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Kutluyıl Doğançay and Hatem Hmam

School of Electrical & Information Engineering
University of South Australia

Mawson Lakes, SA 5095, Australia
Email: kutluyil.dogancay@unisa.edu.au

Electronic Warfare and Radar Division
Defence Science and Technology Organisation

Edinburgh, SA 5111, Australia
Email: hatem.hmam@dsto.defence.gov.au

ABSTRACT

In this paper we investigate optimal sensor placement for
time-difference-of-arrival localization. The minimization of
estimation uncertainty is used as the optimization criterion,
which is equivalent to maximization of the determinant of
the Fisher information matrix. It is shown that for equal
sensor noise variances equiangular sensor separation is an op-
timal localization geometry irrespective of the emitter range
from sensors. For six or more sensors the optimal geome-
try is not unique. If the sensor noise variances are different,
equiangular sensor separation does not always correspond to
an optimal configuration. These results are illustrated with
numerical examples.

1. INTRODUCTION

In this paper we consider optimal placement of sensors for
time-difference-of-arrival (TDOA) emitter localization in the
2D plane. As optimality criterion we adopt minimization of
the area of estimation confidence region, which is equivalent
to maximization of the determinant of the Fisher information
matrix [1].

The objective of emitter localization is to determine the
location of an emitter by processing signals originating from
the emitter. Multiple sensors or a moving sensor platform
is utilized to process the received signals. Passive emitter
localization is extensively employed in many civilian and de-
fence applications such as mobile communications, wireless
sensor networks and electronic warfare. There are several
techniques available for emitter localization, including angle
of arrival (AOA), time of arrival (TOA), time difference of
arrival, scan time, Doppler shift and received signal strength
localization. Hybrid localization techniques combining some
of these techniques are also available.

Optimal sensor placement methods for AOA and scan
based localization have been developed in [2, 3]. In dy-
namic sensor placement problems involving moving sensors
the Fisher information matrix may be approximated by re-
placing the unknown true emitter location with its maxi-
mum likelihood estimate [2]. In this paper we extend the
idea of uncertainty minimization to optimal sensor place-
ment for TDOA localization. When deriving the optimality
conditions for TDOA sensor placement we also note some
fundamental differences between optimal AOA and TDOA
geometries.

The paper is organized as follows. Section 2 provides an
overview of the TDOA localization problem. In Section 3
the optimization problem is defined. The main results of
the paper relating to optimal sensor placement are obtained
in Section 4. Optimal TDOA geometries are discussed in
Section 5. The paper concludes in Section 6.

2. OVERVIEW OF TDOA LOCALIZATION

The objective of 2-D TDOA emitter localization is to deter-
mine the location of an emitter s = [x, y]T (where T denotes
matrix transpose) by utilizing N − 1 TDOA measurements
obtained from N sensors at known locations ri = [xi, yi]

T ,
i = 1, . . . , N .

TDOA between signals received at a pair of sensors is
defined by

tij = tj − ti, i, j ∈ {1, . . . , N} (1)

where ti is the propagation time for the signal transmitted
by the emitter to arrive at sensor i, i.e.,

ti =
‖di‖

c
, i ∈ {1, . . . , N}. (2)

Here c is the speed of propagation for the transmitted signal,
‖ ·‖ denotes the Euclidean norm, and di is the emitter range
vector from the sensor at ri:

di = s − ri, i ∈ {1, . . . , N}. (3)

An appealing feature of TDOA localization is that it does not
require knowledge of transmission time of a received signal.
Using (1) and (2), the range difference of arrival (RDOA),
gij , for signals received at sensors i and j is given by

gij = ‖dj‖ − ‖di‖, i, j ∈ {1, . . . , N} (4a)

= ctij . (4b)

Each RDOA defines a hyperbola of possible emitter lo-
cations. In TDOA emitter localization, it is common prac-
tice to nominate one of the sensors as the reference sensor
and take all TDOA measurements with respect to it. We
will assume that the sensor at r1 is the reference sensor.
Given the RDOAs with respect to the reference sensor, g1i,
i = 2, . . . , N , the emitter location s is obtained by solving
the following set of nonlinear equations:

‖s − r2‖ − ‖s − r1‖ = g12

‖s − r3‖ − ‖s − r1‖ = g13

...

‖s − rN‖ − ‖s − r1‖ = g1N .

(5)

To solve the above set of equations requires a minimum of
two equations (i.e., N ≥ 3) since there are two unknowns,
viz., the x and y coordinates of the emitter. To guarantee
uniqueness of the solution, it may be necessary to have more
than three sensors (i.e., N > 3).

In practice, RDOAs are estimated from received noisy
signals. For continuous-wave signals, the RDOAs can
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Figure 1: TDOA localization and directional unit vectors ui.

be estimated by using the method of generalized cross-
correlation [4]. The resulting RDOA measurements ĝ1i can
be expressed as

ĝ1i = g1i + n1i, i = 2, . . . , N (6)

where n1i = c(ei − e1) is the RDOA noise with ei denoting
the time-of-arrival (TOA) estimation error. We assume that
ei is an independent Gaussian noise with zero mean and
variance E{e2

i } = σ2
i /c2. The RDOA noise variance E{n2

1i}
is usually a function of the emitter range among other things.
The covariance matrix of RDOA measurements is given by

Σ = E

⎧⎪⎨
⎪⎩
⎡
⎢⎣

n12

...
n1N

⎤
⎥⎦ [n12 · · · n1N ]

⎫⎪⎬
⎪⎭ (7a)

= σ2
11 +

⎡
⎢⎢⎢⎣

σ2
2 0

σ2
3

. . .

0 σ2
N

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
T

(7b)

where 1 is the (N − 1) × (N − 1) matrix of ones.

3. PROBLEM STATEMENT

Suppose that the RDOA noise covariance matrix in (7b) is
given and constant. Then the Fisher information matrix
(FIM) for TDOA localization is given by [5]

Φ =

[
φ11 φ12

φ21 φ22

]
= JT

o Σ−1Jo (8)

where Jo is the (N − 1) × 2 Jacobian matrix evaluated at
the true emitter location

Jo =

⎡
⎢⎢⎢⎣

(u2 − u1)
T

(u3 − u1)
T

...
(uN − u1)

T

⎤
⎥⎥⎥⎦ . (9)

Here

ui =
di

‖di‖ =

[
cos θi

sin θi

]
(10)

is the unit vector pointing to the emitter (directional unit
vector) from sensor i as illustrated in Fig. 1.

Using the matrix inversion lemma [6]:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

(11)
with A = T , B = [1, . . . , 1]T , C = σ2

1 and D = BT , the
inverse of Σ in (7b) can be written as

Σ−1 = T −1 − awwT (12)

where

a =
1∑N

i=1 1/σ2
i

(13a)

w = [1/σ2
2 , 1/σ2

3 , · · · , 1/σ2
N ]T . (13b)

Substituting (9) and (12) into (8) we obtain

Φ =
N∑

i=2

1

σ2
i

(ui − u1)(ui − u1)
T

− a
N∑

i=2

ui − u1

σ2
i

N∑
i=2

(ui − u1)
T

σ2
i

. (14)

We adopt maximization of the determinant of FIM as
the optimal sensor placement criterion. Since the area of
the 1-σ error ellipse (39.4% uncertainty region) of an effi-

cient TDOA location estimator is given by A1σ = π/|Φ|1/2,
where |·| denotes determinant, maximization of |Φ| is equiva-
lent to minimization of the area of the uncertainty ellipse [1].
Throughout the paper we assume that the TDOA localiza-
tion algorithm under consideration is nearly efficient and un-
biased so that its error covariance can be approximated by
the Cramer-Rao lower bound (CRLB), which is given by the
inverse of Φ.

4. THE MAIN RESULT

After some algebraic manipulations the entries of FIM can
be written as

φ11 =

N∑
i=2

(cos θi − cos θ1)
2

σ2
i

− a

(
N∑

i=2

cos θi − cos θ1

σ2
i

)2

(15a)

=
N∑

i=1

cos2 θi

σ2
i

− a

(
N∑

i=1

cos θi

σ2
i

)2

(15b)

φ12 = φ21 (16a)

=

N∑
i=2

(cos θi − cos θ1)(sin θi − sin θ1)

σ2
i

− a

N∑
i=2

cos θi − cos θ1

σ2
i

N∑
j=2

sin θj − sin θ1

σ2
j

(16b)

=
1

2

N∑
i=1

sin 2θi

σ2
i

− a
N∑

i=1

sin θi

σ2
i

N∑
j=1

cos θj

σ2
j

(16c)

φ22 =
N∑

i=2

(sin θi − sin θ1)
2

σ2
i

− a

(
N∑

i=2

sin θi − sin θ1

σ2
i

)2

(17a)

=
N∑

i=1

sin2 θi

σ2
i

− a

(
N∑

i=1

sin θi

σ2
i

)2

. (17b)
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The determinant of FIM is

|Φ| = φ11φ22 − φ12φ21

=
1

4a2
− 1

4

(
N∑

i=1

sin 2θi

σ2
i

)2

− 1

4

(
N∑

i=1

cos 2θi

σ2
i

)2

− a
N∑

i=1

1

σ2
i

(
sin θi

N∑
j=1

cos θj

σ2
j

− cos θi

N∑
j=1

sin θj

σ2
j

)2

.

(18)

Considering that the last three terms in the right-hand
side of the above equation can only be negative or zero, for
fixed receiver noise variances σ2

i , i = 1, . . . , N (i.e., fixed Σ),
the determinant of FIM is maximized by directional unit
vector angles θ = [θ1, . . . , θN ]T solving the following mini-
mization problem

min
θ

(
N∑

i=1

sin 2θi

σ2
i

)2

+

(
N∑

i=1

cos 2θi

σ2
i

)2

+ 4a

N∑
i=1

1

σ2
i

(
sin θi

N∑
j=1

cos θj

σ2
j

− cos θi

N∑
j=1

sin θj

σ2
j

)2

. (19)

Define

vi =

[
cos 2θi

sin 2θi

]
. (20)

Then the minimization problem in (19) can be rewritten as

min
θ

∥∥∥∥∥
N∑

i=1

vi

σ2
i

∥∥∥∥∥
2

+ 4a
N∑

i=1

1

σ2
i

×
(

[sin θi − cos θi]
N∑

j=1

uj

σ2
j

)2

(21)

or more compactly as

min
θ

∥∥∥∥∥
N∑

i=1

vi

σ2
i

∥∥∥∥∥
2

+ 4a

∥∥∥∥∥
N∑

i=1

ui

σ2
i

∥∥∥∥∥
2

H

(22)

where ‖x‖2
H = xT Hx and

H =

N∑
i=1

1

σ2
i

[
sin θi

− cos θi

]
[sin θi − cos θi] . (23)

We formally have the following result.

Theorem 1. For fixed Σ the determinant of FIM is maxi-
mized by

min
θ

J(θ) (24)

where

J(θ) =

∥∥∥∥∥
N∑

i=1

vi

σ2
i

∥∥∥∥∥
2

+ 4a

∥∥∥∥∥
N∑

i=1

ui

σ2
i

∥∥∥∥∥
2

H

≥ 0 (25)

and |Φ| = 1
4

(
1

a2 − J(θ)
)
.

Note that the emitter range does not appear in J(θ)
explicitly, and for given σ2

i it is dependent on angular sensor
separation only. This implies that optimal sensor placement
is independent of how far the sensors are from the emitter.
This observation is in sharp contrast to optimal AOA sensor

placement in which the emitter range plays an important
role [3]. However the absence of emitter range in J(θ) has
limited practical use because of the close coupling between
the sensor noise variance and emitter range as governed by
signal-to-noise ratio (SNR).

CRLB is related to FIM via

CRLB = Φ−1 =
1

|Φ|
[

φ22 −φ12

−φ21 φ11

]
. (26)

The optimal MSE is given by the trace of CRLB:

MSE =
φ11 + φ22

|Φ|

=

∑N
i=1

1
σ2

i
− a

((∑N
i=1

sin θi

σ2
i

)2

+
(∑N

i=1
cos θi

σ2
i

)2
)

|Φ|

=

∑N
i=1

1
σ2

i
− a

∥∥∥∑N
i=1

ui

σ2
i

∥∥∥2

|Φ| .

(27)

It has been shown that in AOA geometry optimization the
maximization of the determinant of FIM is equivalent to min-
imization of MSE [3]. The equivalence holds whether or not
sensor noise variances are identical. We will show by way of
an example that this equivalence does not hold for TDOA
localization when sensor noise variances are different.

Consider the TDOA localization scenario involving three
sensors with receiver noise variances σ2

1 = 0.5, σ2
2 = 0.1 and

σ2
3 = 0.2. The emitter is located at the origin s = [0, 0]T .

The first sensor is assumed to have directional angle of θ1 =
0. Fig. 2(a) shows the plot of J(θ) as a function of θ2 and
θ3. The optimal angles minimizing J(θ) and maximizing
the determinant of FIM are θ2 = 120◦ and θ3 = 240◦. This
corresponds to equiangular sensor separation. In Fig. 2(b) a
contour plot of MSE is provided. For the simulated scenario
with unequal sensor noise variances MSE is minimized by
θ2 = 126◦ and θ3 = 226◦. We observe that uncertainty
minimization and MSE minimization yield different sensor
placements in this case.

If each sensor is subject to identical noise variances, i.e.,
σ2

1 = σ2
2 = · · · = σ2

N = σ2, the optimal sensor placements
minimizing estimation uncertainty are defined by the follow-
ing theorem:

Theorem 2. For fixed Σ with σ2
1 = σ2

2 = · · · = σ2
N = σ2

the determinant of FIM is maximized at

|Φmax| =
N2

4σ4
. (28)

by
J(θ) = 0 (29)

which is satisfied if and only if

N∑
i=1

sin 2θi = 0,
N∑

i=1

cos 2θi = 0 (30a)

N∑
i=1

sin θi = 0,

N∑
i=1

cos θi = 0. (30b)

Proof. For identical noise variances (25) becomes

J(θ) =
1

σ4

∥∥∥∥∥
N∑

i=1

vi

∥∥∥∥∥
2

+
4

Nσ4

∥∥∥∥∥
N∑

i=1

ui

∥∥∥∥∥
2

H̃

≥ 0 (31)
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Figure 2: (a) Plot of J(θ), and (b) contour plot of MSE for
TDOA localization with σ2

1 = 0.5, σ2
2 = 0.1 and σ2

3 = 0.2.
J(θ) is minimized at θ1 = 0, θ2 = 120◦ and θ3 = 240◦, and
MSE is minimized at θ1 = 0, θ2 = 126◦ and θ3 = 226◦.

where

H̃ =

N∑
i=1

[
sin θi

− cos θi

]
[sin θi − cos θi] . (32)

Unless θ1 = · · · = θN , in which case |Φ| = 0 (i.e., |Φ| is
minimized) and the estimation problem has infinite variance,

H̃ is positive definite. Then the following quadratic form
in (31) ∥∥∥∥∥

N∑
i=1

ui

∥∥∥∥∥
2

H̃

= 0

if and only if
N∑

i=1

ui = 0.

Thus J(θ) = 0 if and only if

N∑
i=1

ui =
N∑

i=1

vi = 0. (33)

This condition is equivalent to (30).

We note that for unequal noise variances the minimum
of J(θ) cannot always be guaranteed to be zero. We call op-
timal geometries that minimize J(θ) to zero maximally op-
timal solutions. Maximally optimal solutions may exist for
unequal noise variances depending on the number of sensors
and noise variances. Consider the previous TDOA localiza-
tion scenario this time with equal noise variances σ2 = 0.1.
As shown in Fig. 3, in the case of identical noise variances
equiangular sensor separation gives the optimal sensor place-
ment in terms of both uncertainty and MSE minimization.

(a)

θ
3
 (deg)

θ 2 (
de

g)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

(b)

Figure 3: (a) Plot of J(θ), and (b) contour plot of MSE for
TDOA localization with σ2

1 = σ2
2 = σ2

3 = 0.1. Both J(θ)
and MSE are minimized at θ1 = 0, θ2 = 120◦ and θ3 = 240◦.

5. UNCERTAINTY-MINIMIZING TDOA
GEOMETRIES

5.1 Equal Noise Variances

For equal noise variances maximally optimal sensor geome-
tries that achieve J(θ) = 0 can be found in a straightforward
way. Suppose that u1 = [1, 0]T , i.e., θ1 = 0, with no loss of
generality. Referring to Theorem 2 and (33) we see that a
necessary condition for optimal sensor placement is that the
directional unit vectors emanating from sensors add to zero.
This is readily achieved if all directional unit vectors have
equiangular separation. It is straightforward to show that
for equally spaced θi (i.e., equiangular separation between
sensors), the vi also add to zero (see Corollary 3 in [3]).
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What remains to be seen is whether equiangular sensor
separation is the unique maximally optimal geometry. It can
be shown through geometric arguments that for N = 3, 4
and 5 the optimal geometry is uniquely given by equiangular
sensor separation. For N ≥ 6 the optimal geometry is not
unique and equiangular sensor separation is a special case of
infinitely many optimal geometries. We will illustrate this
for N = 6. Partition the sensors into two sets of cardinality
3, I1 and I2, where I1∪I2 = {1, 2, 3, 4, 5, 6}. The optimality
conditions in (33) are satisfied by∑

i∈I1

ui = 0,
∑
j∈I2

uj = 0

∑
i∈I1

vi = 0,
∑
j∈I2

vj = 0.

The two sensor partitions satisfying the above optimality
condition would have equiangular sensor separation. The in-
dividual partitions can be rotated arbitrarily without affect-
ing the optimality condition; thus creating infinitely many
optimal configurations as shown in Fig. 4.
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Figure 4: Two optimal sensor placements for N = 6. As long
as sensor partitions I1 = {1, 2, 3} and I2 = {4, 5, 6} have
equiangular spacing, the partitions can be rotated freely as
shown above without affecting optimality.

5.2 Unequal Noise Variances

Theorem 1 does not lead to a simple geometric interpreta-
tion. The main reason for this is the non-trivial nature of
the minimization problem in (24) for the general case of un-
equal noise variances. For three-sensor TDOA localization
we have seen that equiangular sensor separation is optimal in
terms of minimizing uncertainty. However, this result does
not readily carry over to localization scenarios with N ≥ 4.
We have solved (24) numerically for N = 3, 4 and 5 with
θ1 = 0, and σ2

1 = 0.1, σ2
2 = 0.13, σ2

3 = 0.16, σ2
4 = 0.19

and σ2
5 = 0.22. Fig. 5 shows the resulting optimal configura-

tions. We observe that equiangular sensor separation is not
in general an optimal configuration. For N = 3 and N = 4
the minimum values of J(θ) are 31.07 and 9.87, respectively.
On the other hand, the optimal geometry for N = 5 achieves
J(θ) = 0; that is, it is a maximally optimal geometry. For
unequal noise variances the existence of maximally optimal
geometries depends on the distribution of individual noise
variances. If σ2

5 is changed to 0.4 in the above example, the
resulting optimal geometry does not achieve minθ J(θ) = 0.

6. CONCLUSION

In this paper we have used estimation uncertainty minimiza-
tion as the optimization criterion for TDOA sensor place-
ment. If the sensors have equal noise variances, we have
shown that optimal TDOA sensor placement corresponds to

 r
1

 r
2

 r
3

 s
 r

1

 r
2

 r
3

 r
4

 s

(a) (b)

 r
1

 r
2

 r
3

 r
4 r

5

 s

(c)

Figure 5: Optimal sensor geometries for (a) N = 3, (b) N =
4, and (c) N = 5. The noise variances are σ2

1 = 0.1, σ2
2 =

0.13, σ2
3 = 0.16, σ2

4 = 0.19 and σ2
5 = 0.22. The configuration

in (c) is a maximally optimal solution with J(θ) = 0.

equiangular sensor separation for N ≤ 5 regardless of indi-
vidual sensor-emitter distances. For N > 5, optimal sensor
placement is given by sensor partitions of appropriate size
each with equiangular separation, again independent of in-
dividual sensor-emitter distances. Even though equiangular
separation is still optimal in this case, it is one of infinitely
many optimal solutions. If the sensors have unequal noise
variances, the optimal TDOA geometry is no longer given by
equiangular sensor separation in general. Finding the opti-
mal geometry requires numerical minimization. The optimal
geometries are still independent of individual sensor-emitter
distances.
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