`ℜ(i`−1e−i(φ1+φs)wT

2 j∗1)]

η2[‖w̃‖2+2ℜ(e2iφswT
1 w2)]

with w̃
def
=

(wT
1 ,wT

2 )T .
We note that the terms SNR, SNR1 and INR, INR1, INR2

are respectively proportional to the ratios πs/η2 and π1/η2,
which justifies the notations signal-to-noise ratio (SNR) and
signal-to-interference ratio (INR), but all these terms also de-
pend on πs,π1,η2 through w̃ which satisfies constraint (9).

Finally for QPSK SOI and BPSK interference, using the
following receiver which is still the MLSE receiver under the
false assumption of circular Gaussian total noise at the output
of the output y(kT ),

âk = Arg
(
Minα∈{±1,±i}|y(kT )− csα|

)
,

with four decision areas in C for c∗s y(kT ), we obtain

SER =
1
2
{Q′(∆1,R̃)+Q′(∆2,R̃)},

where Q′(∆`,R̃)
def
=

∫ ∫
∆`

p(z,R̃)dxdy with z = x + iy

and p(z,R̃) = 1

π
√

det(R̃)
e−z̃HR̃−1z̃/2 where z̃

def
= (z,z∗)T ,

R̃ = πsη2

(
‖w̃‖2 2e−2iφswH

2 w∗
1

2e2iφswT
2 w1 ‖w̃‖2

)
is the covari-

ance matrix of the noncircular Gaussian distributed vec-
tor (c∗s nk,csn∗k)

T , and (∆`)`=1,2
def
= {z + α` ∈ ∆} with ∆ def

=

{z = |z|iθ ∈C; |θ | ≤ 3π/4} and α`
def
= −πs−πse−2iφswH

2 s∗−
(−1)`

√
πsπ1[ei(φ1−φs)wH

1 j+ ei(φ1+φs)wH
2 j∗], ` = 1,2.

Fig.3a and 3b illustrate the variations of the SER at the
output of Capon, MVDR1 and MVDR2 beamformers, as a
function of SNR for (a) BPSK SOI and QPSK interference
source and (b) QPSK SOI and BPSK interference source.
For the MVDR2 beamformer, both theoretical and estimated
(from 1000 observed errors) values of SER are computed.
Fig.3a and 3b show the good agreement of theoretical results
with respect to estimated ones. Moreover, although the SER
is not the criterion which is optimized by the WL MVDR2, it
is improved by the latter with respect to the one at the output
of Capon and WL MVDR1 beamformer, whatever the non-
circularity of the SOI.

Finally, we note that the SER and SINR behaviors are
consistent because for these parameters, the MVDR2 beam-
former outperforms the Capon and MVDR1 beamformers for
both SINR and SER points of view by 3dB for BPSK SOI
and QPSK interference source, whereas, the MVDR1 and
MVDR2 beamformers outperform the Capon beamformer
for both SINR and SER point of view by about 1.2dB for
QPSK SOI and BPSK interference source.
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(a) BPSK SOI and QPSK interference with θ1 = π/3
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(b) QPSK SOI and BPSK interference source with θ1 = π/6
Fig.3 Theoretical and estimated SER as a function of πs/η2 for N = 2,
π1/η2 = 10dB, φs = 0, φ1 = π/4 and θs = 0 for Capon, MVDR1 and
MVDR2 beamformers.
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