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ABSTRACT

The robustness of phoneme classification to white Gaussian

noise and pink noise in the acoustic waveform domain is investigated

using support vector machines. We focus on the problem of design-

ing kernels which are tuned to the physical properties of speech. For

comparison, results are reported for the PLP representation of speech

using standard kernels. We show that major improvements can be

achieved by incorporating the properties of speech into kernels. Fur-

thermore, the high-dimensional acoustic waveforms exhibit more ro-

bust behavior to additive noise. Finally, we investigate a combination

of the PLP and acoustic waveform representations which attains bet-

ter classification than either of the individual representations over a

range of noise levels.

Index Terms— Kernels, Phoneme classification, Robustness,

Support vector machines, PLP

1. INTRODUCTION

Automatic speech recognition (ASR) systems lack the level of ro-

bustness inherent to human speech recognition (HSR) [1]. In rec-

ognizing syllables or isolated words, the human auditory systems

performs above chance level already at −18dB SNR and signifi-

cantly above it at −9dB SNR [2]. No ASR system is able to achieve

performance close to that of human auditory systems under severe

noise.While language and context modelling are essential for reduc-

ing many errors in speech recognition, accurate classification of iso-

lated phonetic units is very important for achieving robust recogni-

tion of continuous speech.

Mel-frequency cepstral coefficients (MFCC) and Perceptual lin-

ear prediction (PLP) [3] representations of speech are considered as

the state-of-the-art ASR front-ends. These representations are de-

rived from the short term magnitude spectra followed by non-linear

transformations to model the processing of the human auditory sys-

tem. They remove variations from speech signals that are consid-

ered unnecessary for recognition while preserving the information

content. Therefore, they have a much lower dimension than acoustic

waveforms, and this facilitates the estimation of probability distribu-

tions. However it is not certain that in the process of “peeling off”

speech components that are unnecessary for recognition, one is not

discarding some of the information that makes speech such a robust

message representation. To make these state-of-the-art representa-

tions of speech robust to noise, several methods have been proposed

to reduce explicitly the effect of noise on spectral representations

[4] in order to approach the optimal performance which is achieved

when the training and testing conditions are matched [5]. Our recent

study on phoneme classification [6] with support vector machines

(SVMs) shows that although classification in the PLP domain ex-

hibits superior performance when the test phonemes are corrupted

by low levels of noise, classifiers in the high-dimensional acoustic

waveform domain trained in quiet conditions with straightforward

noise adaptation are more robust in severe noise.

PLP is designed in a way which removes non-lexical invariances

(sign, time alignment), however for recognition in the acoustic wave-

form domain these invariances need to be taken into account by

means of a custom kernel design. In this paper, we focus on the

design of SVM kernel functions for acoustic waveforms of speech.

Classification in the PLP representation domain using standard SVM

kernels is also reported. Applying the method of [6], we show further

that a convex combination of the decision functions of the PLP and

acoustic waveform SVM classifiers results in a superior performance

across a wide range of SNRs. Our experiments demonstrate the ef-

fectiveness of custom designed kernels for robust phoneme classifi-

cation under adverse conditions. It should be emphasized that this

study is focused on phoneme classification for comparison of the

acoustic waveform and PLP representations of speech although we

believe the results also have implications for the construction of con-

tinuous speech recognition systems.

The SVM approach to classification of phonemes is presented

in Section 2. Custom-designed kernels for the classification task in

the acoustic waveform domain are described in Section 3. Section 4

presents techniques for noise adaptation in both the PLP and acous-

tic waveform domains. Experimental setup is explained in Section

5. The classification results in the PLP and acoustic waveform do-

mains detailing the effects of kernels on the accuracy are reported

in Section 6, where we also discuss the combination of the PLP and

acoustic waveform representations for improved accuracy. Finally,

Section 7 draws some conclusions.

2. CLASSIFICATION METHOD

An SVM [7] estimates decision surfaces separating two classes of

data. In the simplest case these are linear but for speech recognition,

one typically requires nonlinear decision boundaries. These are con-

structed using kernels instead of dot products, implicitly mapping

data points to high-dimensional feature vectors. A kernel-based de-

cision function which classifies an input vector x is expressed as

h(x) = ∑
i

αiyi〈Φ(x),Φ(xi)〉+b = ∑
i

αiyiK(x,xi)+b , (1)

where Φ is a non-linear mapping function while xi, yi = ±1 and

αi, respectively, are the i-th training sample, its class label and its

Lagrange multiplier. K is a kernel function and b is the classifier bias

determined by the training algorithm. Two commonly used kernels

are the polynomial and radial basis function (RBF) kernels given by

(2) and (3), respectively,

Kp(x,xi) = (1+ 〈x,xi〉)Θ , (2)

Kr(x,xi) = e−Γ‖x−xi‖2 . (3)

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1765



To obtain a multiclass classifier, binary SVM classifiers are com-

bined via error-correcting code methods [8]. A standard approach is

to use K(K− 1)/2 pairwise classifiers, each trained to distinguish

two of the K classes. For a test point x, we then predict the class

k for which dk(x) = ∑K
l=1,l 6=k ξ (hkl(x)) is minimized, where ξ is

some loss function and hkl(x) is the output of the classifier trained
to distinguish classes k and l, with sign chosen so that a positive sign

indicates class k. We compared a number of loss functions ξ (h); the
hinge loss ξ (h) =max(1−h,0) performed best and is used through-

out this paper.

3. CUSTOM-DESIGNED KERNELS

The most important issue in any SVM classification task is the use

of appropriate kernels that express prior knowledge about the phys-

ical properties of the data sets. To this end, for classification using

acoustic waveforms, we use an even kernel (Ke) [6] to account for

the fact that a speech waveform and its inverted version are perceived

as being the same. An even version of a kernel K can be obtained as

Ke(x,xi) =K(x,xi)+K(x,−xi)+K(−x,xi)+K(−x,−xi) . (4)

Here K(x,xi) can be any kernel that satisfies Mercer’s theorem. In

this paper, we use the polynomial kernel, Kp for both PLP and wave-

form representations. However, evaluating Kp for acoustic wave-

forms requires normalization of x and xi to give a sensible estimate

of their closeness i.e. Kp(x,xi) = (1+〈x/‖x‖ ,xi/‖xi‖〉)Θ. This is

used as a baseline kernel for the acoustic waveform representations

whereas Kp defined in (2) is used for the PLP representations.

A further invariance of acoustic waveforms, to time alignment,

can be incorporated into Ke by defining a shift-invariant even kernel

(Ks) of the form

Ks(x,xi) =
1

(2n+1)2

n

∑
u,v=−n

Ke(x
u∆,xv∆

i ) , (5)

where ∆ is the shift increment, [−n∆,n∆] is the shift range, and x
u∆

is a segment of the same length as the original waveform x
0 but

extracted from a position shifted by u∆ samples.

The log-energy distributions of waveforms of phoneme classes

/aa/ and /v/ are shown in Figure 1 (top). By comparing the distribu-

tions of energy of these phoneme classes, we observe that the energy

of isolated phoneme segments can be very useful in distinguishing

them. Therefore, we embed this information into the kernel and de-

fine a norm-dependent shift-invariant even kernel (Kn),

Kn(x,xi) = e−(log‖x‖2−log‖xi‖2)
2
/2a2Ks(x,xi) , (6)

Since PLP, MFCC and other state-of-the-art representations are

based on short-time magnitude spectra and so also contain informa-

tion on the energy, using similar custom-designed kernels for clas-

sification in the PLP domain will not have any advantage over the

standard (polynomial or RBF) kernels and this was confirmed in our

experiments.

4. NOISE ADAPTATION

To improve the performance in both domains, we perform noise

adaptation of the features extracted from our test data. Since the

noise variance, σ2 can be estimated during pause intervals (non-

speech activity) between speech signals, we assume that its value

is known. For the PLP representations, the features are standard-

ized, i.e. scaled and shifted to have zero mean and unit variance on
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Fig. 1. Histograms of log-energies of phoneme classes /aa/ and /v/

for clean waveforms, noisy waveforms (in the presence of white

noise) at 0dB SNR and noise adapted waveforms as specified in (8)
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the training set. As mentioned previously, the optimal performance

with PLP is obtained under matched training and test conditions [5].

However, this is an impractical target which could be achieved only

if one had access to a large set of classifiers trained for different

noise types and levels. Therefore, in order to have a fair comparison

of PLP with acoustic waveforms, we use classifiers trained in quiet

conditions and adapt them to noise using cepstral mean and vari-

ance normalization (CMVN) [4], a noise compensation technique

that modifies the cepstral coefficients in order to minimize the mis-

match between the training and test data. Here, training is performed

on PLP features standardized in quiet conditions, but in testing fea-

tures are scaled and shifted so as to standardize them on the noisy test

sentence. By attempting to ’decouple’ the speech information from

the noise information, CMVN can significantly improve the perfor-

mance of PLP classifiers. Another common approach to reduce the

mismatch between training and test data is the multi-condition/multi-

style training of PLP classifiers [9]; however, CMVN and its variants

generally perform better [10].

In the case of acoustic waveforms, the test data is transformed

using DCT and each frequency component is scaled by 1/
√

1+qσ2
r

where q is the number of frequency components and σ2
r is the

noise variance of the rth frequency component. The data is trans-

formed back to time domain using IDCT and normalized to
√
1+σ2

whereas the training data is set to have a unit norm for computation

of the inner product in the polynomial kernel. This is done to keep

the norm of the speech signal roughly independent of the noise. It

should be noted that the frequency scaling would have no effect on

the structure of the noisy test waveform in the presence of white

Gaussian noise. Explicitly, for a test waveform x and training wave-

form xi, let x̃ = x̂

√
1+σ2/‖x̂‖ and x̃i = xi/‖xi‖ where x̂ is the

waveform obtained from the frequency scaling of x. Then the kernel

for the normalized waveforms are

Kp(x,xi) = (1+ 〈x̃, x̃i〉)Θ , (7)

while Ke and Ks are as defined in (4) and (5) respectively.
Similar adaptation as in the polynomial kernel is also required

in the norm-dependent kernel (6). Figure 1 shows the distribution of
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log-energies of phoneme classes /aa/ and /v/ and motivated incorpo-

rating the energy information into the kernel. However, the energy

distributions of waveforms in the presence of noise change signifi-

cantly as illustrated in Figure 1 (middle) for an SNR of 0dB. Under

the assumption that speech and noise are uncorrelated, subtraction

of the estimated noise variance (σ2) from the energy of the noisy

phoneme should result in distributions of the energies that are very

similar to those of the clean waveforms and this is indeed the case

for our data (Figure 1, bottom). We, therefore, use this subtracted

energy in evaluating the norm-dependent kernel (6), giving

Kn(x,xi) = e−(log|‖x‖2−σ 2|−log‖xi‖2)
2
/2a2Ks(x,xi) , (8)

As training for acoustic waveforms is performed in quiet condi-

tions, noise adaption of the training data xi is not required. The ab-

solute value of the subtracted energy is used to catch the cases when

the overlap of speech and noise is negative enough to overwhelm the

energy of clean speech. In the next section, we compare the perfor-

mance of these kernels with standard SVM kernels for the phoneme

classification task in the acoustic waveform domain. Furthermore,

classification results in the PLP domain are used as benchmarks for

comparison with acoustic waveforms.

5. EXPERIMENTAL SETUP

Experiments are performed on the TIMIT database [11]. Training

and testing is done on the ’si’ and ’sx’ sentences of TIMIT. The train-

ing set consists of 3696 sentences from 168 different speakers. The

core set is used for testing which consists of 192 sentences from 24

different speakers not included in the training set. We remove the

glottal stops /q/ from the labels and fold certain allophones into their

corresponding phonemes using the standard Kai-Fu Lee clustering

[12]. This results in a total of 48 phoneme classes. Furthermore,

among these 48 phoneme classes, there are 7 groups for which the

contribution of within-group confusions towards multiclass error is

not counted [12]: (/sh/, /zh/), (/aa/, /ao/), (/ah/, /ax/), (/el/, /l/), (/en/,

/n/), (/ih/, /ix/), (/sil/, /cl/, /vcl/, /epi/). As silence forms a major por-

tion of TIMIT, we first isolate the problem of discriminating speech

and silence. This is achieved by training a top-level one-vs-rest clas-

sifier to discriminate between silence (/sil/, /cl/, /vcl/, /epi/) and the

rest of the 44 phoneme classes. In order to then discriminate between

these 44 non-silence classes, 946 one-vs-one classifiers are trained

and combined via error correcting code methods for multiclass clas-

sification.

Regarding the binary SVM classifiers, comparable performance

is obtained with polynomial and RBF kernels for the PLP represen-

tation so we show results for the former. For the waveform repre-

sentation, results are reported for different custom-designed kernels;

as expected Kn (8) performed best. Fixed hyperparameter values are

used throughout for training binary SVMs: the degree of the poly-

nomial kernel, Θ = 6 and the penalty parameter C = 1.

For the acoustic waveform representation, phoneme segments

are extracted from the TIMIT sentences by applying a 76.5 ms rect-

angular window at the center of each phoneme waveform (of variable

length), which at 16 kHz sampling frequency gives fixed length vec-

tors in R
1224. In the evaluation of Ks defined in (5), we use a shift

increment of ∆ = 50 samples (≈ 3 ms) over a shift range ±100 (so

that n= 2), giving five shifted segments of length 1024 samples each.

In evaluating Kn, two values for a are selected, (0.5,∞). The decision

function values corresponding to each value of a are added together

to give the final score. For the PLP representation, we convert each

waveform into a sequence of 13 dimensional feature vectors. Then,
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Fig. 2. Classification in the PLP and acoustic waveform domains for

all phoneme classes except silence (/sil/, /cl/, /vcl/, /epi/) in the pres-

ence of white noise. Different kernels are used for the classification

of acoustic waveforms and the results are compared with PLP.

the 6 frames (75 ms duration) closest to the center of a particular

phoneme are concatenated to give a representation in R
78. Since the

calculation of time derivatives and second order derivatives of the

PLP features uses information about several adjacent frames, they

are not used in our experiments in order to have a fair comparison

with acoustic waveforms.

In this study, we focus on investigating robustness in the pres-

ence of white Gaussian noise and pink noise. The pink noise is

obtained from the NOISEX-92 database. To test the classification

performance of PLP and acoustic waveforms in noise, we normal-

ize each sentence to unit energy per sample and then add a noise

sequence with variance σ2 (per sample) to the entire sentence. It

should be noted that SNR at the sentence level is thus fixed but SNR

at the level of individual phonemes will vary widely.

6. RESULTS

Classification results using SVMs in the PLP and acoustic wave-

form domains are shown in Figure 2, 3 and 4. In Figure 2, results

are reported for the task of classification among all phoneme classes

except silence in the presence of white noise. For acoustic wave-

forms, classification results with different kernels are presented. As

explained above, polynomial kernel is used for classification of PLP

features. One observes that a PLP classifier trained on clean data

gives very good performance when tested on clean data. (The actual

error rate of 32% is somewhat higher than in previous work [13] due

to the exclusion of the silence class and the derivative information

from cepstral features as explained above.) But at 0dB SNR, we get

an error of 77% even with CMVN.

This can now be contrasted with the results for a classifier based

on acoustic waveform data. One observes that the polynomial ker-

nel performs worse than PLP for all SNRs. Incorporating sign-

invariance of acoustic waveforms into the kernel gives an average

improvement of around 5%. The largest improvement, by 7% is

achieved at 12dB SNR. Adding shift-invariance to the kernel im-

proves the results even further. In quiet conditions, an 8% improve-

ment is achieved over the even-polynomial kernel and the results are

consistently better for all SNRs. Finally, we observe that adding
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Fig. 3. Classification in the PLP and acoustic waveform domains

for all phoneme classes including silence for white Gaussian noise.

A top-level one-vs-rest classifier is trained to discriminate between

silence and all the rest of the phoneme classes. Performance of the

combined classifier for λapp(σ
2) given by (10) is also shown.

to the kernel noise-adapted energy information about the phoneme

segments improves the results especially in high noise e.g. a further

5% improvement over Ks is achieved at −6dB SNR. By compar-

ing the classification results for PLP with acoustic waveforms, we

observe that the PLP classifiers give excellent performance at low

noise. However the waveform classifiers exhibit a more robust be-

havior to noise and achieve improvments over PLP for noise levels

above a crossover point between 12dB and 18dB SNR.

In Figure 3, we report the classification results for all phoneme

classes including the silence class for white Gaussian noise. The best

results for both domains are compared here: polynomial kernel for

PLP, and Kn for acoustic waveforms. We observe a similar behav-

ior as seen previously. The PLP classifiers perform extremely well

in low noise conditions with an error rate of e.g. 27% in quiet but

perform poorly in high noise. In the case of white noise, 80% error

is observed for PLP at −6dB SNR. The acoustic waveform classi-

fiers do not perform as well in quiet conditions but exhibit a robust

behavior to white noise e.g. at −6dB SNR, an improvement of 12%

is achieved over PLP. The crossover point beyond which waveforms

perform better is again between 12dB and 18dB SNR. It should be

emphasized that best performance using acoustic waveform classi-

fiers is obtained when training is performed on clean data; train-

ing on noisy data (results not shown) leads to poorer performance.

In Figure 4, we reach a similar conclusion by comparing PLP and

acoustic waveform classifiers in the presence of pink noise. How-

ever, the classification performance in both PLP and waveform do-

mains is slightly worse in the presence of pink noise.

Next, we apply the method of [6] to combine classifiers based on

waveforms and PLP. This simple and effective combination method

can be used to attain better classification performance than either of

the individual representations. We consider a convex combination of

the decision values of the classifiers in the individual feature spaces.

For classifiers hp(x) and hw(x) in the PLP and waveform domains

respectively, we define the combined classifier output as

hc(x) = λ (σ2)hw(x)+
[

1−λ (σ2)
]

hp(x) . (9)
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Fig. 4. Classification in the PLP and acoustic waveform domains for

all phoneme classes including silence in the presence of pink noise.

Performance of the combined classifier for λapp(σ
2) given by (10)

is also shown.

Here λ (σ2) is parameter which needs to be selected, depending

on the noise variance, to achieve optimal performance. These bi-

nary classifiers are then combined for multiclass classification as de-

scribed previously. The top-level one-vs-all binary classifiers for the

PLP and acoustic waveform representations are combined in a sim-

ilar manner for discriminating silence from all the other phoneme

classes.

In Figure 5, the “optimal” λ (σ2) i.e. the values of λ (σ2) which
give the minimum classification error for a given SNR of the test

phoneme corrupted by white noise, are shown marked by ’o’. The

error bars give a range of values of λ (σ2) for which the classification
error is less than the minimum error (%)+ 2%. An approximation

of the optimal λ (σ2) is also shown in Figure 4 (solid line) and given
by

λapp(σ
2) = α +

β

1+
(

σ2
0 /σ2

) , (10)

with α = 0.2, β = 0.6 and σ2
0 = 0.03.

In Figures 3 and 4, we also compare the classification perfor-

mance in the feature space of PLP and acoustic waveforms with the

combined classifier for λapp(σ
2) selected according to (10). One ob-

serves that the combined classifier often performs better or at least

as well as the individual classifiers. Furthermore, we found no sig-

nificant difference in the performance of the combined classifier for

the optimal λ (σ2) and the approximation λapp(σ
2). Moreover, the

values of optimal λ (σ2) for different SNRs suggest that the combi-

nation of the PLP and acoustic waveforms is not simply acting as a

switch between the two representations. The convex combination of

the PLP and waveforms, in fact, helps to reduce the error in noise as

shown in Figures 3 and 4. Although the combined classifier does not

achieve the impractical target of PLP classifier trained and tested in

matched conditions, the gain in the classification accuracy is signifi-

cant compared to a standalone PLP classifier with CMVN. A similar

behavior of the combined classifier with λapp(σ
2) selected according

to (10) can be observed for the task of phoneme classification with-

out the silence class as shown in Figure 2. This problem of phoneme

classification in acoustic waveform domain using generative classi-

fiers such as Gaussian mixture models (GMMs) has been addressed
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cation.

in [14] with similar conclusions.

7. CONCLUSIONS

The robustness of phoneme classification to additive white Gaussian

noise and pink noise in the PLP and acoustic waveform domains

was investigated using SVMs. We observe that embedding invari-

ances and information that is necessary for recognition into the ker-

nel can significantly improve the classification performance. While

PLP representation allows very accurate classification of phonemes

especially for clean data, its performance suffers severe degradation

at high noise levels. On the other hand, the high-dimensional acous-

tic waveform representation, although not as accurate as PLP classi-

fication on clean data, is more robust in severe noise. Our results fur-

ther demonstrate that a convex combination of classifiers can achieve

performance that is consistently better than for both individual do-

mains for a wide range of SNRs. We are currently working on the

phoneme classification task using multi-layered, multi-class SVMs

[15, 16] with preliminary experiments giving encouraging results.

In future work, we plan to investigate methods to embed informa-

tion from adjacent frames/phonemes into the kernel for improved

robustness. This would be done in order to be consistent with the

time derivatives and second order derivatives of the PLP features.
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[6] J. Yousafzai, Z. Cvetković, P. Sollich, and B. Yu, “Combined

PLP-Acoustic waveform classification for robust phoneme

recognition using support vector machines,” EUSIPCO 2008,

Aug. 2008.

[7] V. N. Vapnik, The Nature of Statistical Learning Theory,

Springer-Verlag, New York, 1995.

[8] T. Dietterich and G. Bakiri, “Solving multiclass learning prob-

lems via error-correcting output codes,” J. of AI Research, vol.

2, pp. 263–286, 1995.

[9] M. Holmberg, D. Gelbart, and W. Hemmert, “Automatic

speech recognition with an adaptation model motivated by au-

ditory processing,” IEEE Trans. on Audio, Sp. & Lang. Proc.,

vol. 14, no. 1, pp. 43–49, 2006.

[10] J. Droppo, L. Deng, and A. Acero, “Evaluation of the splice

algorithm on the aurora2 database,” EuroSpeech, 2001.

[11] W. Fisher, G. Doddington, and K. Goudie-Marshall, “DARPA

Speech Recognition Research Database,” DARPA Sp. Recogn.

Workshop, pp. 93–99, 1986.

[12] K. F. Lee and H. W. Hon, “Speaker-independent phone recog-

nition using hidden markov models,” IEEE Trans. Ac. Speech

Sig. Proc., vol. 37, no. 11, 1989.

[13] P. Clarkson and P. J. Moreno, “On the use of support vector

machines for phonetic classification,” ICASSP, 1999.
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