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ABSTRACT [5] and RobustICA [6]. These make use of second or higher

ffder statistics to estimate the unmixing mafik. Mea-
sures of non-Gaussianity, include using higher ordersstati
edics (kurtosis and negentropy), are used to minimize the mu-

ratio (SINR) environment. We consider an over-determin \ . ; .
case so that we can form multiple sub-arrays (of whicHu@l information between the mixed components. To obtain
isfactory results, the noise is usually neglected dr Irig

there are as many sensors as speech signals), and propos%‘%s_ ; . : S
novel hybrid scheme to obtain high fidelity speech signal®Ut Signal-to-interference plus noise ratio (SINR) is ¢dns
after separation. Firstly, the proposed method applies the'€¢: _ _ o
commonly-used BSS technique at each sub-array to separate For separation of speech signals, the noise is always
the speech signals. Next, the outputs of the same speech sRjesent at the sensors. Reduction of noise especially in low
nal from different sub-arrays are grouped to form a new subsignal-to-noise ratio (SNR) conditions is crucial for acte
array. We can then exploit the spatial diversity of the neweconstruction. The source separation of speech signals in
sub-array to achieve high fidelity source separation. Thig0isy environments have been studied in [7]. However, these
configuration is the key innovation of this paper. Anothertechniques do not make use of spatial diversity of the sen-
contribution of the paper is on the justification of using thesors. Alternatively, higher-order cumulants can be used to
hybrid configuration to further increase the output SINR.obtain accurate de-noising and source separation. Buisthis
From numerical analysis, it is demonstrated that 12 dB SINRchieved at the cost of high computational complexity.
improvement can be achieved using 5-element sensor array In this paper, we propose a hybrid configuration for two-

in the presence of two other interfering speech signals ovestage source separation and noise reduction scheme under
arange of input SNR values. A significant improvement carover-determined setting by exploiting the spatial divgrsi
also be seen from the output signal-to-artifact ratio (SAR) By combining the commonly used source separation tech-

This paper addresses blind source separation (BSS) probl
of multiple speech signals in low signal-to-interferemmese

the recovered signals. niques like FastICA and Infomax, with the minimum distor-
tion noise reduction (MDNR) algorithm [8], we have shown
1. INTRODUCTION the improvement in terms of the output SINR and signal-to-

. . ) artifact ratio (SAR). Unlike other beamforming algorithms
Blind source separation (BSS) algorithms are used t0 sepgie MDNR algorithm does not require the direction-of-
rate individual sources from a mixture where there is mini-grrjya| (DOA) information which would have restricted the
mal prior information about either the source signals or the,ssition of the sources and sensors. The simulation results
mixing process. These techniques have been used in variolow that the MDNR algorithm provides better output when

fields with considerable success including speech and musiGmpared to the conventional Delay-and-Sum (DAS) beam-
processing, sonar, EEG and financial data [1]. forming.

Statistically, the concept underlying blind signal prazes
ing is to use independent component analysis (ICA) tech-
nigues, which are based on the assumptions that the original 2. FASTICA ALGORITHM
signals are independent and non-Gaussian in nature [2]. The ] o
instantaneous mixing model for source separation in the timThe FastICA algorithm [3] makes use of an efficient learn-

domain can be described by: ing rule to maximize the non-Gaussianity of the projection.
It is among the most commonly used algorithms for optimal
X=AS+N (1)  search of the unmixing matri¥ that is updated based on a

nonlinear contrast function. The optimization technidiles
Here, X is the observed mixed signa, is the mixing ma-  gradient search or Newton optimization are used for updat-
trix, S is the source signal arl¥ is the additive white Gaus- ing the contrast functio®(WX), whereX is the observed
sian noise. The objective of any blind source separation amatrix of the mixed source signals.
gorithm is to develop an un-mixing matr®W such that the The fixed point FastiICA method makes use of batch pro-
resulting signalS is a close estimate of the original source cessing of the observed data such that at each step, one row
signalS. vectorw of the unmixing matrixXW can be estimated. The
§—WX ) optimization of the objective functio®(w'x) (x refers to
each row of the observed mixtud€) is subject to the con-
A number of algorithms that have been used for blindstraintE[(w'x)(w'x)T] = 1. Definingg(.) andg/(.) as the
source separation include FastICA [3], Infomax [4], JADEfirst and second derivatives of the contrast function, at the
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optimal valuewg with ||wo| = 1 yields: v(K) = [v] (K),---, v (k)] are the received signal, clean sig-
nal and noise signal column vectors, respectively. Notiag t
Q= E[ngg(ng)] (3)  we have grouped the signal term and noise term separately.
Using this form shown in (9), the task of the estimator

The unmixing process can then be optimized based on thg to find hm by minimizing the mean-square-error due to
Newton optimization method with the update for tiféiter-  the noise term under the constraints that the error due to the

ation given as signal term h};{(k)_— xm(K)) is zero. That is, by solving the
following optimization
o T oy 1T
Wntl =Wnp—1] [(E[Xg(wn X)] ¢Wn)/E[g (Wn X)] (?4) hm,o = arg Tlnh-r;RWhm st thm = (10)
W1 = Wni1/ [[Wnia| (5)
_ " _ " " o whereQm = [Q1,, -, Q| is the spatial-temporal predic-
wherewn 1 is the new estimated value for eveny iteration  tion matrix, which relates the signal at one microphone to
andé¢ is the step size. others: xpn(k) = Qrmxm(K). Rw = E[v(K)v' (K)]. uy =

As shown by [1], the FastICA algorithm can also be com-[1,0,.--,0]".

pared to the stochastic gradient method for maximizing like  Solving (10) using Lagrangian multiplier method, the op-
lihood like the infomax method [4]. However, the conver-timum hy, can be computed given the spatial-temporal pre-
gence of FastICA is cubic or quadratic, which is much fastegjiction matrix. Instead of using the tr@m, which is usually

than the linearly converging gradient descent methods. Iinknown, an estimate can be obtained easily as
can also be used to estimate both sub-Gaussian and super-

Gaussian independent components. Due to these advantages, Qumo = (Ry, ym — Rvavin) Rymym — Rvmvn) — (11)

it has been chosen as the source separation algorithm in our

scheme. whereRy, v, = E[vn(K)vm(K)]. The same definition applies
The performance bounds of noisy linear ICA has beersimilarly to Ry, y,,. Therefore, the final expressionlf,, is

studied in [10, 11]. The optimal solution in the case of noisyobtained by solving (10) and substituting (11) into the solu

ICA is close to the minimum mean square error (MMSE)tion

solution given by: hmo = Riy' Qo [QmoRw Qo us (12)
B whereQmy is arranged the same way Q.
WYMSE — AT(AAT +0%) 71 (6) It is stated in [8] that the worst-case performance of the

. . . . o MDNR algorithm will be that of the delay-and-sum beam-
whereg? is the noise variance. This leads to the minimumforming [9] which is the case when only spatial diversity can
attainable signal to interference plus noise ratio forkfe  be exploited for noise reduction. In this case, the noisegrow

estimated signal characterized by: will be reduced by a factor of/N while the signal power re-
mains unchanged. Given that the signal and noise power are
W= (14+0%ATA)H? (7) o2 anda?, respectively. The worst-case output SINR for the
MDNR algorithm can be expressed as
[_IJZ
minSINR, = ke (8) No2
g d SINRgny = ——= (13)
igkw% + Uziz (WAL "2

wherei andk represent the rows and columns of the observed 4. SYSTEM MODEL
mixed signals, respectively amtirefers to the total number The problem of separating speech sources, or the typical
of signals observed in the mixture. This shows that the boungocktail party problem, has been investigated in previiaus |
is dependent only on the mixing matrk and the noise vari-  erature [2]. Both convolutive and instantaneous mixtuoes f
anceo?. separating speech sources have also been studied. However,
the efficient separation performance is limited to the case
3. MINIMUM DISTORTION NOISE REDUCTION when either the noise is ignored or the input SNR is high.
Gaussian noise causes deterioration of second order cumu-
Tants which the source separation algorithms can depend on.
In case of FastICA, the assumptions regarding the covarianc
of the observed signals can be distorted especially under lo
SNR conditions. The mixing matrix can also become ill-
(ﬁonditioned leading to poor separation and de-noising-capa
ilities.
In order to improve both the noise reduction and sepa-
ration performance, we propose a hybrid approach. With
~ T T T limited pre-processing, the observed noisy data is passed
Xm(K) = hpy (k) = hpx(K) + hpv (k) ) through the blind source separation algorithm. By making

) use of the overdetermined condition when the number of sen-

wherehm = [hi,,---,h{;]T, ham is the column vector of  sors is more than the number of sources, the diversity in each
coefficients of the temporal filter for th#" received signal. of the separated outputs is used for noise reduction. The min
y(K) = [y1(K), -,y (K]T, x(k) = [x] (K),---,x}(K)]",and  imum distortion noise reduction algorithm makes use of the

The MDNR algorithm proposed in [8] addresses the prob
lem of estimatingone source signal given the received sig-
nals at the microphone array. Lg#1(k),---,yn(k)} be the
discretized received signals bfsamples. By exploiting the
spatio-temporal diversity, the source signaheth sensor at
k-th samplexm(k) can be obtained by passing the receive
signals atN sensors (of which there atesamples) through
N temporal filters of lengtih
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Unlike conventional preprocessing/post processing noi ~
reduction techniques used by common source separation : N\ ~
gorithms, this scheme exploits the spatial diversity ofsie- N~
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Figure 2: Example of using correlation to solve the permutation
problem. The solid lines indicate highest correlation rhitg the
s,(t) 1G] SO separated output of each sub-array to a particular source.
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5. PERFORMANCE ANALYSIS

The performance of the proposed hybrid approach can be
A evaluated in terms of the overall SINR output. [SRidenote

the desired speech signal to be separated. Given that there

ared speech signals, the rest of the speech sigrialstiere

Q Qj ?j Q Q i #kandi =1,2,---,d) are considered as interferences.
X () xo [xo  Ixo  |xo The minimum attainable output SINR of noisy linear
L ]

ICA has been given in (8). The expression contains three

different terms for the desired signal, interferences asiden
¥ 1 power:
Blind Source
Separation 0-52 — L'JEK
s |[8,0 |5 m d
11 12 2 — 2
¥ ¥ " i - Z(kai
Minimum Distortion Noise i#
Reduction d
2 2 —1\2
Oh = O Z(”’A i (14)
9 i=

S0 From Fig. 1, it can be seen that the output of the noisy

linear ICA is also the input of the MDNR algorithm. There-
fore, the output of the hybrid approach can be expressed as

SINRuybrid,min < SINRhyorid < SINRhybrid, max (15)

As illustrated in Fig. 1, three speech source sigBa(s), where{SINRuybridmin: SINRuybrid.mex} are the minimum and

Sp(t) and Sy(t) are received by an array of 5 sensors afteny o imim attainable SINR output which can be written as

passing through a channel mixing matrix. Because of the

Figure 1:Scenario used for testing the proposed algorithm.

over-determined condition, we form 3 sub-arrays and per- W2

form source separation for each sub-array. This will previd SINRhybrid,min T o2 kkd 3

the spatial diversity required for multiple channel noise r Yisk Wi T Newo Sit (WAL
duction. The next stage is to utilize the output of the BSS W2

algorithmS;1(t), S;5(t) andS;3(t) (from the first, second and SINRybrid,max e 5 (16)
third sub-arrays respectively) as the input to the MDNR al- g 2i—1 (WAL

gorithm. This multiple channel noise reduction process, in ,
turn, provides a high fidelity outpd t) of the target source WHere€Nsu =N —d 1 is the number of subarrays formed

: ; fter the BSS and\ is the total sensors used. Notice that
signalS;(t). This procedure can be further repeated for theé . et
sourcesS(t) andSs(t) to similarly obtain high fidelity out- "€ @bove inequality is used to express the output SINR of
putség(t) anség,(t) respectively the proposed hybrid approach, because the MDNR algorithm

is not formulated for suppressing the interferences. Thus,

A problem with most BSS algorithms like FastICA is the the expression for SINBrid min relates to only reduction of
ordering of sources (permutation problem). In our techajqu noise by the MDNR algorithm with no interference suppres-
as we make use of outputs from each sub-array, this ordesion by BSS. The SINRid,max iS achieved when the BSS
ing is critical to provide accurate input to the MDNR stage.technique has a perfect signal separation with improvesknoi
The correlation between the separated signals is used#® solsuppression by the MDNR algorithm.

this. As seen from Fig. 2, the highest correlation values As compared to using a standard direct approach by just
andr, are used as the basis for matching the separated owtpplying the BSS technique, the hybrid approach offers ad-
puts. ditional noise reduction capability. This is reflected oe th
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noise power expression at the output of the hybrid approach. The output of the proposed algorithm has been tested
It is clear that the noise power has been reduced tdY1 based on the output SINR and SAR improvements using the
fraction of the noise power at the BSS intermediate outputoolbox developed by [13]. The separation performance is
Applying the standard direct BSS approach does not effeccomputed for each estimated sourgeand compared with
tively exploit the extra sensor outputs as the performasce ithe true source;j. The first step is to decompose the esti-
similar to the critically determined case. By effectively-u mated unmixed signal as shown.

ing the overdetermined criterion, the hybrid approachrsffe
additional SINR improvement by reducing the output noise

power. This produces a significantly better output than the _ . . .
direct BSS approach. wherestarget is @ version o modified by an allowable dis-

tortion, g nter § is an allowed deformation of the sources which
accounts for the interferences of the unwanted souesgs.

6. RESULTSAND DISCUSSIONS is an allowed deformation of the perturbating noise eqpgk
Based on the scenario shown in Fig. 1 the speech sourcigsan artifact term that corresponds to artifacts of the sep-
are mixed based with no reverberation considered. The arr@yation algorithm such as musical noise or to deformations
processing toolbox developed by [12] is used for the mixingnduced by the separation algorithm that are not allowed.
process based on the position of the speech sources and the The next step is to compute energy ratios to evaluate the
distribution of sensors (uniform linear array). The sosrce relative amount of each of the four terms in (17) either on the
and sensors are placed at distances of 1 and 0.1 meters ap@fiole signal duration or on local frames. The computation of
respectively. The source separation of the observed mixedh€ SINR and SAR follows from the equations given below.
signals at the sensor array is performed based on the FastICA

Sj = Starget + Ginter f + Enoise + Eartif (17)

, : ! ) 2
algorithm. The permutation problem is seen in all the BSS SINR= 1000 HStargetH 18
algorithms, specially those that operate in the frequemey d - %o H t e Hz (18)
main. In this application, back correlation with respedtte Cinterf + Enoise
input signal is used as the solution to the permutation prob- 2
lem. That is, the highest correlated BSS output with respect SAR = 10logy, Hstarget + Gnterf + eﬂoiseH (19)

to the input signal is used as the corresponding estimate of ||eartif HZ
that particular input signal. Further denoising of the sepa ) ]
rated output based on the sub-array structure is achieved Myhile SINR is a measure of the separation performance,
either the minimum distortion noise reduction (MDNR) or SAR measures the distortions caused by the source separa-
the delay-and-sum (DAS) beamforming algorithms. tion algorithm on the signals of interest. _

Fig. 3 shows the performance of the algorithm when ap- _As shownin Fig. 4, the MDNR algorithm provides better
plied to three noisy mixed speech signals. The outputs of the/NR output when compared to the DAS beamforming, spe-
BSS algorithm with input SNR of -10 dB is input to both the cially at low input SNR. The cases for two and three mixed
MDNR and the DAS algorithms. The MDNR algorithm is Sources have also been considered. At higher SNR, the_ noise
able to successfully recover the denoised version of tigi-ori Suppression performance of both DS and MDNR techniques

nal signal. For listening test, a demonstration of the psepo  converge. Due to this, we notice an overlap of the graphs at
separation process is available in [14]. high SNR, specially for the case of three sources. This is be-

cause, at higher SNR, the performance is dependent mainly
on the separation performance. A reference to the minimum
attainable SINR as shown in eq. (16) is provided for a mix-
ture of three sources.

Similarly, the improvements in SAR for two and three
sources are presented. As seen from Figs. 5 and 6, the SAR
improvements for both two and three sources are consider-
able especially under low input SNR. This demonstrates that
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Magnitude

Magnitude

Figure 3:Example of using the algorithm to separate and denoisé1
the signal (a) Original signal (b) Separated signal befemogsing
(c) Estimated signal after MDNR (d) Estimated signal aft&D
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INote that the geometry of the array can be made arbitrary

both source separation and noise reduction have been suc-
cessfully incorporated assuring the high fidelity of thepoiit
speech signals. The mean values of SINR and SAR have
been used in all the above cases with approximations based
on the toolbox in [13].

7. CONCLUSIONS

We have proposed a two-stage approach to extract high fi-
delity speech signals after BSS. The proposed method con-
siders an over-determined setting, where the number of sen-
sors used is more than the speech signals to be separated.
In this setting, the spatial diversity is exploited to pidwi
igher SINR improvement using MDNR algorithm. The the-
oretical performance analysis as well as simulation result
confirmed that the proposed method is able to achieve higher
SINR improvement, particularly in low input SNR condi-
tion. Compared to the DAS algorithm with the same settings,
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the proposed method achieves almost 3 dB additional SINR
improvement. It is also able to provide high SAR outputs
in case of two or three interfering sources. In future, this
scheme can be applied to reverberant and convolutive source
mixtures in order to evaluate its efficacy in restoring thig-or

inal sources.
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