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ABSTRACT

In this paper, we investigate the effects of frequency-
dependent attenuation on the performance of some time de-
lay estimation techniques applied to ground penetrating radar
(GPR) data. The signal model is based on a complex power
law of frequency for dielectric permittivity which describes
wave propagation using two parameters, the quality factorQ
and the phase velocity at an arbitrary reference frequencyVr .
Hence, the adopted model deviates from the damped expo-
nential model and it is this mismatch that is likely to deterio-
rate the performance of the employed techniques. At first, we
carry out a sensitivity study by determining the variationsof
the relative root mean square error of the time delay estimates
as a function of theSNR, Q and the productBτ for three algo-
rithms, namely, root-MUSIC, ESPRIT and the matrix pencil
method (MPM). These variations reveal a systematic error
which is quantified by means of a first-order approximation
and is found to be the ratio of the phase delay to the group
delay. The bandwidth over which this approximation is rea-
sonably accurate depends on the reference frequency and the
quality factor of the medium. Then, we use this error to com-
pensate for the bias introduced by the model mismatch with
the aim of improving the estimates.

1. INTRODUCTION

Time delay estimation is a well-known problem encountered
in many fields such as medical imaging, sonar, radar,
and geophysics. For civil engineering applications in
which the ground penetrating radar (GPR) is used as one
of the nondestructive testing techniques, time delay is
an important parameter for quantitative interpretation of
data [1]. In the case of non-dispersive media where the
received signal consists of delayed and scaled replicas
of the transmitted signal, the literature provides a variety
of parameter estimation techniques capable of accurately
estimating the different time delays. These techniques are
classified into two broad categories, namely, parametric and
non-parametric approaches. The former category comprises
subspace-based methods such as root-MUSIC and ESPRIT
and linear prediction methods such as MPM which have
been extensively studied in various domains including GPR
[2, 5]. However, if the medium is lossy and dispersive,
the premise of detecting replicas is no longer valid and the
assumed signal model as well as the processing techniques
should be modified.

Among the disparate physical phenomena contributing to
signal attenuation, this paper tackles the effects of frequency-

dependent dielectric permittivity. The attenuation of GPR
energy decreases and shifts the amplitude spectrum of the
radar pulse to lower frequencies (absorption) with increasing
time delay and causes also a distortion of the wavelet
(dispersion). To account for these effects, we consider a
complex power function of frequency for the dielectric
permittivity which yields a well-known constant-Q model.
Not only does this model describe the wave propagation
using only two parameters (Q andVr ), but it also honours
the constraints of causality [6].

In an attempt to estimate the parameters of a data model
which includes electromagnetic scattering components with
frequency dependent amplitudes, [7] proposed a modifica-
tion of the MUSIC algorithm. It is based on premultiplying
the scattering data by the inverse of an assumed frequency
dependence. In [8], another approach was adopted using
MPM by carrying out a first-order approximation of the
frequency dependence with the aim of retrieving the damped
exponential (DE) model. Similarly, in this paper, we adapt
a DE model to the constant-Q model via a first-order
approximation. This adaptation offers a better understanding
of the biased estimates provided by the algorithms and paves
the way for partially counterbalancing the effects of model
mismatch.

The rest of the paper is organized as follows. In section 2,
the signal model introducing absorption and dispersion along
with its linear approximation are given. A brief review of the
used methods is presented in section 3. In section 4, com-
puter simulations highlight the performance degradation and
quantify the improvement introduced by compensation. Fi-
nally, our conclusions for this work are given in section 5.

2. FORMULATION

In this section, we present the accurate signal model derived
from the complex power law of frequency for dielectric per-
mittivity, and an approximate model which is a superposition
of damped exponentials. Both models are defined within the
scope of determining the geometry of a stratified medium.

2.1 The Constant-Q Model

In order to model radar wave propagation in a constant-Q
medium, [6] used a complex power law of frequency for the
effective dielectric permittivity of the form:

ε( f ) = ε 0( f )+ jε 00( f ) = ε0

���� f
fr

����n�1h� jsgn( f )in�1
(1)
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in which fr andε0 are constants,fr is an arbitrary reference
frequency, andε0 will have the dimension of permittivity and
is equal toε for n= 1. The indexn (0< n< 1) is related to
the quality factorQ as follows:

n= 2
π

arctan(Q) (2)

where
1
Q
= ε 00

ε 0 = tan
hπ

2
(1�n)i.

In addition, considering only the positive frequencies and
substituting equation (1) in the expression of the complex
wavenumberk, we obtain

k( f ) = β ( f )� jα( f ) = β ( f )n1� j tan
hπ

4
(1�n)io (3)

with

β ( f ) = 2π f
V( f ) : (4)

The dispersion and absorption terms are introduced by the
real and imaginary parts of the wavenumberk, with V( f )
andα, the phase velocity and the absorption coefficient, re-
spectively, given by

V( f ) =Vr

�
f
fr

� (1�n)
2

(5)

with

Vr = 1p
µε0cos

�π
4 (1�n)�

and
α( f ) = β ( f ) tan

hπ
4
(1�n)i : (6)

µ is the magnetic permeability. The casen= 1 corresponds
to loss-free propagation (Q = ∞, i.e. no attenuation or
k = 2π f

Vr
is real). From equation (5), it can be seen that

Vr is simply the phase velocity at the arbitrary refer-
ence frequencyfr , and sinceV is slightly dependent on
frequency, the absorption coefficientα in equation (6)
obeys a frequency power law. The result in equation (5)
is the dispersion relationship proposed for the first time
by Kjartansson [9] for the case of mechanical losses in solids.

The complex power law for the dielectric constant equation
(1) is easy to use in the frequency domain and is valid for
positive values ofQ. The wave propagation properties of
materials can be described completely by only two param-
eters, Q and the phase velocity at an arbitrary reference
frequencyVr . This simplicity makes it practical to use
in the inverseQ imaging technique and in any inversion
schema. This approach has been used successfully in 3D
forward modeling of GPR data [10], in the estimation of
water content of saturated rocks [11], and more recently for
the characterization of the dielectric permittivity of concrete
[12].

Assuming a horizontally stratified medium, the backscattered
complex signal can be modeled as a linear combination ofd
echoes each of which emanates from the interface between
two horizontally superposed layers under normal incidence.
Each layer is considered to be homogeneous and character-
ized by a thicknesse, a constant quality factorQ, and a di-
electric constantε0. Upon substituting for each layer the ex-
pression of the corresponding wavenumberk in the equation
of a plane wave as propagating along thez�axis, ej(ωt�kz),
the following signal model is obtained:

s( f ) = d

∑
m=1

Am( f ) m

∏
l=1

e
2π f τl

�
f
fr

� nl�1
2
�� j�tan[ π

4 (1�nl )℄	+b( f )
(7)

whereAm( f ) is a function gathering the different reflections
and transmissions undergone by themth echo,τl = 2el=Vrl is
the time delay corresponding to thel th layer,b( f ) is additive
white Gaussian noise with zero mean and varianceσ2. The
product in the signal model shows the cumulative effect of
the (m� 1) traversed layers on themth echo. The function
Am( f ) depends on the inter-layer dielectric contrast via the
Fresnel coefficients that are generally frequency dependent.
For example, the reflection coefficient emanating from the
interface of the first and second layers is given as:

R12( f ) = qε0
r1

�� j
f
fr

� n1�1
2 �qε0

r2

�� j
f
fr

� n2�1
2q

ε0
r1

�� j
f
fr

� n1�1
2 +qε0

r2

�� j
f
fr

� n2�1
2

(8)

whereε0
r is the relative dielectric constant. In such a case,

we haveA1( f ) = R12( f ). The frequency variations of this
term are slight and in the opposite manner to those resulting
from propagation. According to [13], signal distortion is still
mainly due to propagation and not to interface transmission.
In what follows, the frequency variations ofAm( f ) are not
taken into consideration.

2.2 Approximate Damped Exponential Model

As seen in the previous subsection, the constant-Q model de-
viates from the DE model. This subsection presents the first-
order approximation enabling the retrieval of the DE model.
It also discusses in terms ofQ and fr the bandwidth lim-
its within which the approximation is considered sufficiently
accurate. In [5], the author formulates a DE model from
the first-order approximation of the complex wavenumberk.
However, he considers no specific model for the frequency
variations of the dielectric permittivity.

2.2.1 First-order Approximation

Applying the Taylor series expansion of the phase function

φ( f ) = �2π f τ
�

f
fr

� n�1
2

at f = fr and considering only the

first two terms, we obtain:

φ( f ) ��2πτ fr �2πτ
�

n+1
2

�( f � fr) (9)
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Using the above approximation, the data model becomes:

sa( f ) = d

∑
m=1

m

∏
l=1

A
0
l ( f )e2π f τl

�
nl+1

2

��� j�tan[ π
4 (1�nl )℄	+b( f )

(10)
wheresa( f ) denotes the approximated model, andAm( f )
changes toA

0
l ( f ) to accommodate the constant complex

terms resulting from the approximation. Therefore, replacing
the nonlinear phase function by its first-order approximation
results in the classical damped exponential model where the
poles are given by:

zm= m

∏
l=1

e
2π fsτl

�
nl+1

2

��� j�tan[ π
4 (1�nl )℄	 (11)

wherem= 1;2; � � � ;d and fs is the frequency shift. From
equation (11), any method capable of estimating the param-
eters of the DE model when applied to the model in equation
(7) would reveal, to a first-order approximation, a bias due
to the term(n+1)=2 since they consider the time delay esti-
mate to be:

τm =��ℑ(logzm)�ℑ(logzm�1)
2π fs

�
(12)

whereℑ is the imaginary part. To gain insight into the physi-
cal significance of the bias term, we determine the phase and
group delays:

τφ ( f ) =� 1
2π

φ( f )
f

= τ
�

f
fr

� n�1
2

(13)

τg( f ) =� 1
2π

dφ( f )
df

= τ
�

f
fr

� n�1
2
�

n+1
2

�
(14)

From the above two equations, expressingτg( f ) in function
of τφ ( f ) gives:

τg( f ) =�n+1
2

�
τφ ( f ) (15)

So, we deduce that the first-order approximation estimate
gives access to the value ofτg( f ) at f = fr and not that of
τφ ( f ). Consequently, we expect the algorithms to reveal a
systematic error of(1�n)=2, which may rise to 25% for the
most dispersive medium (i.e. forQ= 1). Noting that both
the modulus and argument of the pole depend onn andτ,
the approximated model allows us to define an unbiased time
delay estimate as follows:

τm=�� 2
nm+1

��
ℑ(logzm)�ℑ(logzm�1)

2π fs

�
(16)

wherenm is estimated as:

nm= 1� 4
π

arctan

�
ℜ(logzm)�ℜ(logzm�1)
ℑ(logzm)�ℑ(logzm�1) � (17)

andℜ is the real part. It is worth mentioning that the error
made on the estimate ofτm does not “propagate to” or affect
the estimate ofτm+1. This is because the estimation of a cer-
tain time delay involves the subtraction of all the previously
estimated time delays. The subtraction removes the bias in-
troduced by each. In other words, the bias of an estimate of a
certain echo stems from its propagation in the last traversed
layer, only. In what follows, this motivates us to carry out
simulations on a one-layered medium.
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Figure 1:The bandwidth variation in terms of Q and fr .

2.2.2 Approximation Adequacy

In order to define bandwidth limits within which the approx-
imation yields an error inferior to 2%, it is required to solve
the following transcendental equation which represents the
2% relative difference betweenφ( f ) and its approximation
in equation (9):�

n+1
2

�
f � 1:02

f
n�1

2
r

!
f

n+1
2 +�1�n

2

�
fr = 0 (18)

We proceed by transforming the above equation into a poly-
nomial. This requires rationalizing the exponents throughap-
proximatingn by a=b (a;b2N� anda< b) and then chang-
ing f to Ω2b leading to a polynomial of degree 2b:�

a+b
2b

�
Ω2b�0� 1:02

f
a�b
2b

r

1AΩa+b+�b�a
2b

�
fr = 0 (19)

Two of the 2b roots are real and correspond to the lower and
upper limits of the bandwidth. Fig. 1 shows, for a given
value ofQ, an almost-linear increase in the absolute band-
width BW as fr increases which indicates that the nonlinear
phaseφ( f ) develops a broader linear behavior at higher fre-
quencies. Moreover, the relative bandwidthRBW= BW= fr
is almost constant for a givenQ and increases with increasing
values ofQ. For example, atQ= 1 RBW= 97% and attains
200% atQ= 5. Therefore, for GPR applications in which the
bandwidth is generally equal to the central frequency of the
radar wavelet, the first-order approximation seems adequate.

3. TDE TECHNIQUES

This section presents briefly the principles of MUSIC, ES-
PRIT and MPM. They all afford the estimation of the pole
zm in equation (11) through either a root-finding technique
or a singular value decomposition. The details of these algo-
rithms are well documented elsewhere [14, 15].

3.1 MUSIC

The MUSIC algorithm is based on the eigendecomposition
of the correlation matrix which serves to partition the eigen-
vectors into noise and signal subspaces. Estimates of the time
delays are obtained by computing the projection of a mode
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vector onto the noise subspace. For an echo atτm, its cor-
responding mode vector is orthogonal to the noise subspace.
This property is used to estimateτm. Root-MUSIC, the poly-
nomial version of MUSIC, computes the time delays by find-
ing the roots of a polynomial called the root-MUSIC polyno-
mial. Such an approach is less computationally demanding
and better suited for the estimation of complex poles.

3.2 ESPRIT

The ESPRIT algorithm exploits an underlying rotational in-
variance between two adjacent data sub-bands. In compari-
son with MUSIC, ESPRIT provides a direct estimation of the
time delays along with a reduced computational burden.

3.3 Matrix Pencil Method

The MPM is a linear prediction technique that exploits the
structure of the matrix pencil of the underlying noiseless sig-
nals for the estimation of the time delays. MPM neither
needs to estimate the correlation matrix nor employs a root-
ing procedure which dramatically reduces the computational
burden. In contrast to MUSIC and ESPRIT, MPM carries
out estimation from one snapshot and so can operate on cor-
related echoes without using any spatial smoothing process.

4. COMPUTER SIMULATIONS

In this section, the variations of the relative root mean square
error (RRMSE) of the time delay estimates, defined as

RRMSE(%)= 100�q 1
U ∑U

i=1(τ̂i � τ)2
τ

(τ̂i andτ denote the estimated and true time delays, respec-
tively), are given as a function ofQ, SNR, and the product
Bτ, whereB is the bandwidth of the GPR andτ is the small-
est discernible time delay between two backscattered echoes.
For the simulations, an air-coupled scenario is considered
where the antennas are 30 cm above a one-layered medium
placed on a perfect electric conductor. The antennas have
a central frequency offc = 700 MHz which is taken to be
the reference frequency, i.e.,fr = fc and the processed band-
width is 1 GHz. The data set contains 100 equispaced fre-
quency samples generated from equation (7) which becomes:

s( f ) = R12( f )e� j2π f τ1 � �1�R2
12( f )�e� j2π f τ1

e
2π f τ2

�
f
fr

� n2�1
2
�� j�tan[ π

4 (1�n2)℄	+b( f ) (20)

where n1 = 1 since it characterizes air, a dispersionless
medium. In all simulations and for the sake of clarity, only
the estimates of MPM are compensated for the bias term.
The spatial smoothing process (SSP) is employed for root-
MUSIC and ESPRIT to decorrelate the echoes.

4.1 RRMSE versus Q

Q is varied between 1 and 30 which correspond to the limit
values reported in the literature for civil engineering mate-
rials [16]. Each estimate is the result ofU = 100 Monte
Carlo runs atSNR= 20 dB. The horizontal line represents
the RRMSE in the absence of dispersion atSNR= 20 dB
and serves as an asymptote or a lower bound for the errors
produced by the algorithms. From Fig. 2, we observe that
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Figure 2: The RRMSE variations ofτ2 versus Q at SNR=
20 dB where? and� designate compensated MP applied on
the approximate and accurate models, respectively. MPnc
stands for the non-compensated MP.

the RRMSE of all algorithms decreases as Q increases. This
is because a higherQ leads to less absorption and dispersion
and thus a higherSNRfor the second echo and a smaller
discrepancy between the accurate and approximated mod-
els. However, the uncompensated algorithms do not attain
the asymptote due to the bias term(n2+1)=2 whereas the
compensated MPM does forQ> 10. In the case of compen-
sation, a major percentage of the error on the time delayτ2,
especially for low values ofQ, is due to the error onn2 which
is known to have a higher noise threshold [8], and not due to
model mismatch. To verify this conclusion, the RRMSE vari-
ation for a data set generated from the approximated model
of equation (10) is added to Fig. 2 where it appears to be
almost confounded with the one of the accurate model. Con-
sequently, increasing theSNRwould result in a significant
improvement in the RRMSE for the compensated MPM and
only a slight one for the uncompensated algorithms.

4.2 RRMSE versus Bτ2
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Figure 3:The RRMSE variations ofτ2 versus Bτ2 at SNR=
40dB and Q= 2.

Fig. 3 shows the variation of the RRMSE as a function of
the productBτ2 at SNR= 40 dB andQ = 2. The uncom-
pensated MPM produces a systematic error represented by a
nearly constant RRMSE. This error is predicted by the term(1�n2)=2 which for Q = 2 gives 14:75%. Compensating
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Figure 4:The RRMSE variations ofτ2 versus SNR at Q= 5
and e= 10cm.

the results of MP has the effect of reducing the error until a
threshold value ofBτ2 = 1:5 is reached. Once again, this be-
havior is not to be attributed to model mismatch and the dis-
persionless curve supports this interpretation which is asfol-
lows. Starting from the threshold value, as the layer thickness
increases, theSNRof the second echo decreases dramatically
and overwhelms or dominates the well-established effects
of dispersion which renders parameter estimation inaccurate,
and so the RRMSE increases. Whereas for values less than
the threshold, the effects of attenuation become more promi-
nent with thickness but within reasonable decreasingSNR
values enabling more and more accurate estimates. Conse-
quently, the RRMSE decreases.

4.3 RRMSE versus SNR

The RRMSE versusSNRis shown in Fig. 4 forQ= 5 and
e= 10 cm. As in the previous subsection, the uncompen-
sated MPM presents a systematic error predicted by the term(1�n2)=2 which forQ= 5 gives 6:3%. Compensation im-
proves the accuracy of the estimates and offers a performance
comparable to that of the dispersionless case except for a de-
viation at highSNR. A deviation which we attribute to model
mismatch since the influence of noise perturbation becomes
negligible at highSNR.

5. CONCLUSION

In this paper, the effects of attenuation on the performance
of some time delay estimation techniques were investigated
in terms of Q, SNR, and Bτ. An approximate model
was derived with the aim of retrieving the damped ex-
ponential model and its validity was discussed. Finally,
the attenuation-induced systematic error was remedied by a
compensation procedure which proved to provide better esti-
mates over the considered bandwidth.
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