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ABSTRACT

Acquiring real-time 3D images poses many challenges.
Many 3D-imaging systems are based on estimating the time-
of-flight (TOF) of photons between an emitter and a receiver,
which in turn is based on transmitting a pseudo-noise opti-
cal signal and correlation measurements. The precision of
such measurements is limited by photon shot noise. In this
paper, we develop a maximum-likelihood estimator for the
TOF (and thus for the range) that takes into account the Pois-
son distribution of the detected photons. The proposed esti-
mator is shown to give better range estimates than a standard
estimator that is used in current systems. The improvement is
particularly significant when the period of the pseudo-noise
sequence-based modulation signal is short.

1. INTRODUCTION

The time-of-flight (TOF) principle is a major technique, used
by several systems [1, 2], for real-time optical acquisition of
range images. This principle is depicted in Figure 1.
An emitter sends an optical signalx(t), which is reflected by
the target and travels back to a receiver. From the round-trip
delayτ, the range can be computed according to

R =
c · τ
2

(1)

wherec is the speed of light.
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Figure 1: General scheme of a 3D-TOF optical system. A
transmitter sends an optical signalx(t). The receiver detects
the optical signaly(t). The latter is processed for extracting
the TOF.

In this paper, we use the continuous-wave version of the
TOF: the intensity of the optical signal is continuously mod-
ulated and the phase shift between the emitted signal and the
detected one is exploited to compute the TOF [3].

0 2 4 6 8 10 12 14

0

1

 

 

m
(t

)

t/T

T

Figure 2: An example of a m-sequence of 15 chips.

The modulation signalx(t) is defined in this paper as:

x(t) = Γ ·m(t) (2)

where Γ is the optical peak-to-peak power andm(t) be-
longs to a specific class of pseudo-noise (PN) sequences: the
maximum-length sequences or m-sequences.
The m-sequences are generated by linear-feedback shift reg-
isters with irreducible polynomials [4]. Following the com-
mon terminology used in communication systems, each bit of
the m-sequence is referred now as a chip. Each m-sequence
has two versions: the unipolar version where the chips can
take the value 0 or 1 and the bipolar one where the 0’s of
the unipolar version are converted into−1. Figure 2 shows
one period of a m-sequence of 15 chips, whereT is the chip
duration.

In this paper, we will study the use of the maximum likeli-
hood (ML) estimation of the TOF (and thus ofR) based on
a PN-modulated optical signal. The influence of the back-
ground (BG) light and of certain non-idealities at the receiver
level are also considered. Even by taking into account these
non-idealities, a manageable form of the maximum likeli-
hood estimator (MLE) can still be achieved . We then assess
the performance of the MLE and compare it to the standard
method defined in [5].
The paper is structured as follows: section 2 presents the sys-
tem model. In section 3, the range estimators are described
before being compared in terms of performance in section 4.
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Figure 3: In-pixel demodulation process of the detected op-
tical signal. The pixel outputCa results from the difference
between the two integrators outputs.

2. SYSTEM MODEL

This section describes the system model specifications.

2.1 Ideal receiver

For an ideal system, the received signal can be expressed as:

y(t) , α · x(t − τ) = α ·Γ ·m(t − τ) (3)

whereα is the attenuation factor due to the free-space loss
effect [6].
This optical signal can be seen as a stream of photons. By as-
suming an efficient optoelectronic light source [7], the pho-
ton detection can be modeled as a collection of independent
events. The counting process of these photons follows a Pois-
son distribution [8].
A certain amount of electrons are generated then by the pho-
toelectric receiver. The number of these photo-electrons also
follows a Poisson distribution. This effect is known as shot
noise, which is the ultimate physical limitation of opticalsys-
tems [1, 8].
We defineK as the random variable that represents the num-
ber of generated photo-electrons during the integration time
Tint. The probability distribution ofK follows a Poisson law:

P(K = k|Tint) =
e−µK · (µK)k

k!
(k ∈ N)

whereµK is the expected value ofK for an integration time
of Tint.
In this paper, we use the SwissRangerTM (SR) camera as a
3D-TOF system [9]. The camera emits the light in the near-
infrared range. When the light travels back to the camera, it
is demodulated through an array of pixels. Figure 3 depicts
the in-pixel demodulation process [5].
The received optical signaly(t) is converted into an electron
current according to the pixel optical responsivityR [8]. The
division by the elementary charge valuee gives us the corre-
sponding number of generated photo-electrons. The latter are
accumulated on one of two integrator nodes determined by a
switch, which is controlled by the reference signalsref(t−a).
The variablea represents a specific time-shift. The reference
signal is the bipolar version ofm(t). When its value is 1 (resp
−1), the electrons flow to the integrator Int 1 (resp. Int 2).
By accumulating the charges duringTint seconds, the integra-
tor nodes act as electrons counters. Due to the shot noise ef-
fect, the integrator outputs, referred hereafter as chargepack-
ets, are Poisson distributed:

Ys,a v Poisson(µs,a)

Ys̄,a v Poisson(µs̄,a)

whereµs,a andµs̄,a correspond to the mean values. If we set
Tint to one period of the m-sequences, the mean values can
be expressed as [5]:

µs,a , E[Ys,a] = E



R

e
·

Tint∫

0

y(t) ·
(1+ sref(t −a))

2
dt





=

{
Ex

(
2− |a−τ|

T

)
if |a− τ| ≤ T

Ex otherwise
(4)

and

µs̄,a , E[Ys̄,a] = E



R

e
·

Tint∫

0

y(t) ·
(1− sref(t −a))

2
dt





=

{
Ex ·

|a−τ|
T if |a− τ| ≤ T

Ex otherwise
(5)

whereEx is defined as the mean power generated by the sig-
nal component:

Ex , E



R

2e

Tint∫

0

y(t) dt



 = E



R

2e

Tint∫

0

α · x(t − τ) dt





Usually, several periods of the optical signal are integrated in
order to increase the signal-to-noise ratio [8].
The difference between the charge packets,Ys,a and Ys̄,a,
gives us the pixel outputCa. The latter is also a random vari-
able with the following mean value:

µa , E[Ca] = µs,a − µs̄,a

= E



R

e
·

Tint∫

0

y(t) · sref(t −a) dt



 (6)

=

{
2Ex

(
1− |a−τ|

T

)
if |a− τ| ≤ T

0 otherwise
(7)

For an ideal system, only the shot noise determines the per-
formance limitations. In practice, additional non-idealities
also have an impact on the performance.

2.2 Non-idealities

Two non-idealities are discussed in this section: the BG light
and the demodulation contrast.

2.2.1 Background light

In some cases, additional light sources are emitting in the
vicinity of the camera. They produce an extra amount of
optical power received by the camera. If we denote this ad-
ditional optical power byΓBG, equation (3) becomes:

y(t) = α ·Γ ·m(t − τ)+ ΓBG

We assume a constantΓBG during the integration time.
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2.2.2 Demodulation contrast

During the demodulation process, errors can occur because
some generated photo-electrons might flow to the wrong in-
tegrator node due to a non-ideal switch. These errors can be
estimated by a parameter called the demodulation contrast
cd. The latter is included in the interval[0;1] and indicates
the inherent pixel demodulation quality. The closer the value
cd is to 1, the more the demodulation process becomes reli-
able [10].
By taking into account the BG light and the demodulation
contrast, we can rewrite equations (4), (5) and (7) as [5]:

µs,a =

{
Ex

(
1+ cd − cd

|a−τ|
T

)
+EBG · n+cd

n if |a− τ| ≤ T

Ex +EBG · n+cd
n otherwise

µs̄,a =

{
Ex

(
1− cd + cd

|a−τ|
T

)
+EBG · n−cd

n if |a− τ| ≤ T

Ex +EBG · n−cd
n otherwise

and

µa =

{
2Excd

(
1− |a−τ|

T

)
+EBG · 2cd

n if |a− τ| ≤ T

EBG · 2cd
n otherwise

(8)

wheren is the sequence length andEBG is defined as the
mean power generated by the BG light:

EBG , E

[
R

2e
ΓBG ·Tint

]
(9)

The next section shows how the TOF and hence the rangeR
are computed.

3. RANGE ESTIMATORS

In this section, we first describe the linear correlation esti-
mator (LCE), which is currently implemented, and we then
derive the maximum-likelihood range estimator.

3.1 Linear correlation estimator

Based on equation (6), it is obvious that the pixel output is
a correlation betweeny(t) and sref(t − a). By setting suc-
cessivelya to two different values: 0 andT and assuming
|τ| ≤ T , we obtain two correlation samples (i.e. pixel out-
puts),C0 andCT , with the following mean values:

µ0 , µa

∣∣∣
a=0

= 2Excd

(
1− τ̃ +

ρBG

n

)

µT , µa

∣∣∣
a=T

= 2Excd

(
τ̃ +

ρBG

n

) (10)

whereτ̃ = τ/T andρBG = EBG/Ex.
Figure 4 shows the behavior ofC0 andCT according to the
TOF value for a noise-free channel (i.e.C0 = µ0, CT = µT ,
cd = 1 andEBG = 0).
Based on this figure and equations (10), we can notice that
the more the TOF increases, the moreC0 increases andCT
decreases. When the TOF is larger thanT , one or both sam-
ples are equal to 0 and the range can no longer be computed.
Hence, the maximum TOF value, which can be detected, is
equal toT , which gives us a maximum detectable range of
RMax = cT/2.
From these restrictions and the behavior of the correlation

−2 0 21−1

0

1

C
a

2E
x

τ̃
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CT

2T

Figure 4: Pixel outputs behavior in a noise-free channel.

samples, we derived the formulas for the normalized TOF
and the corresponding range [5]:

τ̃LCE =
CT

C0 +CT

and
R = RMax · τ̃LCE (11)

3.2 Maximum likelihood range estimator

According to the previous section, two correlation values are
needed by the LCE for computing the range. Each correla-
tion value is a difference between two charge packets. Thus,
we collect in total four charge packets:Ys,0, Ys̄,0, Ys,T and
Ys̄,T . The latter are statistically independent and Poisson dis-
tributed, which means that their joint probability distribution
(JPD) can be written as:

fθ = ∏
i,j

P(Yi,j = yi,j |µi,j )

=
e
−∑

i,j
µi,j

∏
i,j

yi,j !
·∏

i,j

(µi,j )
yi,j (12)

wherei ∈ {s, s̄} and j ∈ {0,T}.
The variableθ denotes the vector that contains the unknown
parameters of the JPD. In our case, the vectorθ has four
unknown components:

θ = (Ex,cd ,ρBG, τ̃)

According to the ML principle [11], we want to maximize
equation (12) with respect toθ . In other words, we must
find the particular value ofθ , denoted bŷθ , that fulfills the
following equation system:

∇( fθ ) = 0

z
T (∆( fθ ))z ≤ 0

(13)

wherez ∈ R
4, T is the transpose operator,∇ is the differen-

tial operator and∆ the Laplacian operator.
The first equation means thatθ̂ is an extremum offθ (the
gradient vanishes at̂θ ). The second equation ensures that
this extremum is a maximum (The Hessian matrix evaluated
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Figure 5: Behavior of the comparison parameterε in a basic
channel. The mean powerEx and the sequence lengthn do
not have any impact onε.

at θ̂ is negative definite) [12]. The sought TOF corresponds
to the fourth component of̂θ .
Since no explicit solution is obtained for the TOF when we
solve the equation system (13), we repeated the computa-
tions assuming a demodulation contrastcd equal to 1. This
strong assumption relies on the recent progress in the camera
technology, which tend to increase the demodulation quality.
Based on this assumption, an explicit solution is found for
the normalized TOF:

τ̃MLE =
n(Ys,0 +Ys̄,0)(Ys̄,T −Ys,T )

2(n(Ys̄,0Ys̄,T −Ys,0Ys̄,0)+ (Ys,0+Ys̄,0)(Ys,T +Ys̄,T ))

+
Ys̄,T (Ys̄,0−Ys,0)+Ys,T (Ys,0 +3Ys̄,0)

2(n(Ys̄,0Ys̄,T −Ys,0Ys̄,0)+ (Ys,0+Ys̄,0)(Ys,T +Ys̄,T ))

The range is computed by substitutingτ̃LCE in (11) by τ̃MLE .

4. COMPARISON

In order to evaluate the performance of both range estimators,
we estimate the root mean squared error (RMSE):

RMSE=
√

E[(R−Rtr)2]

whereR is the computed range andRtr is the true one.
From the RMSE, we define the following comparison param-
eter:

ε =
RMSELCE−RMSEMLE

RMSELCE
(14)

If ε is positive (resp. negative), it means that the MLE is
more (resp. less) accurate than the LCE. We estimatedε for
three channels: the basic channel, the BG light channel and
the demodulation contrast channel. For all simulations per-
formed, the chip durationT is set to 50ns, which leads to a
maximum distanceRmax of 750cm.

4.1 Basic channel

In this channel, there is no BG light (i.eρBG = 0) and the
demodulation process is perfect (i.e.cd = 1). The range
accuracy is only limited by the shot noise effect. Figure 5
depicts the behavior ofε according to the range and for three
different values ofEx.
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Figure 6: Behavior of the comparison parameterε in a BG
light channel. Case 1: we test different values ofρBG but we
keep the sequence length constant (n = 127 chips).
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Figure 7: Behavior of the comparison parameterε in a BG
light channel. Case 2: we keep the BG light ratio constant
(ρBG = 1) but we test different values ofn.

The MLE offers a better accuracy than the LCE over
the whole range interval. The improvement depends on
the range, with a maximum gain of approximately 14%,
achieved at a range of 375cm. These results are independent
on the sequence lengthn and the mean powerEx.

4.2 Background light channel

In this channel, a certain amount of BG light is added to the
system but we assume a perfect demodulation process, i.e.
cd = 1. In the following example, the BG light ratioρBG is
set to different values and the sequence length is fixed to 127
chips.
Figure 6 shows that the MLE is globally more accurate than
the LCE. The improvement is even more important when the
BG light increases in the system. It means that the MLE is
more resistant to the BG light effect than the LCE. For a BG
light ratio ρBG of 20, a gain of up to 90% can be achieved.
However, for a small range interval around 375cm, the LCE
is more accurate and can offer a gain of up to 30%.
Another test was performed for different sequence lengths
and the BG light ratioρBG set to 1. The results are displayed
in Figure 7. We can see that as the sequence length increases
then the difference between the estimator decreases. In other
words, for long sequences, the two estimators offer the same
performance.
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Figure 8: Behavior of the comparison parameterε in a de-
modulation contrast channel. Case 1: we test different values
of cd but we keep the sequence length constant (n = 127).
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Figure 9: Behavior of the comparison parameterε in a de-
modulation contrast channel. Case 2: we keep the demodu-
lation contrast constant (cd = 0.5) but we test different values
of n.

4.3 Demodulation contrast channel

In this channel, there is no BG light (i.e.ρBG = 0), but the
demodulation process is no longer perfect. Figure 8 displays
the results for different values ofcd and a sequence lengthn
set to 127 chips.
Clearly, the LCE offers better performance globally than the
MLE. The gain reaches 100% at the range interval bound-
aries. We expected this performance loss for the MLE be-
cause the range formula of this estimator is derived assum-
ing a demodulation contrastcd of 1. This bias induces errors
when the system has a non-perfect demodulation process.
However, the morecd increases then the closer the MLE per-
formances are to the LCE performances. Whencd is equal to
1, we come back to the basic channel case.
We also performed a test for different sequences length and
cd fixed to 0.5. The results are displayed in Figure 9.
Similarly to the BG light channel, long sequences tend to
make the two estimators comparable in terms of perfor-
mance.

5. CONCLUSION

We presented in this paper a new range estimator based on
the maximum likelihood principle, which uses the statistical
properties of the collected charge packets. In channels dom-

inated by the shot noise, the MLE can offer a maximum gain
accuracy of 14% over the LCE. The MLE is also adapted to
take into account the nonidealities present in a real system.
For BG light channels, the MLE provides gains of up to 90%.
However, when the demodulation process is not perfect, the
MLE is worst than the LCE. The reason is due to a bias intro-
duced in the range formula. The bias effect tends to be atten-
uated with recent technological progress. All these improve-
ments are clearly visible when short length m-sequences are
used. These results show us that the MLE gives an improve-
ment over the LCE and an implementation of the MLE in a
real camera system can be considered.
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