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ABSTRACT dependent dielectric permittivity. The attenuation of GPR
energy decreases and shifts the amplitude spectrum of the
adar pulse to lower frequencies (absorption) with indreas
ime delay and causes also a distortion of the wavelet
égispersion). To account for these effects, we consider a
complex power function of frequency for the dielectric
r permittivity which yields a well-known constant-Q model.
Not only does this model describe the wave propagation
sing only two parameter€)andV;), but it also honours
e constraints of causality [6].

In this paper, we investigate the effects of frequency
dependent attenuation on the performance of some time d

law of frequency for dielectric permittivity which desceg
wave propagation using two parameters, the quality fa@to
and the phase velocity at an arbitrary reference frequeéncy
Hence, the adopted model deviates from the damped exp
nential model and it is this mismatch that is likely to deteri
rate the performance of the employed techniques. At first, w
carry out a sensitivity study by determining the variatiofs
the relative root mean square error of the time delay estisnat

as a function of th&NR Q and the produdsr for three algo- tion of the MUSIC algorithm. It is based on premultiplying

rithms, namely, root-MUSIC, ESPRIT and the matrix pencil ttering data by the i f df
method (MPM). These variations reveal a systematic errotrhe scattering aata by he Inverse of an assumed Irequency
dependence. In [8], another approach was adopted using

which is quantified by means of a first-order apprommaﬂorF{IPM by carrying out a first-order approximation of the

and is found to be the ratio of the phase delay to the grou . . S

delay. The bandwidth over which this approximation is real’€dueéncy dependence with the aim of retrieving the damped

sonably accurate depends on the reference frequency and figeonential (DE) model. Similarly, in this paper, we adapt
a DE model to the constant-Q model via a first-order

quality factor of the medium. Then, we use this error to com- imation. This adantati b bett derstand
pensate for the bias introduced by the model mismatch witRPProximation. This adaptation offers a better understan
the aim of improving the estimates of the biased estimates provided by the algorithms and paves

the way for partially counterbalancing the effects of model
mismatch.

fh an attempt to estimate the parameters of a data model
which includes electromagnetic scattering components wit
frequency dependent amplitudes, [7] proposed a modifica-

1. INTRODUCTION

Time delay estimation is a well-known problem encountered N€ rest of the paper is organized as follows. In section 2,
in many fields such as medical imaging, sonar, rada,t'h.esygnal model mtrqducmgabsorptmn anq dlspe_r3|ongalo
and geophysics. For civil engineering applications inwith its linear approximation are given. A brief review oéth
which the ground penetrating radar (GPR) is used as ori¢S€d methods is presented in section 3. In section 4, com-
of the nondestructive testing techniques, time delay i®uter simulations highlight the performance degradatiah a
an important parameter for quantitative interpretation ofduantify the improvement introduced by compensation. Fi-

data [1]. In the case of non-dispersive media where th@ally, our conclusions for this work are given in section 5.
received signal consists of delayed and scaled replicas

of the transmitted signal, the literature provides a variet 2. FORMULATION

of parameter estimation techniques capable of %CCUfatehﬁ this section, we present the accurate signal model dirive
estimating the different time delays. These techniques ar

classified into two broad categories, namely, parametric anﬁOm the complex power law of frequency for dielectric per
non-parametric approaches. The former category compris
subspace-based methods such as root-MUSIC and ESP
and linear prediction methods such as MPM which have
been extensively studied in various domains including GP _

[2, 5]. However, if the medium is lossy and dispersive!%'1 The Constant-Q Model

the premise of detecting replicas is no longer valid and thén order to model radar wave propagation in a constant-Q
assumed signal model as well as the processing techniquétedium, [6] used a complex power law of frequency for the
should be modified. effective dielectric permittivity of the form:

mittivity, and an approximate model which is a superpositio
damped exponentials. Both models are defined within the
ope of determining the geometry of a stratified medium.

Among the disparate physical phenomena contributing to n-1

o R _ 0
signal attenuation, this paper tackles the effects of feaqy- e(f)=e(f)+je’(f)=¢

[~ison]" @

T
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in which f, ande? are constantsf; is an arbitrary reference Assuming a horizontally stratified medium, the backscatter
frequency, and® will have the dimension of permittivity and complex signal can be modeled as a linear combinatiah of
is equal tos forn=1. Theindexn (0O< n< 1)isrelatedto echoes each of which emanates from the interface between
the quality factoQ as follows: two horizontally superposed layers under normal incidence
Each layer is considered to be homogeneous and character-
@) ized by a thickness, a constant quality factd®, and a di-
electric constant®. Upon substituting for each layer the ex-
, pression of the corresponding wavenumber the equation
Wherei _f _ tan[’—T(l— n)]. of a plane wave as propagating along theaxis, el (“?t—k2 |
2 the following signal model is obtained:

n= 7—21 arctar{Q)

Q ¢
In addition, considering only the positive frequencies and

substituting equation (1) in the expression of the complex d m N2
wavenumbek, we obtain s(f) = Z An(f) r!ez”fr'(ﬁ) {-i-tanF@-n)} +b(f)
m=1 I=

(7)
_ s _ o m., whereAn(f) is a function gathering the different reflections
k() =B(f) —ja(f) B(f){l jtan[4 @ n)]} ® and transmissions undergone by th8 echo,T =28 /Vy is
the time delay corresponding to tHe layer,b( f) is additive
2mf white Gaussian noise with zero mean and variam€eThe
B(f) = V(f) ) product in the signal model shows the cumulative effect of
the (m— 1) traversed layers on the" echo. The function
Am(f) depends on the inter-layer dielectric contrast via the
The dispersion and absorption terms are introduced by theresnel coefficients that are generally frequency depénden
real and imaginary parts of the wavenumlemwith V(f) For example, the reflection coefficient emanating from the
anda, the phase velocity and the absorption coefficient, reinterface of the first and second layers is given as:
spectively, given by

n-1

n-1 -1
) f —~5— f -2
1-n) i i
V() =V (1 E 5 Vgpl<_1f_r) _V‘EPZ(_Jf_r)
(f)=W T ®) Rio(f) = N % (8)
> 2
/0 i 0 '
with 1 T <_J f_r) TV <_J f_r>
Vr ==
pelcos[ 7 (1—-n)] wheree? is the relative dielectric constant. In such a case,

we haveA; (f) = Ryx(f). The frequency variations of this
_ m term are slight and in the opposite manner to those resulting
a(f)= B(f)tan[z (1- n)] : 6) from propagation. According to [13], signal distortion fils
mainly due to propagation and not to interface transmission
In what follows, the frequency variations 8§,(f) are not
U is the magnetic permeability. The case- 1 corresponds taken into consideration.
to loss-free propagationQ(= o, i.e. no attenuation or

k= ZT’ff is real). From equation (5), it can be seen that2.2 Approximate Damped Exponential M odel
V, is simply the phase velocity at the arbitrary refer-
ence frequencyf,, and sinceV is slightly dependent on

frequency, the absorption coefficiemt in equation (6)

obeys a frequency power law. The result in equation (5
is the dispersion relationship proposed for the first time
by Kjartansson [9] for the case of mechanical losses in solid

and

As seen in the previous subsection, the constant-Q model de-
viates from the DE model. This subsection presents the first-
rder approximation enabling the retrieval of the DE model.

t also discusses in terms @) and f; the bandwidth lim-
ts within which the approximation is considered sufficlgnt
accurate. In [5], the author formulates a DE model from

the first-order approximation of the complex wavenuniber

The complex power law for the dielectric constant equation,vever, he considers no specific model for the frequency
(1) is easy to use in the frequency domain and is valid fo(/ariations of the dielectric permittivity.

positive values ofQ. The wave propagation properties of
materials can be described completely by only two param- _ o
eters,Q and the phase velocity at an arbitrary reference?-2-1 First-order Approximation

frequencyVy. This simplicity makes it practical to use Applying the Taylor series expansion of the phase function
in the inverseQ imaging technique and in any inversion N

1
schema. This approach has been used successfully in 3R ¢y = _opfr i) Ta'[f = f, and considering only the
forward modeling of GPR data [10], in the estimation of fr

water content of saturated rocks [11], and more recently fofirst two terms, we obtain:

the characterization of the dielectric permittivity of coete

[12]. o(f) ~ —2mrf, — 2mT (%) (f—fr) 9)
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x 10°
) 201
mo NS e T * Q=3 b
a(h=3 r!A|(f)e2"fT'( ) ey e e
m=1l=

(10)
where s;(f) denotes the approximated model, afsgd(f)
changes toA,'(f) to accommodate the constant complex
terms resulting from the approximation. Therefore, reipig.c
the nonlinear phase function by its first-order approxiorati 1
results in the classical damped exponential model where tt
poles are given by:

Using the above approximation, the data model becomes:

6 8
g — ﬁeZHfsn (”'T“) {-i~taniZ@a-n)} (11) fr (Hz) «10°
|=

wherem=1,2,--.d and s is the frequency shift. From Figure 1:The bandwidth variation in terms of Q angd f

equation (11), any method capable of estimating the param-

eters of the DE model when applied to the model in equatio P

(7) would reveal, to a first-order approximation, a bias duc?'z'2 Approx-|mat|on Ad.equz.ac;./ o _
to the term(n+ 1) /2 since they consider the time delay esti- In order to define bandwidth limits within which the approx-

mate to be: imation yields an error inferior to 2%, it is required to s®lv
_ the following transcendental equation which represerds th
Tm=— D(logzm) D(Iogzml)} (12) 2% relative difference betweep(f) and its approximation
2rfs in equation (9):

wherell is the imaginary part. To gain insight into the physi-

cal significance of the bias term, we determine the phase and n+1 1.02)\ _nu1 1-n
group delays: (—2 > f— (—n1> fz+ <—2 ) ff=0 (18)
n— frT
Lo(f) _(f\7 | .
Tp(f) = o0 f 4 T (13)  We proceed by transforming the above equation into a poly-
o ' nomial. This requires rationalizing the exponents throaigth
1 do(f) f\ 2 /n+1 proximatingn by a/b (a,b € N* anda < b) and then chang-
o(f) = "o df ¢ <f_r> ( > ) (14)  ing f to Q% leading to a polynomial of degred?2
From the above two equations, expressipgf) in function
of 7y(f) gives: <a+ b) o2 _ 135 Qathb 4 <b—a> ff=0 (19)
n+1 2D fe 2b
() = (57 ol (15)

. S _ Two of the Dbroots are real and correspond to the lower and
So, we deduce that the first-order approximation estimatgpper limits of the bandwidth. Fig. 1 shows, for a given
gives access to the value gf(f) at f = f, and not that of yalue ofQ, an almost-linear increase in the absolute band-
Ty(f). Consequently, we expect the algorithms to reveal gyidth BW as f, increases which indicates that the nonlinear
systematic error ofl —n) /2, which may rise to 25% for the phasep(f) develops a broader linear behavior at higher fre-
most dispersive medium (i.e. f@ = 1). Noting that both  quencies. Moreover, the relative bandwiRBW = BW/ f,

the modulus and argument of the pole depench@ndt, s aimost constant for a givépand increases with increasing
the approximated model allows us to define an unbiased timgg|ues ofQ. For example, a® = 1 RBW= 97% and attains
delay estimate as follows: 200% atQ = 5. Therefore, for GPR applications in which the

bandwidth is generally equal to the central frequency of the
} (16) radar wavelet, the first-order approximation seems adequat

() [P s

whereny, is estimated as: 3. TDE TECHNIQUES

= 1— A retan O (logzm) — O(logzm-1) (17)  This section presents briefly the principles of MUSIC, ES-
O(logzm) — O(logzm-1) PRIT and MPM. They all afford the estimation of the pole
. : I i tion (11) through either a root-finding technique

and( is the real part. It is worth mentioning that the errorZn !N €qua e :
made on the estimate af, does not “propagate to” or affect or a singular value decomposition. The details of these-algo

the estimate ofy,, 1. This is because the estimation of a cer-mhms are well documented elsewhere [14, 15].
tain time delay involves the subtraction of all the previgus 1 MUSIC

estimated time delays. The subtraction removes the bias ir?’-‘

troduced by each. In other words, the bias of an estimate of Bhe MUSIC algorithm is based on the eigendecomposition
certain echo stems from its propagation in the last traderseof the correlation matrix which serves to partition the eige
layer, only. In what follows, this motivates us to carry outvectors into noise and signal subspaces. Estimates ofttlee ti
simulations on a one-layered medium. delays are obtained by computing the projection of a mode
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vector onto the noise subspace. For an echpyaits cor-

responding mode vector is orthogonal to the noise subspac R S o —=-MPnc
This property is used to estimatg. Root-MUSIC, the poly- ’ e
nomial version of MUSIC, computes the time delays by find- — asymptote
ing the roots of a polynomial called the root-MUSIC polyno- ¢ y ~-MP
mial. Such an approach is less computationally demandin ‘%’101 \ * MP
and better suited for the estimation of complex poles. >

o
3.2 ESPRIT
The ESPRIT algorithm exploits an underlying rotational in- b
variance between two adjacent data sub-bands. In compa 1° ‘ — 0
son with MUSIC, ESPRIT provides a direct estimation of the 10° 10t
time delays along with a reduced computational burden. Q
3.3 Matrix Pencil Method Figure 2: The RRMSE variations ab versus Q at SNR

The MPM is a linear prediction technique that exploits thetzhoedspvgroirifn*;re]d;nge;;%ﬁ;ec?n@%ee?:arteegpl\élgi\?g@lIe|(\j/|grr: c
structure of the matrix pencil of the underlying noiselégs s stands for the non-compensated MP ' '

nals for the estimation of the time delays. MPM neither P '

needs to estimate the correlation matrix nor employs a root-

ing procedure which dramatically reduces the computation&t\

gﬂ:%(asrt]i}nlagigr? ?rt(r)an?totrc]) e'\élrL]J asp:s?hc?tn gnESSEFég; %Z';gtgaggisd']s_because a highQ leads to less absorption and dispersion
nd thus a higheBNRfor the second echo and a smaller

related echoes without using any spatial smoothing procesdiscrepancy between the accurate and approximated mod-

els. However, the uncompensated algorithms do not attain
4. COMPUTER SIMULATIONS the asymptote due to the bias tefmy + 1) /2 whereas the

In this section, the variations of the relative root mearesqu compensated MPM does f@ > 10. In the case of compen-

error (RRMSE) of the time delay estimates, defined as sation, a major percentage of the error on the time delay

especially for low values d, is due to the error on, which

he RRMSE of all algorithms decreases as Q increases. This

1 ZU (fi —1)2 is known to have a higher noise threshold [8], and not due to
RRMSE (%)= 100x uZi=t model mismatch. To verify this conclusion, the RRMSE vari-
T ation for a data set generated from the approximated model

(9_f equation (10) is added to Fig. 2 where it appears to be
almost confounded with the one of the accurate model. Con-
sequently, increasing th@NRwould result in a significant
dmprovement in the RRMSE for the compensated MPM and
nly a slight one for the uncompensated algorithms.

(Ti andt denote the estimated and true time delays, respe
tively), are given as a function @, SNR and the product
BT, whereB is the bandwidth of the GPR arrds the small-
est discernible time delay between two backscattered scho
For the simulations, an air-coupled scenario is considerel
where the antennas are 30 cm above a one-layered mediu

placed on a perfect electric conductor. The antennas have? RRMSE versusBr,
a central frequency of. = 700 MHz which is taken to be
the reference frequency, i.d¢,= f; and the processed band- )
width is 1 GHz. The data set contains 100 equispaced fre 0 ! T e
guency samples generated from equation (7) which become -=MPnc
1 [BeeBEEE—g - —asymptote

s(f) = Rlz(f)e—jZTrle _ [1_ R%Z(f)] o-i2ntn
2 (20)
e2rrfr2(-ffr-) 2 a1} ()

RRMSE(%)

wheren; = 1 since it characterizes air, a dispersionles:
medium. In all simulations and for the sake of clarity, only
the estimates of MPM are compensated for the bias tern )

The spatial smoothing process (SSP) is employed for roo 05 1 15 2 25 3 35 4 45 5
MUSIC and ESPRIT to decorrelate the echoes. BT,
41 RRMSE versusQ Figure 3:The RRMSE variations ap versus B, at SNR=

Q s varied between 1 and 30 which correspond to the limi¢0dB and Q= 2.

values reported in the literature for civil engineering eaat

rials [16]. Each estimate is the result df= 100 Monte Fig. 3 shows the variation of the RRMSE as a function of
Carlo runs atSNR= 20 dB. The horizontal line represents the productBr, at SNR= 40 dB andQ = 2. The uncom-

the RRMSE in the absence of dispersionrSMR= 20 dB  pensated MPM produces a systematic error represented by a
and serves as an asymptote or a lower bound for the errongarly constant RRMSE. This error is predicted by the term
produced by the algorithms. From Fig. 2, we observe thatl —ny) /2 which for Q = 2 gives 1475%. Compensating
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