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ABSTRACT 

This paper presents an improved statistical model for the 
transform-domain LMS algorithm operating in non-
stationary environment from a time-varying plant. The 
stationary case is also considered as a particular case of 
the non-stationary one. The derived model takes into 
account a fixed-length sliding window for estimating the 
transformed input signal power. Small step-size conditions 
and Gaussian input data are assumed. Using model 
expressions, algorithm parameters as optimum step size, 
excess error, and misadjustment are obtained. Through 
numerical simulations, the accuracy of the proposed model 
is assessed. 
  

1. INTRODUCTION 

The LMS algorithm in the transform domain (TDLMS) was 
proposed by Narayan et al. [1] aiming to improve the 
convergence characteristics of the standard LMS algorithm. 
The TDLMS algorithm is similar to the LMS one but 
having its input signal pre-processed by an N-subband 
orthogonal transform, followed by a normalization process 
equalizing the energy content in each subband. In practice, 
to implement the normalization process, estimates of the 
signal power at each subband are required. To this end, a 
means used is to measure the signal variance within a 
fixed-length sliding window (FLSW). 

Regarding the modeling procedure, due to the 
normalization process, an important difficulty is, 
specifically, the computing of expected values such as 

 1ˆ ˆ[ ( ) ( )]E n n−D R  (1) 

where ˆ ( )nD  and ˆ ( )nR  are matrices depending on the 
observed data. To solve (1), several simplifying 
approximations are generally considered [2]-[6], in 
particular the Averaging Principle (AP) used in [5] for 
approximating (1) to 

 1 1ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( )] [ ( )].E n n E n E n− −≈D R D R  (2) 
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The AP results in simpler model expressions, having 
satisfactory accuracy if large observation windows are 
used. However, such a case may not be found in practical 
situations, since most adaptive algorithms have restrictions 
with respect to computational burden. Thus, looking for an 
accurate model irrespective of observation window length, 
the use of AP approach is no longer recommended. 

In particular, the model proposed in this work considers 
the following aspects: 

i) The expected value (1) is calculated without invoking 
the AP approach. 

ii) For the sake of generality, the proposed model is 
derived considering a non-stationary environment 
(time-varying plant) for two reasons: it has large 
practical importance, as well as in the open literature 
only a few and brief analyses have been found. 
Moreover, the stationary case can be straightforwardly 
obtained from the presented analysis. 
From the proposed analysis, expressions for the excess 

error, optimum step-size parameter, and misadjustment are 
also derived. 

This paper is organized as follows. Section 2 presents 
the model used for characterizing the time-varying plant. 
In Section 3, the algorithm model expressions are derived. 
Results of numerical simulations are presented in Section 
4, demonstrating the validity of the proposed model. 
Finally in Section 5, some conclusions of this work are 
presented. 

2. NON-STATIONARY ENVIRONMENT 

A fundamental feature of adaptive filters is their ability to 
track signal variations. To make the filter analysis tractable, 
it is usual to assume that the data statistics (in our case, 
time-varying plant) vary according to a given rule. In this 
way, the desired signal is modeled as follows: 

 T o
T T( ) ( ) ( ) ( )d n n n z n= +x w  (3) 

with the following rule for describing the plant evolution: 

 o o
T T( 1) ( ) ( )n a n n+ = +w w g  (4) 

where T
T T,0 T,1 T, 1( ) ( ) [ ( ) ( ) ( )]Nn n x n x n x n−= =x Tx "  is 

the input signal vector in the transform domain, with T  
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being   an orthogonal transform, ( ) [ ( ) ( 1)n x n x n= −x "  
T( 1)]x n N− +  is the input signal vector assuming ( )x n  as a 

zero-mean Gaussian stationary process with variance 2 ,xσ  
o o o o o T
T T,1 T,2 T, 1( ) ( ) [ ( ) ( ) ( )]Nn n w n w n w n−= =w Tw "  denotes 

the time-varying plant vector in the transform domain, 
o o o o T

1 2 1( ) [ ( ) ( ) ( )]Nn w n w n w n−=w "  is the time-varying 
plant vector, and ( )z n  is an i.i.d. measurement noise with 

variance 2.zσ  Variable [0,1],a ∈  ( )ng  is the plant 
perturbation vector, which is zero-mean with 
autocorrelation matrix ,G  and o

T (0)w  is any arbitrary 
value. 

Usually, available analyses in the literature regarding 
adaptive algorithms in non-stationary environment use 

1,a =  and/or o
T (0) .=w 0  Thus, for both cases one has a 

restricted model, since the mean value of the plant does not 
show any time evolution. In addition, for 1,a =  the model 
given in (4) is unrealistic because of the infinite variance 
[7]. In this work, we consider derivations taking into 
account a generic value of a, resulting in a less restricted 
model. 

3. ANALYSIS 

3.1 Problem Statement 
In this section, we derive analytical expressions for the first 
and second moment of the adaptive weight vector. Then, let 
us start by considering the weight update equation in the 
transform domain, which is given by [1] 

 1
T T T

ˆ( 1) ( ) 2 ( ) ( ) ( )n n n e n n−+ = + μw w D x  (5) 

where T
T T,0 T,1 T, 1( ) [ ( ) ( ) ( )]Nn w n w n w n−=w "  denotes 

the adaptive filter weight vector and 1 2
0

ˆ ˆ( ) diag[ ( )n n− −= σD  
2 2

1 1ˆ ˆ( ) ( )]Nn n− −
−σ σ"  is the step-size normalizing matrix, 

with 2ˆ ( )i nσ  being the instantaneous estimate of the subband 
variance. In practice, a FLSW is used to estimate the 
variance of each subband. Thus, 

 
1

2 2
T,

0

1ˆ ( ) ( )
M

i i
k

n x n k
M

−

=
σ = −∑  (6) 

where M  is the window length. The error signal is 
obtained as 
 ( ) ( ) ( )e n d n y n= −  (7) 

with T
T T( ) ( ) ( ).y n n n= x w  Now, substituting (3) into (7) and 

the resulting expression into (5), using the weight-error 
vector in the transform domain, defined as T ( 1)n +v  

o
T T( 1) ( 1),n n= + − +w w  we get 

1 T
T T T T

1 o o
T T T

ˆ( 1) [ 2 ( ) ( ) ( )] ( )
ˆ               2 ( ) ( ) ( ) ( 1) ( ).

n n n n n

n n z n n n

−

−

+ = − μ

+ μ − + +

v I D x x v

D x w w
   (8) 

Then, substituting (4) into (8), the update expression in 
terms of T ( )nv  is given by 

1 T
T T T T

1 o
T T

ˆ( 1) [ 2 ( ) ( ) ( )] ( )
ˆ              2 ( ) ( ) ( ) (1 ) ( ) ( ).

n n n n n

n n z n a n n

−

−

+ = − μ

+ μ + − −

v I D x x v

D x w g
  (9) 

The next step is to determine the first and second 
moments of (9). 
3.2 Analysis Assumptions 
To carry out the stochastic analysis, the following 
simplifying assumptions are considered: 

i) ( )ng  and ( ),mg  for ,m n≠  are uncorrelated. 
ii) ( ),ng  T ( ),nv  and T ( )nx  are statistically independent. 

iii) ( )z n  is uncorrelated with any other signal in the 
system. 

3.3 First Moment of T ( )nv  
By taking the expected value of both sides of (9) and using 
assumptions (i) and (ii), we obtain 

1 T
T T T T

o
T

[ ( 1)] { 2 [ ( ) ( ) ( )]} [ ( )]

                        (1 ) (0)n

E n E n n n E n

a a

−+ ≅ − μ

+ −
P

v I D x x v

w

����	���

 (10) 

where the last r.h.s. term represents the mean of the AR(1) 
process given by (4). The elements of matrix P  in (10) are 
determined in the Appendix. 

3.4 Second Moment of T ( )nv  and Learning Curve 
The second moment for the weight-error vector in the 
transform domain is obtained from T

T T( ) [ ( ) ( )].n E n n=K v v  
Then, transposing both sides of (9), carrying out the product 

T
T T( ) ( ),n nv v  taking the expected value of both sides of the 

resulting expression, and using the above assumptions 
(i)-(iii), we get 

T

o T o T
T T T T

2
T T T T

2 2 2 o
T

o T
T T

o T T
T T

( 1) ( ) 2 ( ) 2 ( )

(1 ) [ ( )] [ ( )] (1 ) [ ( )] [ ( )]

4 {2 ( ) tr[ ( ) ]}

4 (1 ) ( )

2 (1 ) [ ( )] [ ( )]

2 (1 ) [ ( )] [ ( )]

z

n n n n

a E n E n a E n E n

n n

a n

a E n E n

a E n E n

+ = − μ − μ

+ − + −

+ μ +

+ μ σ + −

− μ −

− μ − +

K K K P P K

v w w v

Φ R K R R K R Φ

ΦR Φ K

P v w

w v P G

(11) 

with 
 T

T T T[ ( ) ( )],E n n=R x x  (12) 

2
o o o T 2 o

T T 2
1 ( )( ) [ ( ) ( )] ( ) (0) ,

1

n
n an E n n a

a
−= = +

−
K w w K G (13) 

and 
 2 2 2

0 1 1diag[ ].N −= σ σ σΦ "  (14) 

Finally, (11) can be used to determine the learning curve, 
which is given by [5] 

 2 2
T[ ( )] tr[ ( )].zE e n n= σ + R K  (15) 
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3.5 Excess Error 
In this section, an expression for the excess error is 
obtained. Thus, transposing both sides of (9), carrying out 
the product T

T T
ˆ ( ) ( 1) ( 1),n n n+ +D v v  taking the expected 

value of the resulting expression, assuming n → ∞  
[whereby ( 1) ( ),n n+K K�  o 2 1( ) (1 ) ,n a −−K Φ�  and 

T[ ( )] 0],E nv �  and applying the trace operation, we obtain 

2
T

T T T 1
T T T T T T

1tr[ ( ) ] tr[ ] tr[ ]
2 (1 )

ˆ        tr[ ( ) ( ) ( ) ( ) ( ) ( ) ( )] .

zn
a

n n n n n n n−

= μσ +
μ +

+ μ
γ

K R P ΦG

x x v v x x D���������	��������

 

(16) 
Then, rearranging γ  as 

T 1 T T
T T T T T T

T

ˆ( ) ( ) ( )tr[ ( ) ( ) ( ) ( )]
   tr[ ]tr[ ( )]

n n n n n n n
n

−γ =
=

x D x x v v x
P R K

       (17) 

and considering that the excess error is defined as 

 exc T( ) tr[ ( )]n nξ = R K  (18) 

then, for ,n → ∞  we obtain 

 2
exc

1 1tr[ ] tr[ ] .
1 tr[ ] 2 (1 )z a

⎧ ⎫
ξ = μσ +⎨ ⎬− μ μ +⎩ ⎭

P ΦG
P

 (19) 

3.6 Step Size for Minimum Excess Error 
The optimum step size that minimizes the excess 
mean-square error (MSE) is obtained by deriving (19) w.r.t. 
μ  and making such a derivative equal to zero. Thus, 

 
2 2

exc z 1 1 2 2
2

1

2
0

(1 )
c c c c

c
∂ξ σ μ + μ −

= =
∂μ − μ

 (20) 

where 1 tr[ ]c = P  and 1
2 [2(1 )] tr[ ].c a −= + ΦG  Solving (20) 

for ,μ  we get 

 
2 2 2

1 2 1 2 1 2
opt 2

1
.z

z

c c c c c c

c

− + + σ
μ =

σ
 (21) 

3.7 Misadjustment 
The misadjustment M  is obtained from (19), which is 
given by 

 
2

exc

min
tr[ ] tr[ ]

2 (1 )
1

1 tr[ ]
z

a

−σ
μ +

μ +

⎧ ⎫ξ ⎪ ⎪= = ⎨ ⎬ξ − μ ⎪ ⎪⎩ ⎭
P ΦG

P
M  (22) 

where 2
min .zξ = σ  Note that (22) [also(19)] is composed of 

the sum of two terms. The first is equal to the 
misadjustment referred to the stationary case (when 1a =  
and G  is a null matrix), the second is the misadjustment 
coming from the non-stationary characteristic. Thus, the 
misadjustment for the non-stationary case is larger than that 
observed in a stationary one. 

3.8 Degree of Non-Stationarity 
The degree of non-stationarity, denoted by ( ),nα  is defined 
as [7] 

 

1/22
o,inc

2

E[ ( ) ]
( )

E[ ( ) ]

y n
n

z n

⎧ ⎫
⎪ ⎪α ⎨ ⎬
⎪ ⎪⎩ ⎭

�  (23) 

where 

 o o T
o,inc T T T( ) [ ( 1) ( )] ( )y n n n n= + −w w x  (24) 

is the output due to the difference o o
T T( 1) ( )n n+ −w w  

(incremental filter). The numerator of (23) denotes the 
power introduced by the variation of the optimum filter, 
and the denominator is the minimum MSE (MMSE). By 
using (4) in (24), one obtains 

o T
o,inc T T

1
o T
T T

0

( ) [( 1) ( ) ( )] ( )

{( 1)[ (0) ( 1 )] ( )} ( ).
n

n k

k

y n a n n n

a a a n k n n
−

=

= − +

= − + − − +∑

w g x

w g g x
  (25) 

By considering the independence between ( )ng  and T ( ),nx  
and using assumption (i), we can write 

 

2 2 2 o
o,inc T

2 2 1

T

[| ( )| ] (1 ) tr[ (0) ]

2                   tr[ ].
1

n

n n

E y n a a

a a
a

+

= −

− ++
+

K R

GR
 (26) 

Now, substituting (26) into (23) and recalling that 2
zσ  is the 

variance of ( ),z n  we have 

1/22 2 2 2 1
o

T T2 2
(1 ) 2( ) tr[ (0) ] tr[ ] .

(1 )

n n n

z z

a a a an
a

+⎧ ⎫− − +⎪ ⎪α = +⎨ ⎬
σ σ +⎪ ⎪⎩ ⎭

K R GR

(27) 

From (27), we can conclude that ( )nα  presents an 
exponential evolution. If the degree of non-stationarity is 
larger than unity, the statistical variations of the optimal 
weight vector are too fast for the filter to be able to track 
them (and the misadjustment will then be large). On the 
other hand, if the degree of non-stationarity is much smaller 
than unity, the adaptive filter would be able to track the 
variations in the weight vector. In this work, we are 
interested in evaluating the tracking performance of the 
adaptive filter in the latter situation, i.e., when the tracking 
is possible. 

4. SIMULATION RESULTS 

The proposed model is applied to a system identification 
problem in which its accuracy is assessed for correlated 
Gaussian input data, obtained from an AR(2) process, given 
by  
 1 2( ) ( 1) ( 2) ( )x n a x n a x n v n= − + − +  (28) 

where ( )v n  is white noise with variance 2
vσ  such that the 

variance of ( )x n  is 1, 1a  and 2a  are the autoregressive 
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coefficients, with 1 0.18a =  and 2 0.85.a = −  The resulting 
eigenvalue spread of the input signal for 32N =  is 

120.χ =  The time-varying weights of the plant are 
obtained according to (4). Its initial values are selected as 
follows: 

 o aux
T T

aux aux

(0) =
w

w
w w

 (29) 

with 
T

aux [sinc(0) sinc (1/ ) sinc ( 1/ )] .N N N= −w T "    (30) 

The elements of ( )ng  are samples from a white noise 

process with autocorrelation matrix 2 .g= σG I  In the 
examples, 0.99a =  and two SNR values (20 and 40 dB) 
are used, resulting in (0) 0.385α =  and (0) 0.107,α =  
respectively. In addition, for both SNR values 

( ) 0.100.α ∞ =  The discrete cosine transform (DCT) is the 
orthogonal transform used. Monte Carlo (MC) simulations 
are obtained averaging 500 independent runs. 

For the non-stationary cases, the weights are initialized 
as 
 o

T T(0) (0)=w w  (31) 

aiming to evaluate the adaptive algorithm tracking 
performance. In the stationary case, the weights are 
initialized with zero for assessing the algorithm behavior 
during the acquisition mode [7]. 

For comparison proposes, the algorithm behavior 
predicted by a model based on AP is presented. That model 
is obtained by generalizing the procedure presented in [5]. 

Example 1: In this example, the following parameter values 
are used: 32N =  in (29), 10,M =  and opt0.75μ = μ  

0.00794.=  In Figure 1, the first moment of the weight-
error vector using the FLSW for power estimate with 40 dB 
signal-to-noise ratio (SNR) is shown. For the sake of 
clarity, the evolution of the expected value of only four 
weights is plotted. Figure 2 shows the learning curves 
(MSE) for two SNR values (20 and 40 dB). 

Example 2: For this example, most of the parameters of 
Example 1 are kept the same, but M is increased ( 32)M =  
to achieve better variance estimation. For this case, 

op0.75μ 0.00689.μ = =  The obtained results for the MSE 
evolution are illustrated in Figure 3. Note that, in this case, 
the AP-based model and the proposed model present a 
similar behavior. 

Example 3: In this example, the stationary case is 
considered as a particular case of the non-stationary one 
( 1a =  and degree of non-stationarity 0).α =  In this case, 
the parameters used are: 32,N =  16,M =  and 0.003.μ =  
The obtained results are shown in Figure 4. Note that there 
is a reduction in the MSE, since now the term related to the 
non-stationarity in (22) is equal to zero. 

Iterations
0 200 400 1000600 800

-0.05
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0.10

0.15

0.20

0.30

0.25

E
v 

  
n

[
(

)]
T,

i

1i =

4i =

2i =

3i =

 
Figure 1 – Example 1. Mean weight-error behavior curves for 
SNR 40dB.=  (Gray lines) MC simulations. (Dashed lines) 
AP-based model. (Dark solid lines) proposed model. 

M
SE

Iterations
0 1000 2000 3000

SNR 20 dB=

SNR 40 dB=

-510

-210

-110

-310

-410

 
Figure 2 – Example 1. Comparison results for 10.M =  MSE 
curves for SNR 20=  and 40dB.  (Ragged gray lines) MC 
simulations. (Dashed lines) AP-based model. (Dark solid lines) 
proposed model. 

Iterations
0 1000 2000 3000

SNR 20 dB=

SNR 40 dB=

M
SE

-510

-210

-110

-310

-410

 
Figure 3 – Example 2. Comparison results for 32.M =  MSE 
curves for SNR 20=  and 40dB.  (Ragged gray lines) MC 
simulations. (Dashed lines) AP-based model. (Dark solid lines) 
proposed model. 
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Figure 4 – Example 3. Comparison results for a stationary 
environment. MSE curves for SNR 20 and 40dB= . (Ragged gray 
lines) MC simulations. (Dashed lines) AP-based model. (Dark 
solid lines) proposed model. 

5. CONCLUSIONS 

This paper presents a stochastic model for the TDLMS 
algorithm operating in non-stationary environment. This 
analysis is independent of the order of the filter as well as 
of the window length used for the subband power estimate. 
From the proposed model, the stationary case can also be 
obtained. Numerical simulations showed very good 
agreement between the results obtained by the MC method 
and the predictions using the proposed analytical model for 
both mean weight behavior and MSE curves. 

6. APPENDIX 
DETERMINATION OF P 

To determine matrix ,P  we define an extended vector 
given by e, , T T T( ) [ ( ) ( 1) ( 1)i j ,i ,i ,in x n x n x n M= − − +x …  

T
T ( )] ,, jx n×  such that 

 
1

2 T
T e, , s e, ,

0
( ) ( ) ( )

M

,i i j i j
k

x n k n n
−

=
− =∑ x I x  (32) 

where s diag[1 1 0].
M

=I "�	
  By considering jointly 

Gaussian random processes, P  is calculated as 

 
T -1
e, , e, , e, ,

T T
, 1/2 T

e, , e, , s e, ,- -
1 fold

1
2

e, ,

1{ }
2 [det( )]

            e i j i j i j

,i , j
i j

i j i j i j

M

i j

x xM

d

∞ ∞

∞ ∞
+

−

= ⋅
π

×

∫ ∫

x R x

P
R x I x

x

"
��	�
  (33) 

where T
e, , e, , e, ,[ ]i j i j i jE=R x x  is the autocorrelation matrix 

of the extended vector e, , .i jx  In (33), we drop the time 
index n for simplicity of notation. To determine (33), we 
use an approach similar to that presented in [8], which 
results in 

 1
, s, , s, , e, , 1, 1{ } [ ]i j i j i i j i j MM −

+=P Q H Q R  (34) 

where s, ,i jQ  is the matrix of eigenvectors of e, , si jR I  and 

iH  is a diagonal matrix, given by 

 
/2

, , ,
1

1{ } [ ln( ) ln( )]
2

N

i l l l q i q l l
qi

A B
a =

′≈ λ + λ∑H  (35) 

with 

 ,
1

M

i i k
k

a
=

= λ∏  (36) 

 , /2

, , , ,1

1

1 1 1 1
l q N

i l i q i m i qm
m q

A

=
≠

=
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′λ λ λ λ⎝ ⎠ ⎝ ⎠
∏

 (37) 

and 

 
/2

, ,1

1

1 1
l N

i q i lq

B

=

=
⎛ ⎞

−⎜ ⎟⎜ ⎟′λ λ⎝ ⎠
∏

 (38) 

where ,i kλ  are the eigenvalues of the subband 

autocorrelation matrix T
T, T,[ ( ) ( )],ii i iE n n=R x x  with 

T
T, T, T, T,( ) [ ( ) ( 1) ( 1)] .i i i in x n x n x n M= − − +x "  Variable 

,i k′λ  represents the geometric mean of adjacent pairs of the 
eigenvalues ,i kλ  [5]. 
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