
FULLY ADAPTIVE LMS/NLMS INTERPOLATED VOLTERRA FILTERS
WITH REMOVED BOUNDARY EFFECT

Eduardo L. O. Batista, Orlando J. Tobias, and Rui Seara

LINSE – Circuits and Signal Processing Laboratory
Department of Electrical Engineering
Federal University of Santa Catarina

88040-900 – Florianópolis – SC – Brazil
E-mail: {dudu, orlando, seara}@linse.ufsc.br

ABSTRACT

Aiming to expand the applicability of adaptive Volterra filters,
a large number of reduced complexity implementations have
been discussed in the open literature. Contributing to this goal,
this paper presents a fully LMS/NLMS adaptive approach for
implementing interpolated Volterra filters with removed
boundary effect. The main aim here is to combine a fully
adaptive interpolated approach, a boundary effect removal
procedure, and the LMS/NLMS algorithm to give birth to an
algorithm with very good steady state and transient
performance. Numerical simulations confirm the effectiveness
of the proposed approach.

1. INTRODUCTION

Over the last two decades, adaptive Volterra filters have been
used in several nonlinear applications, such as control of
nonlinear noise processes [1], acoustic echo canceling [2],
compensation of nonlinear effects in OFDM transmitters [3],
among others. In this context, both the increasing processing
capacity of modern digital signal processors (DSPs) and
significant research efforts have decisively contributed to
overcome the main problem of implementing digital Volterra
filters, which is its inherent computational burden. As a result,
the search for Volterra structures with lower computational
burden has been strongly demanded. Examples of such
structures are the simplified [4], sparse [5], and
frequency-domain [6] implementations. Additionally,
interpolated Volterra filters also form an important class of
structures with reduced implementation complexity [7]. The
interpolated approach, which was originally considered for
implementing linear FIR filters [8], uses a cascaded filtering
structure composed of a sparse filter, with reduced coefficient
number, and an interpolator filter, whose purpose is to recreate
the zeroed coefficients of the sparse filter [7], [8]. In the
Volterra case, the interpolated structure consists of a linear
input interpolator followed by a sparse Volterra filter, leading
to a structure having considerable reduction in complexity [7].
However, such computational savings come at the expense of
increased minimum mean-square error (MSE). Such poor
performance can be improved by using a fully adaptive
interpolated structure [9] instead of a sparse filter structure [7].

Orlando J. Tobias is also with the Electrical Engineering and Telecom. Dept.,
Regional University of Blumenau (FURB), Blumenau, SC, Brazil. This work
was supported in part by the National Council for Scientific and
Technological Development (CNPq).

Another point for performance improvement in interpolated
structures is to remove the boundary or border effect [10], since
it is a considerable source of performance degradation in many
cases [10]. In this context, the present paper introduces an
interpolated Volterra implementation combining a fully
adaptive structure with a boundary effect removal procedure,
aiming to improve the performance. In addition, an
LMS/NLMS adaptive setup is adopted to enhance the
convergence characteristics at the expense of a relatively small
computational increment. Through numerical simulations, we
verify the performance of the proposed structure.

This paper is organized as follows. Section 2 presents the
interpolated Volterra filter and its main characteristics. Section
3 discusses briefly the generalized boundary effect removal
procedure for interpolated Volterra filters. In Section 4, the
fully adaptive LMS/NLMS interpolated Volterra structure with
removed boundary effect is derived. Section 5 presents the
results of numerical simulations. Finally, the conclusions of this
paper are presented in Section 6.

2. INTERPOLATED VOLTERRA FILTERS

Figure 1 shows the block diagram of an interpolated Volterra
filter [7]. Such a filter is composed of an input interpolator filter

,g with memory size M and coefficient vector [(0)g=g
T(1) (1)] ,g g M − cascaded with a sparse Volterra filter

denoted by Vsh with memory size N and order .P The block
structure of the Volterra filter is highlighted in the figure by the
dashed box, in which each pth-order sparse block is denoted by

s ,ph having output signals given by ˆ ()y n for 1, 2, ,P= …

and interpolated input vectors by ().p nx Additionally, ()x n

and ˆ()y n represent, respectively, the input and output signals
of the interpolated structure.

The first-order sparse coefficient vector is obtained by setting
1L − of each L coefficients to zero [7], with L denoting the

sparsity or interpolation factor. For instance, by considering the
full 1N × first-order coefficient vector 1 1 1[(0) (1) h h=h

T
1(1)] ,h N − its corresponding 1N × sparse vector is given by

 T
1s 1 1 1 s{ (0) 0 () 0 [(1)] 0 0}h h L h N L= −h (1)

with s (1) 1,N N L= − +⎢ ⎥⎣ ⎦ where ⋅⎢ ⎥⎣ ⎦ represents the truncation
operation, and L is the decimation factor. The first-order input
vector is given by

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1725

 T
1() [() (1) (2) (1)] .n x n x n x n x n N= − − − +x (2)

As discussed in [7], (2) can also be expressed as

 T
1 e() ()n n=x G x (3)

where T
e() [() (1) (2)]n x n x n x n N M= − − − +x is the

extended input vector (with 1N M+ − samples of the input
signal), and G is the [(1)]-dimensionalN M N+ − ×
interpolation matrix [7] given by

(0) 0 0 0
(1) (0) 0 0
(2) (1) (0) 0

(1) (2) (3) (0)
0 (1) (2) (1)
0 0 (1) (2)

0 0 0 (1)

g
g g
g g g

g M g M g M g
g M g M g

g M g

g M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G . (4)

Thus, the output signal of the interpolated first-order block is

 T T
1 e 1s e 1iˆ () () ()y n n n= =x Gh x h (5)

with 1i 1s.=h Gh Regarding higher-order blocks, the sparse
coefficient vectors are obtained by setting those coefficients
having at least one index not multiple of L to zero [7]. The
pth-order input vectors are obtained recursively from the
general form by
 1 1() () ()p pn n n−= ⊗x x x (6)

where ⊗ denotes the Kronecker product. Thereby, the output
signal of the interpolated second-order block is given by [7]

T T T

2 2 2s e e 2s
T
2e 2 2s

ˆ () () [() ()][]

 ()

y n n n n

n

= = ⊗ ⊗

=

x h x x G G h

x G h
 (7)

with 2e e e() () ()n n n= ⊗x x x and 2 .= ⊗G G G From (7), we
verify that the equivalent vector for the second-order block is

2i 2 2s=h G h . Now, generalizing the above expressions for a
pth-order interpolated block, we have

 e s e iˆ () () ()p p p p p py n n n= =x G h x h (8)

with 1p p−= ⊗G G G and i s.p p p=h G h Moreover, one has
T T T T

Ve e 2e e() [() () ()]Pn n n n=x x x x with e e() ()p n n=x x

(1)e ()p n−⊗x and T T T T T T T
Vi 1s 2s 2 s[] ,P P=h h G h G h G which

results in the output of the interpolated structure given by

 T
Ve Viˆ() () .y n n= x h (9)

As described in [7], the purpose of the interpolator filter is to
recreate the zeroed coefficients of the sparse coefficient vector
in the resulting equivalent coefficient vector. Consequently, the
number of coefficients M of the interpolator must be chosen in
function of L as

 () 1 2(1) 2 1.M L L L= + − = − (10)

Σ

Σ

Σ

...... ...

()x n 1()x n

2()x n

()Px n

1ˆ ()y n

2ˆ ()y n

ˆ ()Py n

ˆ()y n
1sh

2sh

sPh

g
+

+

+
+

+

Vsh

Figure 1 – Block diagram of an interpolated Volterra filter.

For instance, an interpolation factor 2L = results in 3M = and
the interpolator filter is T

0 1 2[] .g g g=g Thus, for a sparse
Volterra filter with 5,N = the first-order coefficient vector is

obtained from (1) and, by using T[0.5 1 0.5]=g (linear
interpolator [8]), the first-order equivalent coefficient vector,
obtained from 1i 1 1s ,=h G h is given by

1i 1 1 1 1 1
T

1 1 1 1

[0.5 (0) (0) 0.5 (0) 0.5 (2) (2)
0.5 (2) 0.5 (4) (4) 0.5 (4)] .

h h h h h
h h h h

= +
+

h
 (11)

Note, from (11), that two facts can be observed: (i) the zeroed
coefficients of the sparse filter are recreated by interpolation
(boxed ones) and (ii) new coefficients are created (underlined)
as a boundary effect [7]. A similar situation occurs for the
higher-order blocks [10].

3. GENERALIZED BOUNDARY EFFECT REMOVAL
FOR INTERPOLATED VOLTERRA FILTERS

The boundary effect leads to a substantial loss of performance in
different cases [7], [10], [11]. In [10], a procedure for removing
such an effect in interpolated FIR (IFIR) and interpolated
Volterra structures is discussed, considering the case for 2.L =
Recently in [11], the boundary effect removal procedure has
been extended to any value of L and for the linear IFIR case.
Here, the generalized procedure from [11] is extended to an
interpolated Volterra structure using the following generalized
transformation matrix:

1 columns columns 1 columns

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0
0 0 0 0 1 0 0
L N L− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T (12)

with dimensions (1).N N M× + − The input vector for the
first-order sparse block (2) is replaced by a modified version,
given by
 T T T

1 1 1() () ()n n n′ ′= =x G T x G x (13)

where .′ ≡G TG The input vectors for the nonlinear sparse
blocks are generated similarly to (6), but now considering (13),
resulting in
 1 1() () () .p pn n n−′ ′ ′= ⊗x x x (14)

1726

Finally, defining

 T T T T
V 1 2() [() () ()]Pn n n n′ ′ ′ ′=x x x x (15)

the output of the removed boundary effect interpolated Volterra
(RBEIV) filter is given by

 T
V Vsˆ() () .y n n′= x h (16)

Moreover, as described in [11], the implementation of the
boundary effect removal procedure adds a small computational
burden of about 2 2L − operations per sample, being negligible
since L is generally small.

4. FULLY ADAPTIVE LMS/NLMS RBEIV FILTERS

As discussed in [9], the implementation of fully adaptive
interpolated Volterra structures considering adaptive
interpolators is not a straightforward task, being more complex
if the boundary effect removal is considered. Moreover, because
of the high computational burden and the well-known slow
convergence behavior of Volterra filters [12], the use of faster
and relatively simple algorithms for adaptation, such as the
normalized LMS (NLMS) algorithm, is very attractive. In this
section, expressions for also adapting the interpolator filter of
the RBEIV structure are developed. For the input linear
interpolator, the adopted algorithm is the LMS due to the smaller
number of coefficients as well as for mathematical simplicity.
On the other hand, the sparse Volterra filter is adapted using the
NLMS algorithm aiming to improve the overall convergence
speed. Then, the goal is to obtain an adaptive Volterra
implementation with better convergence rate and steady-state
performance, while keeping the computational savings obtained
by using an interpolated Volterra structure.

4.1. LMS Interpolator Update
To facilitate the derivation of the LMS update expression for
the interpolator in the RBEIV structure, a representation of the
input-output relationship of such a structure based on an input
matrix is used as in [9]. Thus, (13) can be rewritten as

 T
1 1() ()n n′ ′=x X g (17)

where 1()n′X is the boundaryless first-order input matrix. Such
a matrix has the form of a non-square Hankel matrix [13] with
dimensions ,M N× having the first column given by

T T
1 first-column

1

() [0 0 () (1) ()]
L

n x n x n x n M L
−

′ = − − +X

(18)

and last row as

T
1 last-row

1

() [() (1) 0 0].
L

n x n M L x n N
−

′ = − + − +X (19)

Vectors (18) and (19) completely define 1(),n′X since a
Hankel matrix has equal elements along any diagonal that
slopes from southwest to northeast. From (17), the output of
the first-order block of the RBEIV structure is given by

 T
1 1 1sˆ () () .y n n′= g X h (20)

By using (14) and (17), the output of the second-order block is

T
2 2 2s

T T
1 1 2s

T
2 2 2s

ˆ () ()

 ()[() ()]

 ()

y n n

n n

n

′=

′ ′= ⊗ ⊗

′=

x h

g g X X h

g X h

 (21)

with 2 = ⊗g g g and 2 1 1() () ().n n n′ ′ ′= ⊗X X X In general, one
has
 T

sˆ () ()p p p py n n′= g X h (22)

with 1p p−= ⊗g g g and 1 1() () ().p pn n n−′ ′ ′= ⊗X X X The
interpolator filter update using the LMS algorithm is given by

 2
g(1) () ()n n e n+ = − μ ∇gg g (23)

where gμ is the step size, ∇g is the gradient w.r.t. interpolator

coefficients, and ˆ() () ()e n d n y n= − denotes the error signal
with ()d n characterizing the desired signal. From the above
definitions and making analogous derivations to [9], the
following update expression for the coefficients of the
interpolator is obtained:

 T
g 1 1 s

1
(1) () 2 () [() ()] ()

P

p p
p

n n e n p n n n−
=

′ ′+ = + μ ⊗∑g g X x h (24)

with 0() 1n′ =x for 1.p = Since the interpolator is

time-varying, 1()p n−′x in (24) should be determined at each
iteration, leading to a larger computational burden. However,
such a vector can be approximately obtained by reusing its
previous values and assuming slow variation of the
interpolator coefficients (similar to [9]). This approach
considerably reduces the computational burden at the cost of
small convergence issues, which can be easily counterbalanced
by properly selecting the value of the step size gμ [9].

4.2. NLMS Sparse Volterra Filter Update
The NLMS algorithm for adapting the sparse Volterra filter
from the interpolated structure is obtained by using a constrained
optimization approach for minimizing the Euclidean norm of
 Vs Vs Vs(1) (1) ()n n nδ + = + −h h h (25)
subject to
 T

V Vs() (1) ()n n d n′ + =x h (26)
and
 T

Vs (1)n + =C h f (27)

where, similarly to [8] and [14], C is a constraint matrix due to
the sparsity of Vsh and f is the response vector to the
constraints (in this case, a vector of zeros). Then, using the
Lagrange multiplier method, the following cost function is
obtained:

 Vs

2 T
Vs 1 Vs V

T T
2 Vs

() (1) () (1) ()

 (1)

J n n d n n n

n

⎡ ⎤′= δ + + θ − +⎣ ⎦
⎡ ⎤+ + −⎣ ⎦

h h h x

θ C h f
 (28)

where 1θ and 2θ are the Lagrange multipliers, the former is
scalar and the latter a vector. By differentiating (28) with respect
to Vs (1)n +h and setting the resulting expression equal to zero,
one obtains

1727

 Vs Vs 1 V 2
1(1) () [()].
2

n n n′+ = + θ −h h x Cθ (29)

By substituting (29) into (27) and considering that T =C C I
(identity matrix), we get

 []T
2 Vs 1 V2 () () .n n′= + θC h xθ (30)

Applying (30) in (29) and substituting the resulting expression
into (26), after some mathematical manipulations, we determine

 1 2
V

2 ()
()

e n
n

θ =
′Px

 (31)

where T= −P I CC and ˆ() () ()e n d n y n= − is the error signal.
From (29), (30), and (31), and including the control factors Vsα
and Vs ,ψ the NLMS expression for updating the coefficients of
the sparse Volterra filter is

 Vs
Vs Vs V2

V Vs

(1) () () ().
()

n n e n n
n
α ′+ = +

′ + ψ
h Ph Px

Px
 (32)

Since P is a diagonal matrix of ones with its elements zeroed in
the diagonal positions corresponding to the elements zeroed in

Vs(),nh (32) updates only the nonzero coefficients of Vs().nh
It is also important to note that the normalization factor

2
V ()n′Px is obtained considering only part of the elements of

V ()n′x due to the characteristics of matrix .P Moreover, as

discussed for (24), V ()n′x from (32) can also be approximated
at each iteration by reusing some data, thus reducing its
computational burden.

4.3 Computational Complexity
Figure 2 shows the number of operations per sample for
implementing different adaptive second-order Volterra filters as
a function of the memory size. From this figure, one can note
that the proposed LMS/NLMS RBEIV filter presents a
computational burden much smaller than the conventional
Volterra implementations (both LMS and NLMS Volterra
structures), which also is close to the computational burden of
the fully adaptive interpolated LMS Volterra (LMS FAIV)
implementation [9].

LMS Volterra
NLMS Volterra
LMS FAIV [9](2) L=
LMS/NLMS RBEIV (2)L=

0 50 100 150

Memory size

O
pe

ra
tio

ns
/s

am
pl

e

0

2

4

6

8
x 10 4

Figure 2 – Computational complexity for different second-order
Volterra implementations.

5. SIMULATION RESULTS

In this section, considering a system identification problem [12],
comparisons of the fully adaptive LMS/NLMS RBEIV structure

with conventional Volterra implementations and also other
interpolated Volterra approaches are presented for performance
assessment. Such evaluations are accomplished in terms of the
MSE obtained from Monte Carlo simulations (average of 100
runs). The simulated structures are second-order
implementations of the following adaptive filters: (i)
conventional LMS Volterra, (ii) conventional NLMS Volterra,
(iii) LMS interpolated Volterra (LMS AIV) [7], (iv) fully
adaptive LMS interpolated Volterra (LMS FAIV) [9], and (v)
fully adaptive LMS/NLMS RBEIV (proposed here). The sparse
Volterra filters from all interpolated implementations present
interpolation factor 2L = and the same memory size of the
plants to be modeled. The fixed interpolator used by the
LMS AIV is given by T[0.5 1 0.5] ,=g and the adaptive
interpolator of the LMS FAIV and LMS/NLMS RBEIV
structures is initialized with T(0) [0.5 1 0.5] .=g For the filters
using the LMS algorithm, the step size is max / 2μ = μ (maxμ is
the maximum step-size value for algorithm convergence
obtained experimentally), and for the NLMS Volterra filter the
control parameters are 0.5α = and 610 .−ψ = The parameters
used for the LMS/NLMS RBEIV are Vs 0.5,α = Vs 10,ψ = and

g g max / 2μ = μ (g maxμ experimentally determined). Moreover,

a white Gaussian noise with variance 2 610z
−σ = is added to the

output of the plant.

Example 1: In this example, the plant taken from [10]
(Example 1) is a conventional Volterra filter presenting a
memory size 11N = and coefficients with decaying exponential
values. In Figure 3, the MSE curves obtained from simulations
for white Gaussian data with unit variance are shown. In this
figure, the convergence rate and steady-state performance of the
proposed algorithm in comparison with the other considered
algorithms is observed. Furthermore note that in this case, the
proposed algorithm presents a performance comparable with the
conventional Volterra implementations, demanding smaller
computational burden (see Figure 2). To give more insight into
the convergence behavior, Figure 4 shows simulation results by
using a correlated input signal for the conventional Volterra
implementations as well as for the proposed algorithm. Such an
input signal is obtained from an AR process given by

2() (1) 1 () ,x n x n u n= β − + − β where ()u n is a white
Gaussian noise process with unit variance and 0.5.β = Again
very good performance of the proposed algorithm is verified
with reduced computational burden.

Example 2: The plant for this example is the conventional
Volterra filter with memory size 11N = from [10] (Example 2).
The MSE curves obtained by using white Gaussian input data
with unit variance are shown in Figure 5. In this figure we again
observe a better performance of the proposed algorithm as
compared with other adaptive interpolated Volterra
implementations. On the other hand, comparing the proposed
algorithm with the conventional Volterra ones, we observe better
convergence characteristics and worse steady-state performance
(the steady-state responses for both conventional Volterra
implementations are not completely presented in Figure 5 for
scaling reasons). This worse steady-state performance is a direct
consequence of the plant characteristics used in this example

1728

[10], presenting both lower correlation between the coefficients
and smaller boundary coefficient values than the plant in
Example 1. As a rule of thumb, the LMS/NLMS RBEIV
exhibits a steady-state response at least equal to that of the
LMS FAIV [9], being closer to the conventional Volterra steady
state, depending on the correlation level between plant
coefficients. In Figure 6, the curves from simulations using a
correlated input data obtained in the same way as in Example 1
are presented. Again, we observe satisfactory performance of the
proposed reduced-complexity algorithm.

Volterra LMS
Volterra NLMS
LMS/NLMS RBEIV (proposed)

LMS AIV [7]
LMS FAIV [9]

0 10000 20000
Iterations

-60

-40

-20

0

M
SE

 (d
B

)

Figure 3 – Example 1. MSE curves for white input data.

0 10000
Iterations

-60

-40

-20

0

M
SE

 (d
B

) Volterra LMS

Volterra NLMS

LMS/NLMS RBEIV (proposed)

Figure 4 – Example 1. MSE curves for correlated input data.

Volterra LMS
Volterra NLMS

LMS/NLMS RBEIV (proposed)

LMS AIV [7]
LMS FAIV [9]

0 3500 7000
Iterations

M
SE

 (d
B

)

-40

-30

-10

0

-20

Figure 5 – Example 2. MSE curves for white input data.

-60

-40

-20

0

M
SE

 (d
B

)

Volterra LMS

Volterra NLMS

LMS/NLMS RBEIV (proposed)

0 8000
Iterations

4000

Figure 6 – Example 2. MSE curves for correlated input data.

6. CONCLUSIONS

In this paper, a novel approach for implementing adaptive
interpolated Volterra filters is discussed. Such an approach is
based on combining the fully adaptation of the interpolated
structure, a boundary effect removal procedure, and also an
adaptive LMS/NLMS setup. The obtained algorithm outperforms
other adaptive interpolated Volterra implementations in terms of
transient and steady-state MSE performance. Simulation results
attested the effectiveness of the proposed approach.

REFERENCES
[1] L. Tan and J. Jiang, “Adaptive Volterra filters for active

control of nonlinear noise processes,” IEEE Trans. Signal
Process., vol. 49, no. 8, pp. 1667-1676, Aug. 2001.

[2] A. Stenger, L. Trautmann, and R. Rabenstein, “Nonlinear
acoustic echo cancellation with second order adaptive Volterra
filters,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Phoenix, AZ, Mar. 1999, vol. 2, pp. 877-880.

[3] J. Li and J. Ilow, “Adaptive Volterra predistorters for
compensation of non-linear effects with memory in OFDM
transmitters,” in Proc. 4th Annual Communication Networks
and Services Research Conf., Moncton, Canada, May 2006,
pp. 1-4.

[4] A. Fermo, A. Carini, and G. L. Sicuranza, “Simplified Volterra
filters for acoustic echo cancellation in GSM receivers,” in
Proc. Europ. Signal Process. Conf., Tampere, Finland,
Sep. 2000, pp. 2413-2416.

[5] L. Tan and J. Jiang, “An adaptive technique for modeling
second-order Volterra systems with sparse kernels,” IEEE
Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 45,
no. 12, pp. 1610-1615, Dec. 1998.

[6] M. J. Reed and M. O. J. Hawksford, “Efficient implementation
of the Volterra filter”, IEE Proc.-Vis., Image, Signal Process.,
vol. 147, no. 2, pp. 109-114, Apr. 2000.

[7] E. L. O. Batista, O. J. Tobias, and R. Seara, “A mathematical
framework to describe interpolated adaptive Volterra filters,”
in Proc. IEEE Int. Telecomm. Symp., Fortaleza, Brazil,
Sep. 2006, pp. 144-149.

[8] O. J. Tobias and R. Seara, “Analytical model for the first and
second moments of an adaptive interpolated FIR filter using
the constrained filtered-X LMS algorithm,” IEE Proc.- Vis.,
Image, Signal Process., vol. 148, no. 5, pp. 337-347,
Oct. 2001.

[9] E. L. O. Batista, O. J. Tobias, and R. Seara, “A fully LMS
adaptive interpolated Volterra structure,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., Las Vegas, NV,
Apr. 2008, pp. 3613-3616.

[10] E. L. O. Batista, O. J. Tobias, and R. Seara, “Border effect
removal for IFIR and interpolated Volterra filters,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Honolulu,
HI, Apr. 2007, vol. 3, pp. 1329-1332.

[11] E. L. O. Batista, O. J. Tobias, and R. Seara, “A fully adaptive
IFIR filter with removed border effect,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., Las Vegas, NV,
Apr. 2008, pp. 3821-3824.

[12] V. J. Mathews and G. L. Sicuranza, Polynomial Signal
Processing. New York: Wiley, 2000.

[13] T. K. Moon and W. C. Stirling, Mathematical Methods and
Algorithms for Signal Processing. Upper Sadle River, NJ:
Prentice-Hall, 2000.

[14] O. L. Frost III, “An algorithm for linearly constrained adaptive
array processing,” Proc. IEEE, vol. 60, no. 8, pp. 926-935,
Aug. 1972.

1729

