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ABSTRACT

When dealing with non-linear estimation issues, metaheuristics are
often used. In addition to genetic algorithms (GAs), simulating an-
nealing (SA), etc., a great deal of interest has been paid to differen-
tial evolution (DE). Although this algorithm requires less iterations
than GAs or SA to solve optimization issues, its computational cost
can still be reduced. Variants have been proposed but they do not
necessarily converge to the global minimum. In this paper, our con-
tribution is twofold: 1) we present new variants of DE. They have
the advantage of converging faster than the standard DE algorithm
while being robust to local minima. 2) To confirm the efficiency of
our variants, we test them with a benchmark of functions often con-
sidered when studying metaheuristic performance. Then, we use
them in the field of neurosciences to estimate the parameters of the
Hodgkin–Huxley neuronal activity model.

1. INTRODUCTION
In the field of signal processing, several approaches operate in two
steps: system modelling and model parameter estimation. The esti-
mation step consists in searching for the set of parameters which
minimizes a given error criterion such as the least square error,
the maximum likelihood or the minimum variance. Depending on
the constraints of the application (real-time and storage capacity),
different off-line/on-line or iterative algorithms can be considered.
Thus, one can use subspace methods, adaptive or optimal filtering,
or the expectation-maximisation (EM) algorithm, etc. Their opti-
mization steps may be based on classical techniques such as the
steepest descent or the Newton Raphson methods. Nevertheless,
when dealing with highly non-linear estimation issues, alternative
solutions, such as metaheuristics, must be considered. They may be
potentially useful, especially when locating the global optimum is
a difficult task. Although their computational costs are quite high,
they are well suited to optimization problems.

These optimization techniques are inspired by natural systems
like metallurgy for the simulated annealing (SA), biology of evolu-
tion for the genetic algorithms (GAs) or ethology for the ant colony
algorithms or theparticle swarm optimization. Thus, they have al-
ready been used in a large number of application areas, such as
biomedical applications to estimate intensity distributions for brain
magnetic resonance images [11], Rayleigh fading channel simula-
tion [5], in the field of multimedia [1], etc.

In this paper, we focus our attention on the differential evo-
lution (DE) algorithm. Invented by Price and Storn in 1995 [12],
DE belongs to the class of evolutionary algorithms. Like GAs, DE
consists of a population of individuals which evolves towards a pa-
rameter vector that minimizes a beforehand defined fitness function
Ff it . The purpose of DE is then to explore and to evaluate new
regions of the solution space, by building new candidate solutions
from existing ones. It uses mechanisms inspired by biological evo-
lution, namely the reproduction, the recombination, and the selec-
tion. However, unlike GAs, the exploration is automatically regu-
lated since new individuals result only from the recombination of
individuals of the initial population. In addition, instead of keeping

the best individuals of thekth generation1, DE consists in compar-
ing pairwise one individual of a generation with its mutant. Thus,
in DE, every candidate of the new generation has a fitness function
Ff it that is lower (or equal) to the fitness function of the previous
one.

Our contribution is twofold: firstly, we suggest a new variant of
the DE in order to improve its convergence speed, hence its compu-
tational cost, while avoiding local minima. Secondly, we evaluate
the resulting approach in the field of neurosciences. Indeed, in this
area, signal processing plays a role that is more and more active.
Thus, we have already studied the relevance of GAs to estimate the
parameters of the neuronal activity model proposed by Hodgkin–
Huxley [6] and widely used in neurosciences [2].

The remainder of this paper is organized as follows. In the sec-
ond part, we present the classical DE strategies. Then, in the third
part, we describe the proposed variants and compare the perfor-
mance of all the strategies on the benchmark of functions introduced
by De Jong in [7] and widely used in the optimization field. Finally,
in the fourth part, we apply and test our variant on a neuro–scientific
problem: the parameter estimation of the Hodgkin-Huxley model.

2. CLASSICAL STRATEGIES OF THE DIFFERENTIAL
EVOLUTION ALGORITHM

2.1 Classical DE
DE consists in generating a population ofNP2 individuals which are
composed ofD parameters, also called “genes”. The population is
initialized by randomly choosing individuals in a uniform manner
within the boundary constraints of the model. Then, at each time
step, new trial individuals are built by means of two operations: the
so–called “differentiation” and the “recombination”. In the follow-
ing, we defineXr

k(i) as theith gene of therth individual of thekth

generation.
Differentiation: therth new parameter vector,Xr

k,trial , is gener-

ated by adding to an individualXr1
k randomly chosen among thekth

generation in a uniform manner, the weighted difference between
two other population members,Xr2

k andXr3
k , with r1 6= r2 6= r3:

∀r = 1, . . . ,NP, Xr
k,trial = Xr1

k +F.(Xr2
k −Xr3

k ), (1)

whereF is usually set to 0.5.
Recombination:therth mutant individual,Xr

k,mut, inherits genes
of Xr

k,trial with a probabilityCR, whereCR∈ [0,1] is usually set to
0.9. By generatingu according to a uniform distribution over[0,1]
one has:

∀i = 1, . . . ,D,∀r = 1, ..,NP, Xr
k,mut(i)=

{

Xr
k,trial (i) if u < CR

Xr
k(i) otherwise.

1kth“generation” denotes here the population at the iterationk.
2For the sake of clarity, we use the same notations as in the seminal

paper [12].
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Finally, a selection is carried out by comparing the fitness func-
tion values ofXr

k,mut and ofXr
k , respectively, as follows:

Xr
k+1 =

{

Xr
k,mut if Ff it (Xr

k,mut) ≤ Ff it (Xr
k)

Xr
k otherwise

As for terminal conditions, one can either set the number of it-
erationsNiter or define an upper bound on the fitness function value.

2.2 Other existing strategies

Other strategies have been proposed for the last years [4]. They
aim at speeding up the convergence by better choosing the differ-
entiation directionXr2

k −Xr3
k and the search region. Among them,

an approach known as theRAND/BESThas been shown to improve
the convergence speed. Its operates like the classical DE, except
that the trial individual is generated as follows:

∀r = 1, . . . ,NP, Xr
k,trial = Xmin

k +F.(Xr2
k −Xr3

k ) (2)

whereXr2
k andXr3

k are drawn randomly and uniformly among the
population andXmin

k denotes the individual of thekth generation that
minimizes the fitness functionFf it . According to [4], “it looks like
a chaotical local search around the current best solution”.

Another strategy consists in using the best individual and com-
bining it with 3 other randomly chosen individuals – instead of us-
ing only 2. Here, this method is called theRAND/MIN. Thus, the
rth trial individual,Xr

k,trial , is generated as follows:

∀r = 1, . . . ,NP, Xr
k,trial = Xr1

k +F.(Xr1
k −Xmin

k )+F.(Xr2
k −Xr3

k ) (3)

In this case, the differentiation direction isXr1
k −Xmin

k + Xr2
k −Xr3

k .
Although the computational costs of these methods are not greater
than the complexity of the standard DE, the candidate that can be
found may correspond to a local minimum. Indeed, by always using
the best individual of the current population in the differentation
step, the region of the global minimum may never be explored.

3. NEW VARIANT OF THE DIFFERENTIAL EVOLUTION
3.1 Description

Although the above-mentioned variants of the DE improve conver-
gence, they increase the chance to be trapped in a local minimum.
Indeed, they tend to limit the exploration nearby the best individual
of each generation. To overcome this difficulty, we propose to fa-
vor all the individuals yielding a high value of the fitness function
as opposed to only considering the best one. For that purpose, at
the differentiation step, we suggest drawing the individuals with a
probability that is inversely proportional to the value of the fitness
function for this individual. In this way, no computational load is
devoted to exploring “uninteresting” regions of the solution space
while diversity among the population is maintained. Letpr

k denote
the probability for individualXr

k to be selected. We first consider
the following definition for this probability:

pr
k = K.exp

(

−Ff it (X
r
k)
)

, (4)

whereK is a normalization constant, which is adjusted so that the
sum of the elementarity probabilities equals 1 and that these proba-
bilities define a multinomial distribution over the set of individuals.
However, if the fitness function takes high values, all the probabil-
ities pr

k fall in the tail of the exponential function and have sim-
ilar values. Therefore, the proposed approach is not discriminant
enough. As an alternative to definition (4), we propose to assign the
following probability to individualXr

k :

pr
k = K′.exp

(

−α .
(

Ff it (Xr
k)−Ff it (Xmin

k )
)

Ff it (Xmax
k )−Ff it (Xmin

k )

)

. (5)

whereK′ is the normalisation constant andXmax
k is the individual

of the kth generation that yields the maximal value of the fitness
function. This formula deserves some commentaries.

1) By substracting Ff it (Xmin
k ) and dividing by Ff it (Xmax

k ) −
Ff it (Xmin

k ), we make sure that the argument of the exponential
function lies in the interval[−1,0]. This choice leads to proba-
bility values evenly spread in the interval[0,1].

2) The factorα can be adjusted by the practitioner. For small val-
ues ofα , the resulting multinomial distribution tends to become
uniform. On the contrary, if a too high value ofα is considered,
the distribution tends to the dirac delta measure centered inXmin

k .
In this case, only the best individual has a chance to be selected.

3) It should be noted that this definition bears similarity to the ac-
ceptance probability of the SA algorithm.

Our approach is expected to speed up convergence in the
presence of local minima. More precisely, theRAND/MIN and
RAND/BESTvariants tend to explore only the region nearby the
best individual which may be a local minimum. They still have a
chance to escape thanks to the random generation of the search di-
rection. However, it may take a lot of iterations. On the contrary,
our technique can be seen as a parallel exploration of the regions
which are the most likely to comprise the solution to the optimiza-
tion problem. In this way, the global minimum is reached in less
iterations.

In the next section, we compare 6 DE strategies: the clas-
sical DE, theRAND/BEST, the RAND/MIN and 3 proposed vari-
ants. 1) TheDEvariant consists in simulating individualsXr i

k , for i =
1,2,3,, in equation (1), according to the multinomial distribution
described above. 2) In the variant of theRAND/BESTdenoted as
RAND/BESTvariant, we replaceXmin

k , in equation (2), by an individ-
ual drawn according to the multinomial distribution whereas the two
other individuals are uniformly drawn. 3) Finally, in theRAND/MIN
variant referred to asRAND/MINvariant, we replaceXmin

k , in equation
(3), by an individual generated according to the multinomial distri-
bution whereas the three other individuals are uniformly drawn.

3.2 Results: comparative study on a benchmark of functions

To evaluate the relevance of our variants, we suggest comparing the
different strategies and variants of the DE on the set of functions
belonging to the De Jong benchmark [7], also used in [4]:

f1(X) =
3

∑
i=1

X(i)2, −5.12≤ X(i) ≤ 5.12 (6)

f2(X) = 100(X(1)2−X(2))2 +(1−X(1))2, (7)

−2.048≤ X(i) ≤ 2.048

f3(X) =
5

∑
i=1

⌊X(i)⌋ , −5.12≤ X(i) ≤ 5.12 (8)

f4(X) =
10

∑
i=1

(i.X(i)4 + εi), −5.12≤ X(i) ≤ 5.12 (9)

whereεi is a white gaussian noise

f5(X) =
1

0.002+∑2
j=11/(c j +∑2

i=1(X(i)−ai j )6)
− γ,(10)

−65.536≤ X(i) ≤ 65.536

where⌊x⌋ denotes the whole number portion of numberx. The
parameters are defined as follows:γ = 500, c j = 1 + j, a1 j =
−16(mod(16,5)− 2) and a2 j = −16(⌊i/5⌋ − 2) where mod(x,y)
meansx modulusy. Note that f1 and f2 have a global minimum
whereasf3, f4 and f5 have several local minima.

The simulation results presented hereafter are mean values
computed from 50 runs of each DE algorithm. All the variants have
been initialized identically to make a fair comparison. The 1st gen-
eration is uniformly distributed within the boundary constraints of
each test function and the parameterα has been set to 5.

First of all, as all the algorithms often yield approximately the
same final values, we do not report those values in this paper.
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To illustrate the behavior of the different algorithms, we have
represented in figure 1 the average evolution of the fitness function
over the iterations for functionsf1(X) and f3(X).

The functionsf1(X) and f2(X) have a global minimum. In this
case, the optimization algorithms have no chance to fall in local
minima. Therefore, the variantsRAND/MINandRAND/BESTout-
perform the DE and the proposed variants, as expected. However, it
should be noted that our variants converge faster than the classical
DE because instead of blindly exploring the solution space, they fa-
vor the regions nearby the best individuals of each generation. To
illustrate this remark, figure 2 represents different generations of in-
dividuals for the classical DE and its variant, theDEvariant. After
20 iterations, we can observe that, with the variant, the candidate
parameter vectors are very close to each other and to the true opti-
mum of f2(X). On the contrary, when considering the standard DE,
the parameter vectors are more scattered.

As for the functionf3(X), it has several local minima. For this
difficult optimization issue, theRAND/MIN and RAND/BESTdo
not converge to the optimal solution since they are trapped in lo-
cal minima. On the contrary, the classical DE as well as the vari-
antsDEvariant andRAND/BESTvariant reach the global minimum. It
should be noted that it takes far less iterations for theDEvariant to
converge than for the classical DE.

To test the robustness of the proposed approaches, we have
evaluated their convergence speed for all the functions of the De
Jong benchmark. Table 1 summarizes the number of iterations re-
quired for {

(

fi(Xmin
k )−min( fi)

)

/
(

fi(Xmin
1 )−min( fi)

)

}i=1,2,3,4 to
reach the value 10−4, where min( fi) is the minimum of fi and
fi(X

(min)

1 ) is the minimal value of the fitness function for the 1st

generation. We can see in table 1 that our variants are on aver-
age better than the standard DE in terms of convergence speed. For
the functions that have a global optimum likef1 and f2, they are
slower than theRAND/BESTandRAND/MINstrategies. However,
when the functions have local optima, the classical strategies tend
to fall in local minima (see fig 1) and fail to retrieve the global min-
imum. For instance, for the functionf3, theRAND/BESTand the
RAND/MIN do not converge 44 out of 50 runs and 45 out of 50
runs, respectively. On the contrary, our variants manage to find the
global minimum. To conclude, on the benchmark of functions, our
variants converge faster than the classical DE and are more robust
to local minima than theRAND/MINandRAND/BESTimplemen-
tations. Indeed, in the presence of local minima, theRAND/BEST
andRAND/MINmay never reach the optimal solution because their
explorations are centered around the best individual of each gener-
ation which may be far from the optimal solution, especially when
dealing with local minima. On the contrary, the proposed variants
are more efficient by searching in parallel in different “interesting”
regions of the solution space. In the next section, we use these al-
gorithms to retrieve the parameters of Hodgkin–Huxley biophysical
model from electrical recordings carried out on a neuromimetic cir-
cuit.

f1 f2 f3 f4 f5
DE 24 25 82 36 43
DEvariant 15 19 35 19 25
RAND/MIN 12 13 − 9 −
RAND/MINvariant 14 17 − 11 32
RAND/BEST 9 9 − 9 −
RAND/BESTvariant 17 20 123 22 71

Table 1: Number of iterations required to reach the value 10−4.
Mean value over 50 simulations. - : the strategy does not converge.

4. APPLICATION TO A NEUROSCIENTIFIC PROBLEM
4.1 Context
For the past few years, a great deal of interest has been paid to neu-
rosciences, especially neuromorphic engineering. This topic is at
the intersection of various fields such as biology, physics and signal
processing. Its purpose is to design autonomous robots, artificial
sensory and neural systems, etc. It plays a key role in biomedical
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Figure 1: Evolution off1 and f3 versus neperian logarithm of the
number of iterations. Plain lines: classical DE strategies, dashed
lines: associated variants.

and robotics. Indeed, neural implants have been made to alleviate
the undesirable effects of the Parkinson desease and the epilepsy.
Another example is the use of bionic arms for amputees. They are
connected and controlled by the remaining nerves.

In this section, we focus our attention on approaches that make
it possible to characterize and to simulate the neuronal electrical
activity. The electrical activity of a neuron is the consequence of the
diffusion of ionic species, such as potassium and sodium, through
its membrane, see figure 3B. As an example, figure 3A provides
eight neuronal spikes recorded thanks to a micro–electrode.

In 1952, Hodgkin and Huxley introduced a model establishing
an analogy between electronical circuits and biological phenomena.
See figure 4. This formalism leads to a set of differential equations
describing the ionic flows with unknown parameters corresponding
to ionic conductances for instance. At the same time, Hodgkin
and Huxley proposed a method to estimate the parameters of their
model from the activity of biological neurons. This method, known
as voltage–clamp [6], is still widely used to estimate the parameters
of ionic channel models in a neuron. However, this method is based
on several approximations which allow for the model parameters to
be estimated. Nevertheless, when dealing with the time constants
of the set of differential equations, the estimation accuracy has
to be improved [10]. In particular, it is difficult to “accurately”
estimate the time constants of the model. As an alternative, one
can jointly estimate all the parameters of a single ionic channel
by finding the minimum of a fitness functionFf it . Thus, studies
have been carried out to estimate the Hodgkin–Huxley (HH) model
parameters from biological recordings. J. L. Madden et al. have
used the Levenberg–Marquardt method [9] or a gradient–descent
approach [3]. However, the estimations obtained with those
methods can correspond to a local extremum of the cost function.
More recently, in [2], we proposed to use metaheuristics to estimate
the HH model parameters.

Hodgkin–Huxley neuron model
When dealing with the HH model, leak current and two ionic

species such as potassium and sodium can be considered. The
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Figure 2: Evolution of scatter plots forf2 with standard DE and
the DEvariant. The initialization is the same for both algorithms;
the final distribution is almost the same for both. Only the final
distribution obtained with the classical DE appears. The cross×
represents the optimal set of parameters.

equivalent electrical circuit is represented in figure. 4.
The current flowing across the membrane is integrated on the

membrane capacitance,Cmem, as follows:

Cmem

dVmem

dt
= IK + INa+ Ileak+ IS (11)

whereVmem denotes the membrane potential,IS an eventual stimula-
tion or synaptic current andIK , INa, Ileak the potassium, the sodium
and the leak currents respectively. These latter satisfy the following
equations:

IK = gKn4(Vmem−EK) (12)

INa = gNam3h(Vmem−ENa) (13)

Ileak = gleak(Vmem−Eleak) (14)

where{gi}i=K,Na, leak is the maximal conductance value,
{Ei}i=K,Na,leak is the ion–specific reversal potential, andn, m and
h represent the so–called activation term of the potassium channel,
the activation term and the inactivation term of the sodium chan-
nel respectively. Those terms are dynamic functions describing the
permeability of the membrane channels to the ion considered. In
addition, they all satisfy the following differential equation:

τx
dx
dt

= x∞ −x where x = n,m,h (15)
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whereτx denotes the time constant for the convergence. It should
be noted that, when the timet increases to+∞, x converges towards
x∞ which is a sigmoid function ofVmem.

x∞ =
1

1+exp
(∓(Vmem−Voffsetx)

Vslopex

)

(16)

whereVoffsetx denotes the sigmoid offset andVslopex the sigmoid slope.
The sign before(Vmem−Voffsetx) is − for the activation term and+
for the inactivation.

Considering the set of differential equations (1–6), 15 parame-
ters have to be estimated in order to define the HH model. Thus, we
define three vectors storing the unknown parameters:

XK = [gK τn EK Voffsetn Vslopen], Xleak = [gleakEleak],

XNa = [gNaτmτh ENaVoffsetm Voffseth Vslopem Vslopeh].

XK , XNa or Xleak represent theX vector used in the section 2.
System : the integrated circuit (IC) designed by our group [10] re-
produces in real–time the electrical activity of a neuron following
the HH formalism. For a given set of parameters, we record in-
dividually each ionic channel response by applying different step
values, denoted stim, on the membrane voltage.

To find the parameters of the HH model, the estimation method
can be applied separately on each ionic channel. Here, we will focus
our attention on the potassium channel. Since the leak currentIleak

can be obtained by solving the affine equation (4),gleak andEleak can
be estimated thanks to a linear regression. The parameter estimation
of potassium requires more complex techniques such as DE because
of the strong non–linearities of its equations.

During 50ms (biological real-time, with a sampling period of
0.01ms) we record independently the currents, denotedIreference,K and
Ireference,Na, after applying successive steps values on the membrane
voltage. Then, we apply a discretization3 to the HH model equa-
tions with the estimated parameters to obtain an analytical expres-
sion of the currents, denotedIsoftware.

3Approximation of partial difference by :τx
xn−xn−1

∆t
= x∞ −xn

2355



0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

2
 Potassium channel response (DE)

 Time (ms)

 I K
 (

µ 
A

)
1st serie 

2nd serie 

3rd serie 
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sium channel hardware response to different steps of stimulations.
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(DEvariant).

The fitness functionFfit that we suggest minimizing is defined
by :

Ffit(XK) =

∑
t

∑
stim

(β × (Ireference,K(t,stim)− Isoftware(XK , t,stim)))2 (17)

where t corresponds to the time andstim corresponds to the
different values applied to the membrane voltage. Note that a factor
β = 106 is considered to avoid numerical limitations.

4.2 Comparative study on the potassium ionic channel
The responses of the potassium channel,Ireference,K and Isoftware are
shown in figure 5 for theRAND/MINvariant. We can see that the
curves are almost overlaid for each stimulation current. The small
discrepancy during the 15 first milliseconds is due to chip de-
fects. Indeed to computen4 in equation (12) multipliers involving a
translinear loop are used. However, these multipliers are not really
linear with weak currents [10]. Moreover, when performing random
multiple starts of this algorithm in the same conditions, we obtain
the same extracted parameters with a precision of six significative
digits.

In figure 6, we have represented the evolution of the fitness
function for only 3 strategies for the sake of clarity: the classical
DE, the RAND/MIN which exhibits the smallest time of conver-
gence, and its variant, theRAND/MINvariant. TheRAND/MINvariant
performs better than the classical DE, but theRAND/MINconverges
in less iterations than our variant. The most likely explanation is that
the fitness function for the potassium channel has few local minima
despite of the complexity and non-linearity of the equations. We are
currently working on the joint estimation of the sodium and potas-
sium channels where the proposed approach is expected to yield
good results.
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Figure 6: Evolution of fitness function with the DE and their vari-
ants. Dashed line represents the evolution of the variant correspond-
ing to the continuous line classical algorithm.

5. CONCLUSION
In this paper, we propose new variants of DE intended to speed up
the convergence while avoiding local minima. We have first val-
idated the performance of the proposed approach on the De Jong

benchmark of functions. It takes less iterations for our variant than
for the classical DE to converge. In addition, when dealing with
local minima, our approach efficiently explores in parallel differ-
ent regions of the solution space to find the global minimum unlike
theRAND/BESTandRAND/MINstrategies. Then, we have applied
it on a problem originally adressed by neuroscientists. This study
illustrates the relevance of the proposed variant of the DE on com-
plex and noisy systems involving differential equations. In further
works, it would be interesting to compare the performance of DE
with another new simple and efficient optimization algorithm, the
artificial bee colony (ABC) [8].

Acknowledgements
Research was partly funded by the E.U. Grant FACETS (FP6-IST-
FETPI-2004-15879).

REFERENCES

[1] P. Besson, V. Popovici, J.-M. Vesin, J.-P. Thiran, and M. Kunt.
Extraction of audio features specific to speech production for
multimodal speaker detection.IEEE Transactions on Multi-
media, 10:63–73, Januar 2008.
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