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ABSTRACT

We propose a new approach to modelling almost peri-
odic signals and to model-based estimation of such sig-
nals from noisy observations. The signal model is based
on Fourier series where both the coefficients and the fun-
damental frequency can continuously change over time.
This signal model can be represented by a factor graph
which we use to derive message passing algorithms to
estimate the time-dependent model parameters from the
observed samples.

Our motivating application is near-infrared spec-
troscopy. In this application the observed signal is a
superposition of several physiological signals of clinical
interest (including, in particular, the arterial pulsation),
and we wish to decompose the observed signal into these
components. Most of these component signals are almost
periodic. We show that the proposed algorithm can be
used to extract the arterial pulsation from the measured
signal.

1. INTRODUCTION

Many signals in nature are almost periodic. In this pa-
per, we propose a new approach to modelling and to
model-based estimation of such signals. Our immedi-
ate motivation comes from near-infrared spectroscopy
(NIRS), where the observed signals typically look as in
Fig. 1. The main feature in Fig. 1 is the arterial pul-
sation (the heartbeat), which is almost periodic (with a
period of about 100 samples in this example). The chal-
lenge is to extract the “clean” arterial pulsation and to
subtract it from the observed signal in order to make the
residual signal available for further analysis (see Sec-
tion 2). Note that, because of the sharp peaks of the
pulses, a simple low-pass filter will not do.

Recall that a periodic signal can be represented by a
Fourier series. Specifically, let x1, x2, . . . be the sampled
version (with equidistant samples) of a periodic real-
valued signal. Then we can write

xn = Re

(

∞
∑

k=0

AkejknΩ

)

(1)

with real coefficient A0, with complex coefficients
A1, A2, . . ., and with fundamental frequency Ω ∈ R. We
now propose to model almost periodic signals by chang-
ing (1) to

xn = Re

(

K
∑

k=0

Ak,nejkΘn

)

(2)
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Figure 1: A measured NIRS signal with about five pe-
riods of the arterial pulsation.

with
Ak,n+1 ≈ Ak,n (3)

and
Θn+1 = (Θn + Ωn) mod 2π (4)

with
Ωn+1 ≈ Ωn. (5)

Note also that (i) we restrict ourselves to a finite number
K of frequencies in (2), (ii) we allow the fundamental
frequency to continuously change over time, thus Ω is
replaced by the time-dependent parameter Ωn imply-
ing that nΩ in (1) is replaced by the parameter Θn,
from now on called phase, and the relation (4) between
two temporal consecutive phases is imposed, (iii) we al-
low the coefficients to continuously change over time,
thus the fixed coefficients Ak in (1) are replaced by the
time-dependent coefficients Ak,n. The meanings of (3)
and (5) are not formally defined here. These constraints
are, however, motivated through the fact that the pe-
riod length and signal shape, e.g. the heart rate and the
beat shape in the arterial pulsation, slightly vary.

Now let y1, y2, . . . be a noisy version of the signal
x1, x2, . . .. Specifically,

yn = xn + Zn (6)
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where Z1, Z2, . . . is discrete-time white Gaussian noise.
The main point of this paper is that the parameters Ak,n

and Θn (for k = 0, 1, . . . , K and for n = 1, 2, 3, . . . , N)
can be efficiently estimated from y = (y1, . . . , yN ) with
a complexity that is linear both in K and in N . An
estimate of the “clean” signal x = (x1, . . . , xN ) may
then be obtained from (2).

The proposed approach may be outlined as follows.
First, equations (2)–(6) can be turned into a state space
model that can be represented by a factor graph [1, 2].
We then use message passing algorithms in this factor
graph to estimate all the parameters. The estimates are
optimal in the least-squares sense, i.e. they result in
minimal

N
∑

n=1

(yn − xn)2.

The soft constraint in (3) is handled with adjustable
strength by message damping, as will be described in

Section 3.4 (“
γ
=”-node). The soft constraint in (5) is

handled with adjustable strength by using prior knowl-
edge about the upper and lower limits of Ωn, as will be
described in Section 3.3 (“I”-node).

In contrast to other well-known methods, like Inde-
pendent Component Analysis (ICA) described in [3] or
the traditional bandpass filtering used in [4], our method
allows explicit modelling of the almost periodic signal re-
sulting in adaptive filtering. A different adaptive filter,
presented in [5], Section 6.5.2, finds an average shape by
matching all periods in the arterial pulsation of a long
NIRS measurement in one subject. This shape com-
prises periodicity in the arterial pulsation. The disad-
vantages of this filter compared to our filter are: (i) it
needs a large observation dataset, and (ii) it assumes for
every period the same shape, which is unrealistic.

The next section of this paper is about NIRS and
shows some experimental results with the proposed al-
gorithm. The algorithm itself is described in Section 3.

2. APPLICATION TO NEAR-INFRARED
SPECTROSCOPY

NIRS was described in detail in [5], [6], and [7]. Our ex-
perimental data was obtained by the equipment devel-
oped and described in [5]. Light from a suitable source
is sent through some tissue, where it is scattered and
absorbed. Some of the light finds its way to the detec-
tor. In living tissue, the intensity of the detected light
varies due to a number of physiological effects reflected
in the blood [8]. We here assume that the intensity of
the detected light is a linear superposition of several
component signals including the arterial pulsation (due
to the heartbeat), the respiration, slow oscillations, etc.,
most of which are almost periodic. We wish to decom-
pose the measured signal (the light intensity) into these
component signals, all of which are of clinical interest.
In particular, we wish to extract the arterial pulsation
and subtract it from the measured signal in order to
make the residual signal available for further analysis.

Some results with the proposed new method are
shown in Fig. 2. Many more experimental results are
now available which confirm the validity of the proposed
method. This means that our approach will improve the

diagnosis capabilities and extend the area of application
of NIRS.
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Ã1 = 30, K = 4
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Ã1 = 20, K = 2
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Figure 2: Examples of measured NIRS observations
(noisy curves) with sampling frequency fs = 100 Hz and
corresponding estimated signals (smooth curves). The
top right plot shows the estimated arterial pulsation of
the signal in the top left plot, which is obtained by sub-
tracting the DC coefficient estimates (Â0,1, . . . , Â0,N )
from the estimated signal (the smooth curve) in the top
left plot. The bottom left plot shows that the algorithm
works for observations with rather strong noise. The
bottom right plot shows that it also works for short ob-
servation datasets (50 samples). In all these examples,
the damping parameter γ (see Section 3.4) was γ = 0.96,
and convergence was achieved in 3 iterations.

3. ESTIMATING THE MODEL
PARAMETERS

The estimation of the model parameters is structured
into several blocks, as will be described in Section 3.1.
The factor graphs of the two main blocks will be in-
troduced in Section 3.2, and the corresponding mes-
sage passing algorithms will be described in Sections 3.3
and 3.4.

3.1 The Building Blocks of the Estimation Al-
gorithm

Given a set of N observed (measured) samples y, the
objective is to estimate the model parameter vector

Θ
△

= (Θ1, . . . , ΘN ) and coefficient matrix

A =





A0,1 . . . A0,N

...
. . .

...
AK,1 . . . AK,N





and reconstruct the almost periodic signal by applying
the estimates in (2). We will use Ak,− for the k-th row
and A

−,n for the n-th column of A.
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Â

Figure 3: The building blocks of the estimation algo-
rithm.

We propose an iterative, parameter-wise maximum
a-posteriori estimation procedure. Based on the obser-
vation dataset y and a given estimate Â of A we make
estimates Θ̂n of Θn as

Θ̂n = argmax
Θn∈[0,2π]

f
(

Θn

∣

∣

∣
y, Â

)

, (7)

where the conditional probability density function f
in (7) comprises the model (2), the relation (4) and
the constraint (5), which is handled with adjustable
strength by using prior knowledge about the upper and
lower limits of Ωn, as will be described in Section 3.3
(“I”-node).

Likewise we make estimates Âk,n of Ak,n

based on the observation dataset y, estimates
Âk−1,1, . . . , Âk−1,N , . . . , Â0,1, . . . , Â0,N , and Θ̂ from the
previous iteration step as

Âk,n = argmax
Ak,n∈C

f(Ak,n | y, Âk−1,1, . . . ,

Âk−1,N , . . . , Â0,1, . . . , Â0,N , Θ̂) (8)

for increasing k. The function f in (8) comprises the
model (2) and the constraint (3), which is handled with
adjustable strength by message damping, as will be de-

scribed in Section 3.4 (“
γ
=”-node).

The whole estimation algorithm is split into several
building blocks. One block produces the coefficient esti-
mates Â0,−, a second block produces the initial estimate

Ã1,−. The two main blocks produce the coefficient es-

timate matrix Â and the phase estimate vector Θ̂. The
last block reconstructs the almost periodic signal x̂. The
interaction between these blocks is depicted in Fig. 3.

The coefficient estimator normally uses the estimates
produced by the phase estimator block and vice versa.
In the beginning, however, the zeroth coefficient estima-
tor independently estimates the DC component Â0,− by

means of (8). Since for this there is no need for Θ̂, this
is a one-time procedure based on the observation y only.
It can be shown that for this case (8) boils down to a

first-order low-pass filter. The estimates are then fed to
the phase estimator block together with an initial esti-
mate Ã1,−. In almost periodic signals measured with
NIRS, most of the signal energy, apart from the DC
component A0,− and the noise, lies in the fundamental
frequency component A1,−. Therefore, when applying
our algorithm to NIRS, a first rough estimate of the al-
most periodic signal is simply a sinusoid. Its magnitude
Ã1,− is calculated by the initial A1 estimator block in
such a way that the sinusoid is of the same energy as
the signal y − Â0,−. Based on this estimate the phase

estimator is already able to produce a good estimate Θ̂.
The latter is handed over to the coefficient estimator,
which finally calculates the full set of coefficient esti-
mates Â.

At this point it is possible to apply entries of Θ̂ and
columns of Â directly in (2) and get a first estimate x̂
of the almost periodic signal. The result can, however,
be improved by iterating a few times.

3.2 Factor Graphs for the Main Building Blocks

The estimations are done by using the sum-product mes-
sage passing algorithm on factor graphs, which is de-
scribed in detail in [2].

By using a Fourier series as the model where both
the coefficients and the fundamental frequency are time-
dependent, the message passing algorithm can be re-
garded as matching, in the least-squares sense, a sliding
discrete-time Fourier series with the observation.

Message passing is applied on the factorial tempo-
ral decomposition of the statistical model called factor
graph (see [1], Chapter 2). With respect to (2)–(6) a
large factorisation arises which represents the full sta-
tistical model under the assumption of additive white
Gaussian noise.

There are two factorisations of (2) depicted in Fig-
ures 4 and 5. The first is used for estimating Θ accord-
ing to (7) (phase estimator in Fig. 3) and the second is
used for estimating A according to (8) (coefficient esti-
mator in Fig. 3).

In factor graphs edges represent variables and nodes
represent factors. In this paper a factor is either (i) a
hard constraint expressing the relationship between two
or more variables or (ii) a prior probability density.

Messages are scaled conditional probability densities
of the underlying edge, i.e. variable, arising as a result of
summary propagation algorithms, in our case the sum-
product rule. Messages can traverse the edges generally
in both directions and are named µ including an arrow
placed above it indicating the forward (−→µ ) or backward
(←−µ ) direction with respect to the edge direction.

3.3 The Phase Estimator

The phase estimator makes use of a factor graph con-
taining N consecutive sections one of which is depicted
in Fig. 4. This means that the outgoing edge Θn+1 of
the graph in the figure is at the same time the incoming
edge of its right neighbour.

The “Eq. (4)”-node represents the mathematical op-
eration in (4).

There are two nodes connected to only one output
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Θ′′n

xn

I
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Figure 4: Factor graph used for estimation of the phase
Θn.

and no input edges. The “N”-node stands for zero-mean
white Gaussian noise with variance σ2, which is added
to the clean sample xn resulting in the observation sam-
ple yn. The “I”-node represents the prior knowledge
about the upper and lower limits of the fundamental
frequency, i.e. a density I(ω) with ω ∈ [0, 2π] which is
uniform for ω ∈ [Ωmin, Ωmax] and 0 elsewhere, dictating
that any growth of Θn outside the interval [Ωmin, Ωmax]
is invalid. Depending on the application and the prior
knowledge, however, it might be advisable to replace the
uniform distribution by a different probability distribu-
tion.

Taking the example of the arterial pulsation of hu-
mans, the rate of a regular heartbeat takes values be-
tween some minimum Hmin and some maximum Hmax.
Considering that the acquisition instruments measure
with a sampling frequency fs [Hz] and that during one
heartbeat the phase traverses the interval [0, 2π], each
heart rate H can be assigned to an angle growth Ω ac-
cording to

Ω(H) =
H · 2π

fs · 60
.

From given Hmin and Hmax the corresponding angle
growth values Ωmin = Ω(Hmin) and Ωmax = Ω(Hmax)
can be calculated.

The “=”-node expresses cloning of the input variable
Θn, thus Θ′

n and Θ′′

n are clones of Θn.
The “Eq.(2)”-node represents the mathematical op-

eration in (2) with Ak,n = Âk,n for k = 0, . . . , K.
The schedule of the message passing algorithm on

the phase estimator factor graph can be stated as fol-
lows:
1. For n = 1, . . . , N , calculate ←−µΘ′

n
from the observa-

tion yn.
2. For n = 1, . . . , N , first calculate −→µΘ′′

n
from −→µΘn

and←−µΘ′
n
, then calculate −→µΘn+1

from −→µΩn
and −→µΘ′′

n
.

There is no prior knowledge on Θ1, thus the message
−→µΘ1

is neutral: −→µΘ1
(θ) = 1 for all θ ∈ [0, 2π].

3. For n = N, . . . , 1, first calculate ←−µΘ′′
n

from −→µΩn

and←−µΘn+1
, then calculate←−µΘn

from←−µΘ′′
n

and←−µΘ′
n
.

There is no prior knowledge on ΘN+1 (or ΘN respec-
tively), thus←−µΘN+1

(or equivalently←−µΘ′′

N
) is neutral:

←−µΘN+1
(θ) = ←−µΘ′′

N
(θ′′) = 1 for all θ, θ′′ ∈ [0, 2π].

4. For n = 1, . . . , N , calculate the marginal
µ̃Θ′′

n
= −→µΘ′′

n
· ←−µΘ′′

n
.

5. For n = 1, . . . , N , calculate the estimate
Θ̂n = arg max

θn

µ̃Θ′′
n
(θn).

The messages on the Θ edges can in general not be
described by a few parameters. Therefore the messages
in the phase estimator are approximated by uniform dis-
cretisation.

It might seem more convincing to replace (7) with
the vector estimate

Θ̂ = arg max
Θ∈[0,2π]N

f
(

Θ

∣

∣

∣ y, Â
)

.

This would lead to changing the sum-product rule to
the max-product rule in the phase estimator. In the
application with the arterial pulsation in humans mea-
sured with NIRS, however, we prefer the sum-product
rule because the inherent averaging leads to less overfit-
ting. The latter results from a large heart rate variabil-
ity (Hmin ≈ 60 beats per minute and Hmax ≈ 180 beats
per minute) implying a wide interval [Ωmin, Ωmax] and
thus a very soft constraint (5).

3.4 The Coefficient Estimator

.
.

.

=

=

=

++ +

.
.

.

...

. . . . . .

+

Eq.(2)
αK,n

A0,n

AK,n

A0,n+1

A1,n+1

AK,n+1

A′

K,n

A′

0,n

β1,n

α0,n

Θ̂n

β2,n βK,n

γ

A′

1,n γ

A1,n γ

Θ̂n

c0,n

c1,n

Θ̂n
α1,n

cK,n

N

yn

xn

Zn

Figure 5: Factor graph used for estimation of the coef-
ficient vector A

−,n.

The coefficient estimator makes use of a factor graph
containing N consecutive sections, one of which is de-
picted in Fig. 5. The arrangement of the sections is
similar as described in 3.3.

The “
γ
=”-node models a central property of almost

periodic signals. It is equivalent with the “=”-node with
the additional feature that the significance of the mes-
sage coming from the neighbour graph section is some-
what reduced before the summary proceeds. This is
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done by taking the message to the power of γ .1 which
we call “message damping” and which for Gaussian mes-
sages results in dividing the variance by γ. This clari-
fies (3) and allows variation of the coefficients from one
discrete point in time to the next. During each further
summarisation the variance of that message is divided
by γ meaning that its significance is exponentially de-
caying with increasing distance to its original time in-
dex.

Furthermore there is the “ck,n”-node, which maps
some complex coefficient Ak,n and phase Θn to the k-th
harmonic part αk,n of the almost periodic signal sample
value xn. Note that the k-th summand of the model
equation (2) is

αk,n
△

= Re(Ak,n · e
jkΘn)

= Re(Ak,n) · cos(kΘn) + Im(Ak,n) · sin(kΘn)

= Ak,n · ck,n (9)

with Ak,n
△

= (Re(Ak,n), Im(Ak,n)) and ck,n
△

=
(cos(kΘn), sin(kΘn))T . The summation of all harmon-
ics αk,n for k = 0, . . . , K results in xn.

Because Gaussian messages are used and gaussianity
is preserved during summary propagation through all
nodes in the factor graph in Fig. 5 ([2], Chapter V),
two parameters, the covariance matrix V and the mean
vector m, suffice to describe any message in the graph.

The schedule of the message passing algorithm on
the coefficient estimator factor graph can be formulated
as follows:

1. Set k = 0.
2. For n = 1, . . . , N , calculate sequentially the back-

ward messages ←−µxn
, ←−µαk,n

and ←−µA′

k,n
from the ob-

servation yn and estimate Θ̂n, assuming βk+1,n = 0
and αm,n = α̂m,n for m = 0, 1, . . . , k − 1.

3. For n = 2, . . . , N , calculate −→µAk,n
from −→µAk,n−1

and
←−µA′

k,n
. There is no prior knowledge on Ak,1, thus

−→µAk,1
is neutral.

4. For n = N, . . . , 1, calculate←−µAk,n
from←−µAk,n+1

and
←−µA′

k,n
. There is no prior knowledge on Ak,N+1, thus

←−µAk,N+1
is neutral.

5. For n = 1, . . . , N , calculate −→µA′

k,n
from −→µAk,n

and
←−µAk,n+1

.
6. For n = 1, . . . , N , calculate the marginal

µ̃A′

k,n
= −→µA′

k,n
· ←−µA′

k,n
and the estimate

Âk,n = argmax
Ak,n

µ̃A′

k,n
(Ak,n).

7. For n = 1, . . . , N , calculate α̂k,n = Âk,n · ck,n

according to (9).
8. If k = K all coefficients have been estimated, stop

the algorithm or else, increase k and continue on 2.

4. RESULTS AND CONCLUSION

Many signals in nature are almost periodic. In this
paper, we propose a new approach to modelling such
signals by means of Fourier series where both the co-
efficients and the fundamental frequency can continu-
ously change over time. A factor graph representation

of such models allows to estimate, with a complexity
that is linear both in the number of frequencies K and
in the observation length N , the time-dependent model
parameters from noisy samples of the signal by means
of message passing algorithms.

From a subjective point of view, the resulting es-
timates, shown in Fig. 2, are reasonable already after
3 iterations. We conclude that our approach has been
successfully applied to NIRS and thus its usability is
shown.
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