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ABSTRACT
This paper deals with the use of Bayesian inference to regularize an
inverse problem with a non linear transfer function. Bayesian infer-
ence is an useful tool to combine a statistical approach coming from
a set of sensors and prior physical models of the system. Bayesian
inference is applied to the estimation of combustion indicators. This
is an inverse problem where only an indirect measurement from en-
gine block vibrations is available and combustion models are nec-
essary to extract relevant combustion parameters. Moreover the en-
gine block is not a linear system and Bayesian inference can take
into account this non linearity.

1. BAYES’ THEOREM

Bayesian inference is used in different signal processing domains
such as audio analysis [7], image analysis [10] or inverse problems
[8]. The Bayesian inference approach is to check if an hypothesis
Θ is valid knowing evidence Y coming from a set of sensors. This
can be written with probabilities

P(Θ|Y ) =
P(Y |Θ)P(Θ)

P(Y )
(1)

In the following notations, all vectors will be underlined and here
Y = [Y1 . . .Yi . . .YNc]

t where i is a sensor from a set of sensors
I = [1 : Nc]. P(Θ|Y ) is the posterior probability, P(Θ) is called the
prior probability, P(Y ) is the evidence probability and P(Y |Θ) is
the likelihood probability.

Equation (1) is maximized to obtain the hypothesis the most
relevant and it reads

argmax
Θ

P(Θ|Y ) = argmax
Θ

{

P(Y |Θ)P(Θ)

P(Y )

}

(2)

The evidence probability P(Y ) does not depend on combustion
parameters, and from equation (2) we deduce a cost function C ac-
cording to the relation

C(θ) = argmin
Θ

{

1
P(Y |Θ)P(Θ)

}

(3)

The likelihood probability P(Y |Θ) is deduced from data coming
from knock sensors, it traduces the appropriateness to the data. The
second probability P(Θ) traduces the prior knowledge about the
problem. The determination of these probabilities depends on the
application, thus it is necessary to explain the combustion indicator
problematic in depth. Next section defines the combustion indica-
tors and the convolutive model which links combustion parameters
to sensor data. Section 3 and 4 are devoted to the estimation of
P(Y |Θ) and P(Θ) of equation (3). Section 5 deals with the experi-
mental results and section 6 concludes this paper.

2. THE COMBUSTION INDICATORS

2.1 Introduction
The new Diesel engines using cleaner combustion modes must be
controlled to get the maximum benefit of these systems. The stan-
dard variables for combustion control are the combustion timing
and the combustion energy. These variables can be computed from
the cylinder pressure measure but this method is too expensive and
the sensor may drift. An innovative approach is to use low cost
knock sensor which records vibrations circulating on the engine
block. However mechanical vibrations may overlap vibrations com-
ing from the combustion in time and in frequency domains. More-
over, it is difficult to deduce combustion variables from combustion
signature on vibrations because the engine block transfer function
depends on engine speed and load [14]. In The following all data
are sampled according to the crank angle degree θ (CA). This base
is independent of the engine speed and is measured by an optic en-
coder which measures the rotation speed of the crankshaft.

Generally the convolutive model is applied to deduce combus-
tion parameters

y(θ) = (hl ∗ p(Θ))(θ)+b(θ) (4)

with y the vibration recorded on knock sensor, p the in cylinder
pressure which contains combustion parameters Θ and an additive
noise b depicting mechanical and measurement noises which can
occur in the same frequency domain and in the same time domain
than the combustion. hl is a linear time invariant transfer func-
tion. Many signal processing algorithms have been proposed to
extract Combustion indicators: from filtered vibration oscillations
[16], from time-frequency analysis [4], from Cepstrum [15] but few
papers have studied the variability of the transfer function of the en-
gine block [3]. This variability is due to clearance between the dif-
ferent components of the engine and lubricant oil films [11]. In this
paper, we propose to take into account engine block transfer func-
tion variability in the Bayesian inference. Moreover, the method
obtains relevant combustion parameters with a frequency domain
criterion and priors on combustion timing and combustion energy.

2.2 The Combustion indicators
We propose to describe the combustion with two indicators: the
maximum pressure gradient which is an image of the combustion
energy and the maximum pressure gradient crank angle to deduce
the combustion timing (see Figure 1). Combustion parameters can
be linked to the knock sensor data y with a convolutive model taking
into account the transfer function variability [12]

y(θ) = (hl ∗ p(Θ))(θ)+b(θ)+bnl(θ , p) (5)

The difference between classical convolutive model of equation (4)
and equation (5) is bnl which countains all that the convolutive

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1587



model cannot depict as the variability of the transfer function. How-
ever bnl is correlated to the input of the system, p. hl is the transfer
function given by the best linear model at least squares sense(BLM).
Cylinder pressure evolution depends mainly on three events: the
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Figure 1: (a) In cylinder pressure and engine block acceleration
from knock sensor (b) In cylinder pressure gradient and combustion
indicators

motored phase, the combustion and the cavity resonances which
depend on speed velocity in the combustion chamber and cylinder
geometry. These events are separated in three different frequency
bands. As it is depicted in Figure 2, the motored pressure is a low
frequency based event (< 1 kHz) , the combustion is a middle range
frequency based event ([1−3] kHz) and cavity resonances are high
frequency based event (> 4 kHz). The study of the spectrum of
the in cylinder pressure P(ωk) in the combustion frequency band
[ω f 1 −ω f 2] (see Figure 2) shows that pressure can be modeled at
first order by

P(ωk) = Ke−
aωkFe
NFFT e−

j2πθ0ωkFe
NFFT (6)

where ωk is a frequency bin, NFFT is the length of the discrete
Fourier transform of p and Fe the sampling frequency. a is the du-
ration of the combustion and is supposed invariant in the following.
The combustion timing depends on θ0 and the maximum pressure
gradient depends on the parameter K. This cylinder pressure model
describes only the rapid pressure rise due to the combustion in Fig-
ure 1. It is during this interval that the combustion parameters occur.
Finally a relation between knock sensor data and combustion event
in a domain of validity has been formulated. The goal is now to
estimate Θ = {K,θ0} with a set of knock sensors and prior models
and to take into account the variability of the transfer function.
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Figure 2: Pressure spectrum and model by straight line between
[1000 3000] Hz for : (a) magnitude and (b) phase

3. THE LIKELIHOOD PROBABILITY P(Y |Θ)

3.1 The convolutive model
This section is devoted to the estimation of the likelihood proba-
bility. This one can be deduced from the convolutive model which
induces a relation between combustion parameters and sensor data.
We use this relation in the frequency domain for several reasons
• The convolution product become a simple multiplication.
• The domain of validity of knock sensors is defined in the fre-

quency domain.
• The central limit theorem simplify the probability laws of differ-

ent variables. Indeed Fourier transforms of noise Bi and transfer
function H i tend to have Gaussian distributions.

For each sensor i,the convolutive model is expressed by

Y i = P.H i +Bi (7)

Here H i = H0 + Hnl is the transfer function and the sum of two
terms :
• H0 given by the BLM and it is the deterministic part of the trans-

fer function.
• Hnl is added to H0, it is a random variable which takes into

account all that the linear transfer function cannot describe.
Yi = [Yi(ω f 1) · · ·Yi(ω f 2)]

t is the vector of sensor data, P the diag-
onal matrix of cylinder pressure,H i the vector of transfer function
random values and Bi the vector of noise random values.

3.2 The transfer function H i

In this study, it is necessary to estimate the transfer function from
the combustion chamber to the sensor location. According to the
combustion domain of validity (see section 2.2), transfer function
have to be determined only in a little frequency band. One of the
main difficulty of the estimation of combustion parameters from ac-
celerometer is the fact that an engine block transfer function is not a
linear and time invariant system [11]. Its parameters depend on en-
gine speed and load. In the literature there is three main approaches
• A time approach which consists in the estimation of different

coefficients of ARMA filter. Poulimenos [13] takes into account
the signal non stationarity and introduces TARMA filters.

• A frequency approach. Bendat [2] proposes to study autospec-
trum and cross-spectrum to determine the transfer function and
Antoni et al. [1] apply it to internal combustion engine. Al-
though the transfer function variability is not taken into account.

• A Ceptrum approach. Gao et al. [6] use Cepstrum to estimate
the transfer function.

Equations coming from the Bayesian inference can take into ac-
count the transfer function variability. Only a transfer function
template H0 is necessary processed with an off line analysis of in
cylinder pressure p and knock sensor y by estimating their centered
autospectrum and cross-spectrum on Np engine cycles

H0(ωk) =
∑Np

n=1 Pn(ωk)Y ∗
n (ωk)

∑Np
n=1 |Pn(ωk)|2

(8)

Transfer function variability is taken into account by the standard
deviation σH which is experimentally estimated over 30 engine set
points at different engine speed and load.

3.3 The Likelihood probability
It is possible to deduce from convolutive model (equation (7)) a
relation between probability density function (pdf) of different ran-
dom variables.

fY (Y |Θ) = fY i
(P.H i +Bi|Θ, I) (9)
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with fY the probability density function connected with Y . Let the
noise dependency appear in equation (9)

fY (Y |Θ) =
∫ ∞

−∞
fY i|Bi

(P.H i +Bi|{Bi,Θ}, I) fBi
(Bi|Θ, I)dBi (10)

Noise Bi is independent of combustion parameters, thus equation
(10) can be simplified

fY (Y |Θ) =
∫ ∞

−∞
fPH i

(P.H i|{Θ}, I) fBi
(Bi, I)dBi (11)

with the relation fPH i
(PH i(Θ)|{Θ}) = fPH i

(Y i −Bi|{Θ}), a con-
volution product appears between the two pdf in equation (11)

fY (Y |Θ) = fPH i
∗ fBi

(Y i, I) (12)

Now we can express fH iP with the pdf related with H i called fH i

fPH i
(X) = fH i

(P−1X)det(P
¯̄
) (13)

fH iP can be replaced by fH i
in equation (12)

fY (Y |Θ) =
∫ ∞

−∞
fH i

(P−1(Y i −Bi), I) fBi
(Bi, I)det(P)dBi (14)

Now we use the commutativity property of the convolution product,
set X i = P−1Bi and assume noises and transfer functions between
each sensors are independents. The independence between trans-
fer function of each sensors has no physical meaning although this
assumption is retained because it carries the less information ac-
cording to the maximum entropy principle

P(Y |Θ) =
Nc

∏
i=1

∫ ∞

−∞
PH i

(X i)PBi
(Y i −P(Θ)X i)dX i (15)

Equation (15) provides a relation between the likelihood prob-
ability and the noise and random transfer function probabilities.
Supposing these two probabilities follow circular complex multi-
dimensional Gaussian laws according to the central limit theorem,
it is possible to deduce the likelihood probability law expression.
Moreover, we assume that the variance of complex Gaussian laws
of transfer function and noise are the same for the real and the imag-
inary parts for each frequency For a given frequency bin ωk

PH(H(ωk)) =
e
− |H(ωk)−H0(ωk)|2

σ2
H

πσH
, PB(B(ωk)) =

e
− |B(ωk)|2

σ2
B

πσB
(16)

H0 is the mean value vector of the transfer function. For a given
frequency bin, the likelihood probability becomes

P(Yi(ωk)|Θ) =
1

π2σBσH

∫ ∞

−∞
e
− |X−H0(ωk)|2

σ2
H e

− |Y (ωk)−P(ωk)X |2

σ2
B dX (17)

Equation (17) can be further simplified to

P(Yi(ωk)|Θ) =
1

π
√

(P(ωk)2σ2
H +σ2

B)
e
− |Y (ωk)−H0(ωk)P(ωk)|2

σ2
B+P(ωk)2σ2

H (18)

The final expression of likelihood probability is summarized in
equation (19). Random variables are supposed independent for dif-
ferent frequency bins. This Assumption is the case when the less
information is conveyed by convolutive model.

P(Y |Θ) =
Nc

∏
i=1

ω f 2

∏
ωk=ω f 1

e
− |Yi(ωk)−P(ωk)H0i(ωk)|2

σ2
Bci+|P(ωk)|2σ2

Hci

|P(ωk)|2σ2
Hci +σ2

Bci
(19)

σBci and σHci are the standard deviations of the complex random
variables Bi and Hi of the sensor i.

4. PRIOR PROBABILITY P(Θ)

For each combustion parameter we suggest a model taken from the
literature. Then prior probability can be expanded

P(Θ) = P(θ0)P(K|θ0) (20)

Where P(θ0) and P(K|θ0) are respectively deduced from a combus-
tion occurrence model and a combustion energy model. Prior will
come from models already used in other applications in engine con-
trol. Thus the necessary extensive data set to tune parameter models
is already available at the beginning of this study.

4.1 Combustion occurrence model P(θ0)

The choice of the model depends on the engine application. For
example, Swan has proposed in [17] a model to deduce the start
of combustion angle θsoc. This model has four inputs : the intake
pressure pivc and temperature Tivc, the start of injection angle θin j
and the burnt gas ratio (BGR). There is also 5 parameters γ , Ta, C1,
C2 and n. The start of combustion is estimated when the integral of
equation (21) is equal to one (to be solved for θsoc)

∫ θsoc

θin j

C1(Pivcv(θ)γ )ne
−( Ta

Tivcv(θ)γ−1 )

1+C2.BGR
dθ = 1 (21)

This model gives the start of combustion θsoc, however the combus-
tion parameter to estimate is the maximum pressure gradient angle
θ0. Indeed the difference θ0 − θsoc is unknown. We consider it as
a random variable. The variability of θ0 −θsoc has been measured
on 85 engine set points by measuring θsoc given by the model and
θ0 given by the in-cylinder pressure. Figure 3 shows the differ-
ence. From these data, a log-normal law is fitted according to the
Kolmogorov-Smirnov test (error of 0.06 for a log normal law in-
stead of 0.12 for a normal law, 0.26 for an exponential law and 0.09
for a chi-square law).
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Figure 3: Histogram of the difference θ0 − θsoc and log normal
probability law proposed to fit data.

Finally

P(θ0) =
e
− (ln(θ0−θsoc)−µ0)2

2σ2
0

√
2πσ0(θ0 −θsoc)

, for θ0 −θsoc > 0 (22)

with σ0 = 0.55 ◦CA and µ0 = 2.1 ◦CA.

4.2 Energy of combustion model P(K|θ0)

The maximum entropy principle proposed by E.T. Jaynes in [9] es-
tablishes the probability P(b|θ0) the less compromising in sense
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that we will use only information given by the constraints. it con-
sists in maximizing entropy H(P) =

∫

P(x) lnP(x)dx with regards
to the constraints on P. Indeed some knowledge about the energy
of the combustion is available: engine thermodynamic laws give K

K =
(γ −1)

∂Q(θ0)
∂θ

3
√

3πγ
a2 V (θ0)+ 2

a
∂V (θ0)

∂θ

(23)

V is the volume of the combustion chamber and ∂Q(θ0)
∂θ is the rate

of heat release (ROHR) which is unknown. A model proposed by
Chmela [5] predicts the value of the ROHR

dQ
CLhvMin j −Q

= C(1−BGR)β e
φ

3√V (24)

Where CLhv is the lower heating value depending on the fuel, Min j
is the mass of fuel, β and C are two constants depending on the
engine. Although, φ , the turbulence in the cylinder is considered as
a random variable because it can take many different values for the
same engine and bring the predominant uncertainty in the Chmela
model. Finally, constraints on P(K|θ0) are enumerated here :
1. The maximum of pressure gradient K is a non negative random

variable.
2. The mean value of random variable K is estimated with 85 en-

gine set points by comparing value of maximum pressure gradi-
ent coming from the in cylinder pressure and the value given by
the model. E(lnK) = φ0

3. The variance of K can be estimated following the same proce-
dure than in point 2. E(lnK)2 = σ2

φ
According to the maximum entropy principle, the probability

function satisfying (1),(2) and(3) is a log normal law.

P(K|θ0) =
e
− (ln(K)−φ0)2

2σ2
φ

√
2πσφ K

, for K > 0 (25)

5. EXPERIMENTAL RESULTS

5.1 Cost function coming from the Bayesian inference
The cost function C to minimize can be deduced by gathering the
likelihood probability and prior probabilities described in the two
last sections. To simplify the cost function we have chosen to mini-
mize the logarithm of the probabilities

C(Θ) =
Nc

∑
i=1

ω f 2

∑
ωk=ω f 1

|Yi(ωk)−H0(ωk)P(ωk,Θ)|2
|P(ωk,Θ)|2σ2

Hci +σ2
Bci

+
Nc

∑
i=1

ω f 2

∑
ωk=ω f 1

ln(|P(ωk,Θ)|2σ2
Hci +σ2

Bci)

+
1

2σ2
0

(ln(θ0 −θsoc)−µ0)
2 + ln(θ0 −θsoc)

+
1

2σ2
φ

(ln(K)−φ0)
2 + ln(K)+C0 (26)

C is undefined if θ0 ≤ θsoc and K ≤ 0.

5.2 Experimental setup and results
Bayesian algorithm has been tested on a four cylinder Diesel-HCCI
engine for speeds from 1000 rpm to 2500 rpm. They are two knock
sensors available located on the two sides of the engine. The in
cylinder pressure is also available to validate the algorithm.

Three cases appear depending on signal to noise ratio(SNR) on
knock sensors.
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Figure 4: Cycle to cycle maximum pressure gradient angle θ0 calcu-
lated with in cylinder pressure (blue line), estimated with Bayesian
inference (red dotted line) and given by prior model (green circled
line) on a 2000 RPM engine set point

• case 1 The SNR is high and the likelihood probability is pre-
dominant in the cost function. It induces a cycle to cycle rele-
vant extraction of combustion parameters (Figure 4) .This case
happens generally at low speed (1000 and 1500 rpm) where me-
chanical noise has a little influence on global vibrations circu-
lating on the engine block.

• case 2 The SNR is low then the prior probability is predominant
in the cost function. It is possible to extract combustion parame-
ters however the little cycle to cycle variations are not detectable
(Figure 5). This case happens generally at high speed (2000
and 2500 rpm) where mechanical noise has a large influence on
global vibrations circulating on the engine block.

• case 3 The SNR is low and the combustion parameters given by
the models are wrong. In this case, the extraction of combustion
parameters is not relevant.
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Figure 5: Influence of transfer function variability on a 2000 RPM
engine set point. In some engine set point supposing the transfer
function invariant causes the detection of non combustion phenom-
ena.

Considering the transfer function as a random variable presents
two main advantages
• Algorithm can give relevant combustion parameters for engine
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Engine set point CA50 t0 σca50−t0
Unit [deg] [deg] [deg]
1000rpm - 3 bar 6.9 6.9 0
1000rpm - 8 bar 10.3 10.1 0.1
1500rpm - 3 bar 9.2 8.9 0.2
1500rpm - 8 bar 12.1 12.2 0.2
2000rpm - 3 bar 12.3 12.4 0.3
2000rpm - 8 bar 12.6 12.2 0.5
2500rpm - 3 bar 11.8 11.6 0.6
2500rpm - 8 bar 13.6 13.2 0.5

Engine set point MPG Ek = 3
√

3πK
a2 σMPG−Ek

Unit [bar/deg] [bar/deg] [bar/deg]
1000rpm - 3 bar 5.4 5.1 0.2
1000rpm - 8 bar 3.9 4.1 0.1
1500rpm - 3 bar 3.6 3.6 0.2
1500rpm - 8 bar 3.1 3.2 0.2
2000rpm - 3 bar 2.5 2.2 0.3
2000rpm - 8 bar 2.3 2.1 0.3
2500rpm - 3 bar 2.2 2.0 0.5
2500rpm - 8 bar 1.9 2.1 0.4

Table 1: Combustion parameter extraction for different engine set
points. CA50 and MPG are the reference combustion timing and
maximum pressure gradient extracted from in cylinder pressure av-
eraged on 50 engine cycles, t0 and Ek are given by the Bayesian
inference averaged on 50 engine cycle and σca50−t0 and σMPG−Ek
are the standard deviation of the difference between CA50 and t0 and
between MPG and Ek.

set point transfer function far from H0 given by the best linear
model (BLM).

• H0 can be chosen with the less setting parameters as possible.
Real time applications are then possible. Transfer function tem-
plate can be taken equal to H0 as it has been explained in section
3.2. However, when the cylinder pressure is unavailable only a
fixed transfer function gain and a fixed delay can be defined for
transfer function template and Hnl variability will be a setting
parameter.
Extraction combustion variable results are summarized in Ta-

ble (1) for different engine speed and load. The cycle to cycle ex-
traction (case 1) is possible for the majority of engine set points.
However for low combustion energy engine set point, only a mean
extraction (case 2) is available and for very low combustion en-
ergy engine set point the combustion parameter extraction is not
relevant (case 3). The extraction is harder for high speed because
mechanical noises increase with the speed. The transfer function
variability influence is shown in Figure 5. Knock sensors filtered
between [ω f 1 −ω f 2] provide informations coming from three dif-
ferent sources : the piston slap (15deg after the top dead center), the
combustion (20deg after the top dead center) and intake valve clo-
sure from another cylinder (26deg after the top dead center). The
three sources have the same energy level in this frequency band.
Taking into account the transfer function variability induces that
prior has more influence and then global cost function minimum
switch on the true combustion indicator.

6. CONCLUSION

Bayesian inference provides a well suitable methodology for
combustion indicators extraction in an internal combustion engine.
Indeed, the extraction of combustion parameters from vibration
block encounter several problems such as a variability of the
engine block transfer function or a perturbation of data due to
mechanical noise vibrations. Bayesian inference can take into
account these difficulties and combines the data information
with prior combustion models already used for other engine
applications. The combination induces a relevant extraction of

combustion parameters on a large engine set point range and for
engine transient. This study gives opportunity to have a cycle to
cycle information about combustion timing and energy for Diesel
engine control purpose. Detection of cylinder balancing, of misfire,
diagnostic of different devices such as injection system are thereby
possible.
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