17th European Signal Processing Conference (EUSIPCO 2009)

Glasgow, Scotland, August 24-28, 2009

STEADY STATE ANALYSIS OF AN OUTPUT SIGNAL BASED COMBINATION
OF TWO NLMS ADAPTIVE FILTERS

Tonu Trump

Department of Radio and Telecommunication Engineering
Tallinn University of Technology
Tallinn, Estonia
Email: ttrump@Ilr.ttu.ee

ABSTRACT

This paper studies an affine combination of two NLMS adap-
tive filters, which is an interesting way of improving the per-
formance of adaptive algorithms. The structure consists of
two adaptive filters that adapt on the same input signal,
one with a large and the other one with a small step size.
The outputs of the individual filters are combined together
with help of a parameter A. Such a combination is capable
of achieving fast initial convergence and small steady state
error at the same time. In this paper we propose to compute
the combination parameter A from output signals of the in-
dividual filters and investigate the steady state performance
of the resulting combined algorithm.

1. INTRODUCTION

When designing an adaptive algorithm, one faces a trade—off
between the initial convergence speed and the mean—square
error in steady state. In case of algorithms belonging to the
Least Mean Square (LMS) family this trade—off is controlled
by the step-size parameter. Large step size leads to a fast
initial convergence but the algorithm also exhibits a large
mean—square error in the steady state and in contrary, small
step size slows down the convergence but results in a small
steady state error [1, 2].

Recently there has been an interest in a combination
scheme that is able to optimize this trade—off [3]. The scheme
consists of two adaptive filters that are simultaneously ap-
plied to the same inputs as depicted in Figure 1. One of the
filters has a large step size allowing fast convergence and the
other one has a small step size for small steady state error.
The outputs of the filters are combined through a combi-
nation parameter A . The performance of this scheme has
been studied for some parameter update schemes [4, 5, 6, 7].
The references [4] and [5] use the ratio of time averages of
the instantaneous errors of the filters. The error function
of the ratio is then computed to obtain A. The references
[6] and [7] take another approach. The parameter X is there
found using an LMS type adaptive scheme and computing
the sigmoidal function of the result.

In this paper we propose to compute the combination
parameter A from output signals of the individual filters and
investigate the steady state performance of the resulting al-
gorithm. The proposed way of calculating the combination
parameter is optimal in the sense that it results from mini-
mization of the mean-squared error of the combined filter.

We will assume throughout the paper that the signals
are real-valued and that the combination scheme uses two
normalized LMS adaptive filters. The italic, bold face lower
case and bold face upper case letters will be used for scalars,
column vectors and matrices respectively. The superscript T’
denotes transposition of a matrix. The operator E[-] stands
for mathematical expectation.
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Figure 1: The combined adaptive filter.

2. DERIVATION

Let us consider two adaptive filters, as shown in Figure 1,
each of them updated using the NLMS adaptation rule.

i(n) =w;(n — #einxn 1=
Wl( ) ( 1) + XT(TL)X(’IL) ( ) ( )7 132 (1)
ei(n) = d(n) —wj (n —1)x(n), (2)
d(n) = wlx(n) +v(n). (3)

In the above w;(n) is the N vector of coefficients of the -
th adaptive filter, with ¢ = 1,2. The vector w, is the true
weight vector we aim to identify with our adaptive scheme.
x(n) is the N input vector, common for both of the adap-
tive filters. The input process is assumed to be wide sense
stationary. The desired signal d(n) is a sum of the output of
the filter to be identified and the measurement noise. The
measurement noise is denoted by v(n) and we assume this
signal to be Gaussian, zero mean i.i.d. sequence, statistically
independent of all the other signals. pu; is the step size of
i—th adaptive filter. We assume without loss of generality
that p1 > po.

The outputs of the two adaptive filters are combined ac-
cording to

y(n) = A(n)y1(n) + [1 = A(n)]y2(n), (4)
where y;(n) = wi (n—1)x(n) and A can be any real number.
The output combination is, thus, affine as in [4], not convex
as in [6, 7].
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We define the a priori system error signal as differ-
ence between the output signal of the true system yo(n) =
wlx(n) = d(n)—v(n), and the output signal of our adaptive
scheme y(n)

eo(m) = 4s(m) =) = () = N (n) = (1= Aot

Let us now find A(n) by minimizing the mean square of
the a priori system error. The derivative of E[eZ(n)] with
respect to A(n) reads

el — 2Bl (un) - A (o)
(1= A)p) (1 () + ()
= 2B[(o(n) - () a(n) - 11 ()

+A(n) (y2(n) — y1 ().

Setting the derivative to zero results in

An) = El(d(n) = y2(n)) (y1(n) — y2(n))]
El(y1(n) — y2(n))?] ’

where we have replaced the true system output signal y,(n)
by its observable noisy version d(n). Note however, that
because we have made the standard assumption that the in-
put signal x(n) and measurement noise v(n) are independent
random processes, this can be done without introducing any
error into our calculations.

(6)

3. STEADY STATE PERFORMANCE

In this section we are interested in finding expressions
that characterize performance of the combined algorithm in
steady state i.e. when n — oo. Before we can proceed we
need to introduce some notations. First let us define the
weight error vector of i—th filter as

wi(n) =wo — wi(n). (7)

We then define the equivalent weight error vector of the com-
bined adaptive filter to be

W(n) = AW1(n) + (1 — \)Wa(n). (8)

The a priori and a posteriori estimation errors of the indi-
vidual filters are defined as

eia(n) =x" (n)Wi(n — 1) 9)

and
eip(n) = XT(’IL)V~VZ'(1’L). (10)

In what follows we often drop the explicit time index n, if it
is not necessary to avoid a confusion.
Noting that y;(n) = wi (n)x(n), we can rewrite (6) as

_ E[Wj xx" W] — E[Ww3 xx” W1]
T EWTxxTvw1] — 2E[WTxxT W] + E[WlxxT W]’
(11)
The above expression consists of expectations of the
type E[w{ (n — 1)x(n)x” (n)W,;(n — 1)]. Because of the as-
sumed wide sense stationarity of the input process we can
replcace this expectation with E[W? (n — 1)x(n — 1)x” (n —
1)W;(n — 1)] and continue with investigation of that. For
E[W] (n)x(n)xT (n)W;(n)] we use the result from [1] stating
that for normalized LMS

A(n)

E [vViT(n)xxTv?/i(n)] (12)
= FE [VVZT(n — D)xx"Wy(n — 1)] (1 — i) + pios.

To evaluate the cross term we use the following relation
between weight error vectors, a priori and a posteriori errors

(1]

Wi(n) + XTXXei,a(n) =wi(n—1)+ XTXXei,p(n) (13)
to obtain
Wi(n) = Wiln = 1) = ——(era(n) —eip(n)).  (14)
Hence we have
Wi (n)xx"Wa(n) (15)
= w; (n—1)xx"wa(n—1)

Wi (n — 1)x(e2,0(n) — e2,5(n))

~(e1a(n) — e1p(n))x" Wa(n — 1)

F(era(n) —e1,p(n))(e2,a(n) — €2,5(n)).

Substituting now the relationship between a priori and
a posteriori errors for normalized LMS [1]

eip(n) = ei,a(n) — piei(n) (16)
into the above we have

w1 (n)xx" Wa(n) (17)
= Wi (n—1)xx"Wa2(n—1)
—v~vf(n — 1)xpzez(n)
—prer(n)x Wa(n — 1) + p1pizer (n)es(n).
We now note that the error signal of i—th filter and its a
priori error are related as

ei(n) = eia(n) +v(n) = wi (n —1)x +v(n). (18)

Substitution of this relation into the previous equation re-
sults in

w1 (n)xx” Wa(n) (19)
= wi(n—1)xx"Wa(n—1)
—wi (n — 1)xua[x" Wa(n — 1) + v(n)]
—u[Wi (n — 1)x + v(n)]x" Wa(n — 1)
iz W (n — 1) + w()] [T (0 — 1)x + o(n)]
And because x(n) and v(n) are independent we have for the
expectation
E[w{ (n)xx"Wa(n)] (20)
= (1= )1 = p2) E[Wi (n — 1)xx" Wa(n —1)]
+p1p2E[v* (n)]

In order to find an expression for A\(n), we substitute (12)
and (20) into (11) to obtain

(n—1)
oD (21)

(1 — p2)?E[Wa (n — 1)xx" Wa(n — 1)
(1= m)(1 — ) BT (0 — Dxex"a(n — 1)]
(3 — Hp2)os

2
2
I
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(1 — ) E[wi (n — 1)xx" Wy (n — 1))

—2(1 — 1) (1 — p2) E[W1 (n — 1)xx" Wa(n — 1)]
+(1 — p2)*E[Wa (n — 1)xx" Wa(n — 1))

+(p1 — p2)’os.

Let us now find the steady state excess mean square error

EMSE = limy—co E[e2(n)]. To evaluate this we first note
that equation (20) is in fact a difference equation in terms

of E[Ww{ (n)xxTWa(n)]. Let us denote
s(n) = E[W{ (n)xx” wa(n)],

1= papiao
and
ca = (1= p)(1 = p2).
Then it is possible to rewrite equation (20) as

s(n) = cas(n — 1) + cru(n),

where u(n) is the unit step function. This equation can be
solved using e.g. z—transform techniques [8]. Taking the z—
transform of both sides of the above equation we have

C2

-1
S(z) = c2z” " S(z) + T (22)
Solving for S(z) results in
S(z) = T (23)

(1—coz7)(1 —271)"

We now make use of the partial fraction expansion [8] to
obtain
C1C2 C1
S(z) = . 24
O =i ey i a=a)

Calculating the inverse transform of S(z) results in

n C1C c
s(n) = cy 021_21u(n) + 1 —102 u(n). (25)

The step size of the NLMS algorithm is usually selected to
be less than one and consequently ¢z = (1 —p1)(1— p2) < 1.
This means that s(n) is determined by the second term of
the above equation when n approaches infinity. Hence we
can write for the cross term in steady state

2
lim E[wT (n)xxTwa(n) = — FH2% 2
lim E[Wq (n) 2(n)] PRy (26)

Analogously we can obtain for the case of both w; being the
same

2
Tim_ B[] (n)xxWi(n)] = 2“1”;‘. (27)

It follows from (5) that we can express the a priori error
of the combination as

ea(n) =A(n)era + (1 — A(n)) e2,a (28)

and because A is according to (6) a ratio of mathematical ex-
pectations and, hence, deterministic, we have for the excess
mean square error of the combination

Elel] = NElef o] + 2A(1 — A Eler,ae2,a] + (1 — N Ele3 ).
(29)

We can now use the equations (26) and (27) in (29) to
obtain for the excess mean square error of the combined al-
gorithm

2
lim Elel] = |:/\ (00)pa
n—oo 2 — 1251
4 2M(00)(1 = A(00) ) pr2
p1 + p2 — pape
L= A(OO)VW} .2
2 — M2

EMSE = (30)

Let us proceed finding an expression for mean square de-
viation MSD = lim,,—,c E||W;(n)||?>. To do so we need to
invoke the independence theory [1, 2]. In particular let us
assume that the sequence x(n) is independent and identi-
cally distributed. It then follows that weights computed at
step n — 1, w(n) are independent of the input at stage n,
x(n). We can then interpret the expectations as conditional
expectations, conditioned on the weight error vectors and
write

E[WT (n)xx" W2 (n)] = Wi (n)RxWz(n), (31)

where Rx = E[xx”] is the input signal correlation matrix.
To proceed we need to assume that the input signal x is
white Rx = 021, and in this case

MSD = lim E[\X/T(’I’L)W(n)] _ |:>‘2(O.w1 (32)

n—oo 2 — M1
Jr2>\(c>o)(1 — A(00)) pr1p2

M1+ p2 — p1pi2
La- A(OO))ZW} a2

2 — p2 o3’

It remains to evaluate the limiting value of A(n) as n
approaches infinity, A(co). This can be done by substituting
equations (26) and (27) into (21) which results in

A(oo) = lim E[A(n)] = 7 (33)
with
n o= [(1—p2)’u2p
—(1 = 1) (1 = p2)prp2(2 — p2)
(i3 — pap2) (2 — p2)pl (2 — )
and
ro= (1= ) (2 - p2)p

=2(1 — p1)(1 = p2)papp2(2 — p1)(2 — p2)
(1= p2)’p2(2 — )p
+(p1 — p2)?(2 — p1)p(2 — p2),

where p = p1 + p2 — pipe.

It is well known that NLMS achieves the fastest initial
convergence if the step size is selected to equal unity. By
this reason it makes sense to choose the step size of the fast
converging filter 1 = 1 and in this case the above simplifies
to

A(eo) = lim E[A(n)] = ﬁ (34)
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Figure 2: True impulse response used in the simulations.

EMSE (dB]

L L L L
0.5 1 15 2 25
iterations. “10°

Figure 3: Time—evolutions of MSE.

4. SIMULATION RESULTS

A simulation study was carried out with the aim of verifying
the approximations made in the previous Section.

We have combined two 64 tap long adaptive filters with
pw1 = 1 and pe = 0.025. We have assumed that signals are
ergodic and, hence, in order to obtain a practical algorithm,
the expectation operators in (6) have been replaced by ex-
ponential averaging of the type

Pu(n) = (1 =7)Pu(n —1) + yu®(n), (35)

where u(n) is the signal to be averaged, P, (n) is the averaged
quantity and v = 0.01.

We have selected the sample echo path model number
one, shown in Figure 2 from [9], to be the unknown system
to identify.

White noise with variance o2 = 1 was used as the input
signal and another white noise, with variance o2 = 61075,
statistically independent of = as the measurement noise. The
curves are averaged over 100 trials.

Figure 3 shows with solid line the evolution of excess
mean-squared error Ele2] in time. One can observe that
the adaptive algorithm converges fast in the beginning and
undergoes a second convergence around sample 15000. The
second convergence occurs when the filter with small step
size becomes more accurate than the one with large step size.
The theoretical steady state EMSE, computed from (30) is
shown with dashed line. One can see that the experimental
line approaches the theoretical steady state result.

Figure 4 depicts the corresponding time evolution of the
mean square deviation MSD = E[||W(n)||?]. Again, as with
the MSE curve we see a fast initial convergence followed

10 L L L L
0 0.5 1 15 2 25
iterations ©10°

Figure 4: Time—-evolutions of MSD.
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Figure 5: Time—evolutions of the combination parameter A.

by a second convergence around sample-time 15000. The
simulation result is shown with solid line and the theoretical
steady state MSD, computed form (32) with dashed line.

Figure 5 shows the evolution of the combination param-
eter A. It can be seen that at the beginning, when the fast
converging filter is better than the slower one, A is close
to one. When the filter with small step size becomes bet-
ter than the fast one, A decreases and eventually becomes a
small negative number. This is because we have two depen-
dent estimators of the same unknown system and we select
parameter A by minimizing the mean square error of the
combination.

Dependence of the excess mean square error from the
step size of the more accurate filter is depicted in Figure 6.
Statistically independent white Gaussian noises were used
as the input signal and the measurement noise. The input
signal power was o2 = 1 the noise power o2 = 10~* and the
step size, p2, was varied from 0.02 to 0.38. The circles are
the simulation results after 32000 iterations and the solid line
is the EMSE computed from (30). The simulation results
are averaged over 100 trials. One can see that there is a
reasonable fit between the theory and simulations.

Figure 7 depicts the dependence of the steady state mean
square deviation, lim,_. E|W;(n)||?, of the algorithm as a
function of ps. All the conditions are the same as in the
previous Figure. The circles are the simulation results after
32000 iterations and the solid line is the theoretical MSD
computed from (32). Again, one can observe that the theory
matches the simulation results well.

Finally we compare the different possibilities of comput-
ing the parameter A in the Figure 8. The curves here are av-
eraged over 500 independent trials. Here 1 = 1 and u2 = 0.1
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Figure 6: Excess mean square error as a function of ps.

x10°

L L L L L L L
0 0.05 01 015 02 0.25 0.3 0.35 0.4
my,

Figure 7: Mean square deviation of filter coefficients as a
function of pa.

in order to make the differences between the different algo-
rithms more visible. The solid red curve is the A used in this
paper. The dashed blue line is the A from [4].

A(n) =1 — werf (Zg EZ;) , (36)

where erf(z) = 2 foﬁ e~**/24dt is the error function, é7(n) =
= Z:;:n_K_H eZ(m), where K = 100 as suggested in [4] and
h=1— 50 Mz/m_ .
p2/p1—1)
The dashed — dotted green line is the A from [7], com-
puted using the normalized LMS like adaptation scheme.

1

Aln) = THre—et (37)
where
a(n+1) = an)+ A 1=A)e(n)fea(n) —er ()], (38)

and p(n) = 0.9p(n — 1) 4 0.1[e2(n) — e1(n)]?. One can see
that the curves corresponding to the algorithm investigated
in this paper and the one from [4] converge to a negative
value of X in steady state. The transition region of the al-
gorithm of this paper occurs slightly later than that of the
algorithm from [4]. The LMS like algorithm from [7] has
its transition region approximately simultaneously with the
algorithm investigated in this paper but A from [7] remains
positive in steady state.

0.8
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lambda

0.4

0.2

of

L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

Figure 8: Evolution of A computed using three different al-
gorithms as a function of time.

5. CONCLUSIONS

In this paper we have investigated an affine combination of
two adaptive filters that are simultaneously applied to the
same input signals. It was proposed to compute the combi-
nation parameter A using the output signals of the individual
filters and the desired signal. The steady state performance
of the algorithm was investigated and expressions for steady
state excess mean square error and mean square deviation
were derived. Finally it was shown in the simulation study
that the derived formulae fit the simulation results well.
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