
HIGH FIDELITY BLIND SOURCE SEPARATION OF SPEECH SIGNALS

A. K. Kattepur *, J. P. Lie †, F. Sattar *, C. M. S. See‡

* Sch. of EEE, Nanyang Tech. Univ.
50 Nanyang Ave., Singapore 639798.

phone: +(65)67904525
fax: +(65)67920415

email:{aj0001ur,efsattar}@ntu.edu.sg

†TL@NTU, Nanyang Tech. Univ.
50 Nanyang Drv., Singapore 637553.

phone: +(65)67905447
fax:+(65)67900215

email: jonilie@ntu.edu.sg

‡DSO National Labs.
20 Science Park Drv.
Singapore, 118230.

phone: +(65)68712413
email: schongme@dso.org.sg

ABSTRACT

This paper addresses blind source separation (BSS) problem
of multiple speech signals in low signal-to-interference-noise
ratio (SINR) environment. We consider an over-determined
case so that we can form multiple sub-arrays (of which
there are as many sensors as speech signals), and propose a
novel hybrid scheme to obtain high fidelity speech signals
after separation. Firstly, the proposed method applies the
commonly-used BSS technique at each sub-array to separate
the speech signals. Next, the outputs of the same speech sig-
nal from different sub-arrays are grouped to form a new sub-
array. We can then exploit the spatial diversity of the new
sub-array to achieve high fidelity source separation. This
configuration is the key innovation of this paper. Another
contribution of the paper is on the justification of using the
hybrid configuration to further increase the output SINR.
From numerical analysis, it is demonstrated that 12 dB SINR
improvement can be achieved using 5-element sensor array
in the presence of two other interfering speech signals over
a range of input SNR values. A significant improvement can
also be seen from the output signal-to-artifact ratio (SAR)of
the recovered signals.

1. INTRODUCTION

Blind source separation (BSS) algorithms are used to sepa-
rate individual sources from a mixture where there is mini-
mal prior information about either the source signals or the
mixing process. These techniques have been used in various
fields with considerable success including speech and music
processing, sonar, EEG and financial data [1].

Statistically, the concept underlying blind signal process-
ing is to use independent component analysis (ICA) tech-
niques, which are based on the assumptions that the original
signals are independent and non-Gaussian in nature [2]. The
instantaneous mixing model for source separation in the time
domain can be described by:

X = AS+N (1)

Here,X is the observed mixed signal,A is the mixing ma-
trix, S is the source signal andN is the additive white Gaus-
sian noise. The objective of any blind source separation al-
gorithm is to develop an un-mixing matrixW such that the
resulting signal̂S is a close estimate of the original source
signalS.

Ŝ = WX (2)

A number of algorithms that have been used for blind
source separation include FastICA [3], Infomax [4], JADE

[5] and RobustICA [6]. These make use of second or higher
order statistics to estimate the unmixing matrixW. Mea-
sures of non-Gaussianity, include using higher order statis-
tics (kurtosis and negentropy), are used to minimize the mu-
tual information between the mixed components. To obtain
satisfactory results, the noise is usually neglected or high in-
put signal-to-interference plus noise ratio (SINR) is consid-
ered.

For separation of speech signals, the noise is always
present at the sensors. Reduction of noise especially in low
signal-to-noise ratio (SNR) conditions is crucial for accurate
reconstruction. The source separation of speech signals in
noisy environments have been studied in [7]. However, these
techniques do not make use of spatial diversity of the sen-
sors. Alternatively, higher-order cumulants can be used to
obtain accurate de-noising and source separation. But thisis
achieved at the cost of high computational complexity.

In this paper, we propose a hybrid configuration for two-
stage source separation and noise reduction scheme under
over-determined setting by exploiting the spatial diversity.
By combining the commonly used source separation tech-
niques like FastICA and Infomax, with the minimum distor-
tion noise reduction (MDNR) algorithm [8], we have shown
the improvement in terms of the output SINR and signal-to-
artifact ratio (SAR). Unlike other beamforming algorithms,
the MDNR algorithm does not require the direction-of-
arrival (DOA) information which would have restricted the
position of the sources and sensors. The simulation results
show that the MDNR algorithm provides better output when
compared to the conventional Delay-and-Sum (DAS) beam-
forming.

2. FASTICA ALGORITHM

The FastICA algorithm [3] makes use of an efficient learn-
ing rule to maximize the non-Gaussianity of the projection.
It is among the most commonly used algorithms for optimal
search of the unmixing matrixW that is updated based on a
nonlinear contrast function. The optimization techniqueslike
gradient search or Newton optimization are used for updat-
ing the contrast functionG(WX), whereX is the observed
matrix of the mixed source signals.

The fixed point FastICA method makes use of batch pro-
cessing of the observed data such that at each step, one row
vectorw of the unmixing matrixW can be estimated. The
optimization of the objective functionG(wT x) (x refers to
each row of the observed mixtureX) is subject to the con-
straintE[(wT x)(wT x)T ] = 1. Definingg(.) andg′(.) as the
first and second derivatives of the contrast function, at the
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optimal valuew0 with ‖w0‖ = 1 yields:

φ = E[wT
0 xg(wT

0 x)] (3)

The unmixing process can then be optimized based on the
Newton optimization method with the update for thenth iter-
ation given as

wn+1 = wn −η
[

(E[xg(wT
n x)]−ϕwn)/E[g′(wT

n x)]−φ
]

(4)
wn+1 = wn+1/‖wn+1‖ (5)

wherewn+1 is the new estimated value for everynth iteration
andϕ is the step size.

As shown by [1], the FastICA algorithm can also be com-
pared to the stochastic gradient method for maximizing like-
lihood like the infomax method [4]. However, the conver-
gence of FastICA is cubic or quadratic, which is much faster
than the linearly converging gradient descent methods. It
can also be used to estimate both sub-Gaussian and super-
Gaussian independent components. Due to these advantages,
it has been chosen as the source separation algorithm in our
scheme.

The performance bounds of noisy linear ICA has been
studied in [10, 11]. The optimal solution in the case of noisy
ICA is close to the minimum mean square error (MMSE)
solution given by:

WMMSE = AT (AAT + σ2I)−1 (6)

whereσ2 is the noise variance. This leads to the minimum
attainable signal to interference plus noise ratio for thekth

estimated signal characterized by:

Ψ = (I + σ2(AT A)−1)−1 (7)

minSINRk =
Ψ2

kk
d
∑

i6=k
Ψ2

ki + σ2
d
∑

i=1
(ΨA−1)2

ki

(8)

wherei andk represent the rows and columns of the observed
mixed signals, respectively andd refers to the total number
of signals observed in the mixture. This shows that the bound
is dependent only on the mixing matrixA and the noise vari-
anceσ2.

3. MINIMUM DISTORTION NOISE REDUCTION

The MDNR algorithm proposed in [8] addresses the prob-
lem of estimatingone source signal given the received sig-
nals at the microphone array. Let{y1(k), · · · ,yN(k)} be the
discretized received signals ofL samples. By exploiting the
spatio-temporal diversity, the source signal ofm-th sensor at
k-th samplexm(k) can be obtained by passing the received
signals atN sensors (of which there areL samples) through
N temporal filters of lengthL

x̂m(k) = hT
my(k) = hT

mx(k)+hT
mv(k) (9)

wherehm = [hT
1m, · · · ,hT

Nm]T , hnm is the column vector ofL
coefficients of the temporal filter for thenth received signal.
y(k) = [yT

1 (k), · · · ,yT
N(k)]T , x(k) = [xT

1 (k), · · · ,xT
N(k)]T , and

v(k) = [vT
1 (k), · · · ,vT

N(k)]T are the received signal, clean sig-
nal and noise signal column vectors, respectively. Notice that
we have grouped the signal term and noise term separately.

Using this form shown in (9), the task of the estimator
is to find hm by minimizing the mean-square-error due to
the noise term under the constraints that the error due to the
signal term (hT

mx(k)− xm(k)) is zero. That is, by solving the
following optimization

hm,o = argmin
hm

hT
mRvvhm s.t. Qmhm = u1 (10)

whereQm = [QT
1m, · · · ,QT

Nm] is the spatial-temporal predic-
tion matrix, which relates the signal at one microphone to
others: xn(k) = Qnmxm(k). Rvv = E[v(k)vT (k)]. u1 =
[1,0, · · · ,0]T .

Solving (10) using Lagrangian multiplier method, the op-
timum hm can be computed given the spatial-temporal pre-
diction matrix. Instead of using the trueQm, which is usually
unknown, an estimate can be obtained easily as

Qnm,o = (Ryn,ym −Rvn,vm)(Rym,ym −Rvm,vm)−1 (11)

whereRvn,vm = E[vn(k)vm(k)]. The same definition applies
similarly toRyn,ym . Therefore, the final expression ofhm,o is
obtained by solving (10) and substituting (11) into the solu-
tion

hm,o = R−1
vv QT

m,o[Qm,oR
−1
vv QT

m,o]u1 (12)

whereQm,o is arranged the same way asQm.
It is stated in [8] that the worst-case performance of the

MDNR algorithm will be that of the delay-and-sum beam-
forming [9] which is the case when only spatial diversity can
be exploited for noise reduction. In this case, the noise power
will be reduced by a factor of 1/N while the signal power re-
mains unchanged. Given that the signal and noise power are
σ2

s andσ2
n , respectively. The worst-case output SINR for the

MDNR algorithm can be expressed as

SINRmdnr =
Nσ2

s

σ2
n

(13)

4. SYSTEM MODEL

The problem of separating speech sources, or the typical
cocktail party problem, has been investigated in previous lit-
erature [2]. Both convolutive and instantaneous mixtures for
separating speech sources have also been studied. However,
the efficient separation performance is limited to the case
when either the noise is ignored or the input SNR is high.
Gaussian noise causes deterioration of second order cumu-
lants which the source separation algorithms can depend on.
In case of FastICA, the assumptions regarding the covariance
of the observed signals can be distorted especially under low
SNR conditions. The mixing matrix can also become ill-
conditioned leading to poor separation and de-noising capa-
bilities.

In order to improve both the noise reduction and sepa-
ration performance, we propose a hybrid approach. With
limited pre-processing, the observed noisy data is passed
through the blind source separation algorithm. By making
use of the overdetermined condition when the number of sen-
sors is more than the number of sources, the diversity in each
of the separated outputs is used for noise reduction. The min-
imum distortion noise reduction algorithm makes use of the
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outputs from these multiple channels to achieve noise reduc-
tion.

Unlike conventional preprocessing/post processing noise
reduction techniques used by common source separation al-
gorithms, this scheme exploits the spatial diversity of thesen-
sor locations for multiple channel noise reduction. Under
low input SNR, other noise reduction schemes may distort
the speech signal output. By exploiting the spatial diversity
of the BSS algorithms and applying the MDNR technique,
high fidelity in the speech output is ensured which is advan-
tageous in its application to low SNR conditions.

Figure 1:Scenario used for testing the proposed algorithm.

As illustrated in Fig. 1, three speech source signalsS1(t),
S2(t) and S3(t) are received by an array of 5 sensors after
passing through a channel mixing matrix. Because of the
over-determined condition, we form 3 sub-arrays and per-
form source separation for each sub-array. This will provide
the spatial diversity required for multiple channel noise re-
duction. The next stage is to utilize the output of the BSS
algorithmŜ11(t), Ŝ12(t) andŜ13(t) (from the first, second and
third sub-arrays respectively) as the input to the MDNR al-
gorithm. This multiple channel noise reduction process, in
turn, provides a high fidelity output̂S1(t) of the target source
signalS1(t). This procedure can be further repeated for the
sourcesS2(t) andS3(t) to similarly obtain high fidelity out-
putsŜ2(t) ansŜ3(t), respectively.

A problem with most BSS algorithms like FastICA is the
ordering of sources (permutation problem). In our technique,
as we make use of outputs from each sub-array, this order-
ing is critical to provide accurate input to the MDNR stage.
The correlation between the separated signals is used to solve
this. As seen from Fig. 2, the highest correlation valuesr1
andr2 are used as the basis for matching the separated out-
puts.

Figure 2: Example of using correlation to solve the permutation
problem. The solid lines indicate highest correlation matching the
separated output of each sub-array to a particular source.

5. PERFORMANCE ANALYSIS

The performance of the proposed hybrid approach can be
evaluated in terms of the overall SINR output. LetSk denote
the desired speech signal to be separated. Given that there
ared speech signals, the rest of the speech signals (Si where
i 6= k andi = 1,2, · · · ,d) are considered as interferences.

The minimum attainable output SINR of noisy linear
ICA has been given in (8). The expression contains three
different terms for the desired signal, interferences and noise
power:

σ2
s = Ψ2

kk

σ2
i =

d

∑
i6=k

Ψ2
ki

σ2
n = σ2

d

∑
i=1

(ΨA−1)2
ki (14)

From Fig. 1, it can be seen that the output of the noisy
linear ICA is also the input of the MDNR algorithm. There-
fore, the output of the hybrid approach can be expressed as

SINRhybrid,min ≤ SINRhybrid ≤ SINRhybrid,max (15)

where{SINRhybrid,min,SINRhybrid,max} are the minimum and
maximum attainable SINR output which can be written as

SINRhybrid,min =
Ψ2

kk

∑d
i6=k Ψ2

ki +
σ2

Nsub
∑d

i=1(ΨA−1)2
ki

SINRhybrid,max =
Ψ2

kk
σ2

Nsub
∑d

i=1(ΨA−1)2
ki

(16)

whereNsub = N − d + 1 is the number of subarrays formed
after the BSS andN is the total sensors used. Notice that
the above inequality is used to express the output SINR of
the proposed hybrid approach, because the MDNR algorithm
is not formulated for suppressing the interferences. Thus,
the expression for SINRhybrid,min relates to only reduction of
noise by the MDNR algorithm with no interference suppres-
sion by BSS. The SINRhybrid,max is achieved when the BSS
technique has a perfect signal separation with improved noise
suppression by the MDNR algorithm.

As compared to using a standard direct approach by just
applying the BSS technique, the hybrid approach offers ad-
ditional noise reduction capability. This is reflected on the
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noise power expression at the output of the hybrid approach.
It is clear that the noise power has been reduced to (1/N)
fraction of the noise power at the BSS intermediate output.
Applying the standard direct BSS approach does not effec-
tively exploit the extra sensor outputs as the performance is
similar to the critically determined case. By effectively us-
ing the overdetermined criterion, the hybrid approach offers
additional SINR improvement by reducing the output noise
power. This produces a significantly better output than the
direct BSS approach.

6. RESULTS AND DISCUSSIONS

Based on the scenario shown in Fig. 1 the speech sources
are mixed based with no reverberation considered. The array
processing toolbox developed by [12] is used for the mixing
process based on the position of the speech sources and the
distribution of sensors (uniform linear array). The sources
and sensors are placed at distances of 1 and 0.1 meters apart,
respectively1. The source separation of the observed mixed
signals at the sensor array is performed based on the FastICA
algorithm. The permutation problem is seen in all the BSS
algorithms, specially those that operate in the frequency do-
main. In this application, back correlation with respect tothe
input signal is used as the solution to the permutation prob-
lem. That is, the highest correlated BSS output with respect
to the input signal is used as the corresponding estimate of
that particular input signal. Further denoising of the sepa-
rated output based on the sub-array structure is achieved by
either the minimum distortion noise reduction (MDNR) or
the delay-and-sum (DAS) beamforming algorithms.

Fig. 3 shows the performance of the algorithm when ap-
plied to three noisy mixed speech signals. The outputs of the
BSS algorithm with input SNR of -10 dB is input to both the
MDNR and the DAS algorithms. The MDNR algorithm is
able to successfully recover the denoised version of the origi-
nal signal. For listening test, a demonstration of the proposed
separation process is available in [14].
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Figure 3:Example of using the algorithm to separate and denoise
the signal (a) Original signal (b) Separated signal before denoising
(c) Estimated signal after MDNR (d) Estimated signal after DAS.

1Note that the geometry of the array can be made arbitrary

The output of the proposed algorithm has been tested
based on the output SINR and SAR improvements using the
toolbox developed by [13]. The separation performance is
computed for each estimated source ˆs j and compared with
the true sources j. The first step is to decompose the esti-
mated unmixed signal as shown.

ŝ j = starget + einter f + enoise + earti f (17)

wherestarget is a version ofs j modified by an allowable dis-
tortion,einter f is an allowed deformation of the sources which
accounts for the interferences of the unwanted sources,enoise
is an allowed deformation of the perturbating noise andearti f
is an artifact term that corresponds to artifacts of the sep-
aration algorithm such as musical noise or to deformations
induced by the separation algorithm that are not allowed.

The next step is to compute energy ratios to evaluate the
relative amount of each of the four terms in (17) either on the
whole signal duration or on local frames. The computation of
the SINR and SAR follows from the equations given below.

SINR = 10log10

∥

∥starget
∥

∥

2

∥

∥einter f + enoise
∥

∥

2 (18)

SAR = 10log10

∥

∥starget + einter f + enoise
∥

∥

2

∥

∥earti f
∥

∥

2 (19)

While SINR is a measure of the separation performance,
SAR measures the distortions caused by the source separa-
tion algorithm on the signals of interest.

As shown in Fig. 4, the MDNR algorithm provides better
SINR output when compared to the DAS beamforming, spe-
cially at low input SNR. The cases for two and three mixed
sources have also been considered. At higher SNR, the noise
suppression performance of both DS and MDNR techniques
converge. Due to this, we notice an overlap of the graphs at
high SNR, specially for the case of three sources. This is be-
cause, at higher SNR, the performance is dependent mainly
on the separation performance. A reference to the minimum
attainable SINR as shown in eq. (16) is provided for a mix-
ture of three sources.

Similarly, the improvements in SAR for two and three
sources are presented. As seen from Figs. 5 and 6, the SAR
improvements for both two and three sources are consider-
able especially under low input SNR. This demonstrates that
both source separation and noise reduction have been suc-
cessfully incorporated assuring the high fidelity of the output
speech signals. The mean values of SINR and SAR have
been used in all the above cases with approximations based
on the toolbox in [13].

7. CONCLUSIONS

We have proposed a two-stage approach to extract high fi-
delity speech signals after BSS. The proposed method con-
siders an over-determined setting, where the number of sen-
sors used is more than the speech signals to be separated.
In this setting, the spatial diversity is exploited to provide
higher SINR improvement using MDNR algorithm. The the-
oretical performance analysis as well as simulation results
confirmed that the proposed method is able to achieve higher
SINR improvement, particularly in low input SNR condi-
tion. Compared to the DAS algorithm with the same settings,

862



−15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15

20

25

Input Signal to Noise Ratio (dB)

O
u

tp
u

t 
S

ig
n

a
l t

o
 I

n
te

rf
e

re
n

ce
 p

lu
s 

N
o

is
e

 R
a

tio
 (

d
B

)

 

 

MDNR 2 sources
DS 2 sources
MDNR 3 sources
DS 3 sources
SINR

hybrid, min
 3 sources

2 sources

3 sources

Figure 4: Output SINR for various settings of input SINR based
on a mixture of two and three sources.
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Figure 5:Output SAR for various input settings based on a mixture
of two sources.
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Figure 6:Output SAR for various input settings based on a mixture
of three sources.

the proposed method achieves almost 3 dB additional SINR
improvement. It is also able to provide high SAR outputs
in case of two or three interfering sources. In future, this
scheme can be applied to reverberant and convolutive source
mixtures in order to evaluate its efficacy in restoring the orig-
inal sources.
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