
OPTIMIZING THE SEARCH OF FINITE-STATE
JOINT SOURCE-CHANNEL CODES BASED ON ARITHMETIC CODING

A. Diallo1, C. Weidmann2, and M. Kieffer1

1 LSS – CNRS – SUPELEC – Univ. Paris-Sud
3 rue Joliot-Curie

91192 Gif-sur-Yvette, France

2 INTHFT, Vienna University of Technology
Gusshausstrasse 25/389
1040 Vienna, Austria

ABSTRACT

Joint source-channel (JSC) coding is an important alternative
to classic separate coding in wireless applications that require
robustness without feedback or under stringent delay con-
straints. JSC schemes based on arithmetic coding can be im-
plemented with finite-state encoders (FSE) generating finite-
state codes (FSC). The performance of an FSC is primarily
characterized by its free distance, which can be computed
with efficient algorithms. This work shows how all FSEs
corresponding to a set of initial parameters (source probabil-
ities, arithmetic precision, design rate) can be ordered ina
tree data structure. Since an exhaustive search of the code
with the largest free distance is very difficult in most cases, a
criterion for optimized exploration of the tree of FSEs is pro-
vided. Three methods for exploring the tree are proposed and
compared with respect to the speed of finding a code with the
largest free distance.

1. INTRODUCTION

Arithmetic coding (AC) [15] is an efficient data compression
technique whose variants have been used in recent still image
(JPEG 2000) and video (H.264/AVC) coders. Nevertheless,
AC is particularly vulnerable to errors appearing,e.g., when
the compressed bitstream is sent over a noisy channel. This
issue has motivated the development of Joint Source-Channel
coding schemes based on AC (JSC-AC).

Robustness of AC against transmission errors is usually
achieved by introducing some redundancy in the compressed
bitstream by means of a forbidden symbol (FS), to which a
non-zero probability is given during the partition of the cod-
ing interval [3]: the higher the FS probability, the higher the
redundancy and the robustness against errors. This idea is
extended in [14], which proposes the introduction of multi-
ple forbidden symbols (MFS) (up to three in case of a binary
source) and uses the stack sequential decoding algorithm [9]
to estimate the encoded sequence from noisy measurements.
In [12], both depth-first and breadth-first sequential decoders
are used, in conjunction with error detection achieved by test-
ing the presence of a FS in the decoded bitstream. In [5], trel-
lis coded modulation is used jointly with AC, where a FS is
exploited to discard erroneous paths during a Viterbi decod-
ing process. Later, a MAP decoder for AC using the FS has
been proposed in [6]. A finite state encoder (FSE) inspired
from [11, 8] is introduced in [7] to represent quasi-arithmetic
coding (QAC) [8], where transitions between states are mod-
eled by a Markov process. Two types of three-dimensional

This work was supported by the European Commission in the frame-
work of the FP7 Network of Excellence in Wireless COMmunications
NEWCOM++ (contract n. 216715).

trellises are proposed for decoding, using either a symbol
clock or a bit clock. Redundancy is added by limiting the
number of states and introducing synchronization markers.
Another three-dimensional bit-clock trellis for soft decoding
of AC is proposed in [2].

All these techniques improve the robustness of AC to
transmission errors. Nevertheless, among the various waysto
introduce redundancy, it is difficult to assess their efficiency
other than experimentally. Optimizing the design of a given
JSC-AC is thus quite laborious. To address this problem, an
analytical tool for characterizing the effectiveness of the in-
troduction of one or several FS in the case of QAC has been
proposed in [1]. The free distance of a JSC-AC is evaluated
with polynomial complexity in the number of states of the
FSE representing the AC. Distance spectra may also be ap-
proximatively evaluated using extensions of one of the two
techniques presented in [4]. First JSC-AC optimization at-
tempts are also proposed in [1], assuming that the probabili-
ties allotted to the MFS are constant. Nevertheless, the class
of JSC-AC with constant probabilities for the MFS is signif-
icantly smaller than that with time-varying probabilities. For
a fixed amount of redundancy, the JSC-AC obtained by [1] is
thus suboptimal.

The aim of this paper is toglobally optimize the intro-
duction of time-varying MFS in binary input JSC-AC (JSC-
BIAC) represented by a FSE. Here, only the free distance is
optimized. The set of all JSC-AC when considering time-
varying MFS may be huge, but this paper shows that it has
a tree structure, where all possible JSC-AC correspond to
leaves of the tree. An efficient branch-and-bound algorithm
is introduced to explore this tree and discard nodes as soon as
it can be shown that all JSC-AC stemming from a given node
cannot have good performances in terms of free distance.

Section 2 briefly recalls the principles of AC. JSC-AC is
then introduced in Section 3. The tree structure of the set of
JSC-AC with time-varying MFS is then introduced in Sec-
tion 4, before presenting the branch-and-bound algorithm for
exploring this tree in Section 5. First optimization results are
provided in Section 6, before drawing some conclusions and
perspectives.

2. ARITHMETIC CODING

2.1 Basic principle

The basic idea of binary AC is to assign to every sequence
of source symbols a unique subinterval of the unit interval
[0,1); then a subinterval of widthw is represented by a bi-
nary fraction of length at least⌈log2w⌉ bits. The source en-
tropy can be approached by recursively partitioning the inter-
val [0,1) according to the source symbol probabilities. LetK

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 1161

be the size of the source alphabet{a1,a2, . . .aK}. The current
source interval[l ,h) is partitioned intoK non-overlapping
subintervals{I1, I2, . . . , IK}, and the width of subintervalIi
is proportional to the probability of the symbolai. The
subinterval corresponding to the current symbol is then se-
lected as the new source interval. Once the last symbol has
been processed, the encoder chooses a value in the current
source interval, and its binary representation is associated to
the sequence of encoded symbols. For sources with skewed
probabilities or for long source sequences, subintervals may
however get too small to be accurately handled by a finite-
precision computer. This problem is solved by integer AC.

2.2 Binary Integer Arithmetic Coding

Binary integer AC (BIAC) was introduced by Pasco and Ris-
sanen in 1976 [11]. It works like the scheme presented
above, but the initial interval is replaced by the integer in-
terval [0,T), whereT = 2P and P is the binary precision
(register size) of the encoding device. All interval bound-
aries are rounded to integers. During the encoding process,
the bounds of the current interval[l ,h) are renormalized as
follows:

• If h≤ T/2, l andh are doubled.
• If T/2≤ l , l andh are doubled after subtractingT/2.
• If T/4≤ l andh≤ 3T/4, l andh are doubled after sub-

tractingT/4.

If the current interval before renormalization overlaps the
midpoint of [0,T), no bit is output. The number of consec-
utive times this occurs is stored in a variable calledf (for
follow). If the current interval before renormalization lies en-
tirely in the upper or lower half of[0,T), the encoder emits
the leading bit ofl (0 or 1) andf opposite bits (1 or 0). This
is calledfollow-onprocedure [15].

2.3 Finite-state integer arithmetic coding

Since the BIAC process can be characterized by[l ,h) and
f (and the source probabilities), the encoder state may be
defined as(l ,h, f). If the value of f is bounded, it is possi-
ble to precompute all the reachable states and the transitions
between them, thus yielding a finite-state encoder (FSE). In
general, f will grow without bounds, but it can be easily
limited to f ≤ fmax, as in [2]. The present work takes the
approach of [1]: wheneverf = fmax and the current source
interval is such thatf could be further incremented, the sym-
bol probabilities are modified in order to force the follow-on
procedure after encoding the current symbol.

A FSE may be represented as a directed graph consist-
ing of vertices (states) and directed edges (transitions).Each
transition is labeled with a vector of input symbols and a vec-
tor of output bits, one of which may be empty under certain
conditions, depending on the chosen representation. In [1],
three types of FSE describing the AC operation were con-
sidered: a symbol-clock FSE (S-FSE) suited for encoding,
where each transition is labeled with exactly one input sym-
bol; a reduced FSE (R-FSE), with variable-length non-empty
input and output labels, leading to a compact trellis better
suited for decoding; and finally a bit-clock FSE (B-FSE)
suited for the evaluation of distance spectra, where each tran-
sition is labeled with exactly one output bit. Details on how
these FSEs are obtained for a given AC scheme can be found
in [1].

3. JOINT SOURCE-CHANNEL ARITHMETIC
CODING

In a joint source-channel coding scheme, redundancy is in-
troduced in order to allow error detection and/or correction
at the decoder side. In JSC-AC, this redundancy is usually
introduced by means of a FS [3], which is never emitted by
the source, although a positive probabilityPε is assigned to
it during the coding process. On the receiver side, decod-
ing a FS indicates that an error has occurred during transmis-
sion. Introducing a FS with probabilityPε adds a redundancy
of −log2(1−Pε) bits/symbol to the coded bitstream. More
generally, for aK-ary source the probabilityPε may be split
among up toK +1 FSs; in the following, only binary (K = 2)
source alphabets will be considered. This FS technique may
be applied to BIAC jointly with a bound onf , resulting in a
FSE implementing JSC-BIAC.

Given an initial states0, the operation of the FSE on
all possible (semi-)infinite input sequences can be displayed
with a trellis. The concatenation of the output labels on
all paths trough the trellis forms a finite-state code (FSC),
whose performance is primarily determined by itsfree dis-
tance dfree (a finer characterization is possible through the
distance spectrum). If we assume that all states communi-
cate with each other (i.e., any state can be reached from any
other in a finite number of transitions)1, the free distance will
be the same for every possible initial state.

More formally, letS the set of states of the FSE,T the
set of transitions,σ(t) the originating state of a transition
t ∈ T andτ(t) its target state,I(t) the input label of a transi-
tion andO(t) its output label. A patht = (t1,t2, · · · ,tk) ∈ T k

on the trellis is a concatenation of transitions that satisfy
σ(ti+1) = τ(ti) for 1 ≤ i < k (this corresponds to awalk of
lengthk on the encoder graph); we definePk

s0
as the set of

all paths withk transitions starting ins0. By extension, we
defineσ(t) = σ(t1) andτ(t) = τ(tk), as well asI(t) andO(t),
which are the concatenations of the input, respectively out-
put, labels oft.

Definition 1 The FSCCs0 is the set of all infinite-length out-
put sequences generated by the FSE starting in s0, Cs0 =
{O(t) : t ∈ P∞

s0
}

Remark:The output length|O(t)| = ∞ for all t ∈ P∞
s0

, since
any (JSC-)BIAC is uniquely decodable by construction and
thus the FSE graph can have no closed loop with empty out-
put labels.

Definition 2 The free distance of the FSCCs0 is the mini-
mum Hamming distance between any two distinct code se-
quences, dfree = minc1 6=c2∈Cs0

dH(c1,c2).

The key insight leading to more efficient code search al-
gorithms is that the free distance on a FSE subgraph upper
bounds the free distance of the entire FSE. We define acom-
plete automaton(CA) as an S-FSE automaton in which all
states have two outgoing transitions (with input labels 0 and
1), that is, an S-FSE which can encode any binary source
sequence. Anincomplete automaton(IA) is a S-FSE au-
tomaton with terminal states (without outgoing transitions),

1We observed that this holds for almost all JSC-BIACs we examined,
the others having a transient component that can be eliminated. See also the
remarks in [10, Sec. III.D]).

1162

s0

s0

s1

s1

s2

s2

0/000

0/000

1/0

1/0

0/011

0/011

1/-

1/-

1/011

0/01100

(a) Incomplete Automaton

(b) Complete Automaton

Figure 1: Example of an incomplete automaton (a) and a
complete automaton (b) derived from the automaton (a)

in which encoding stops, see Figure 1. We call theseunex-
plored states, since their successor states have not yet been
determined.

Definition 3 The free distance associated to an incomplete
S-FSE automaton is the minimum Hamming distance be-
tween any two distinct output sequences, which are either
infinite, or of equal length and associated to paths ending in
the same state (all paths begin in s0). If there is no pair of
paths ending in the same state, the free distance is infinite.

This definition takes care of unexplored states leading to
finite-length prefixes of code sequences, which may only be
compared under the conditions mentioned. An IA or CAA1
is derivedfrom an IAA0 if it has been obtained by exploring
(adding the successor states) of one or more terminal states
of A0 (hence the graph ofA0 is a subgraph of that ofA1).

Lemma 1 Let A0 an IA with d(0)
free and A1 an IA or CA derived

from A0 with d(1)
free. Then d(0)

free≥ d(1)
free.

Proof: The S-FSEs ofA0 and A1 satisfy SA0 ⊂ SA1 and
TA0 ⊂ TA1. Hence it is obvious thatCA0 ⊂ CA1, where the
code may also contain finite-length (prefix) sequences. Since

the code sequences leading tod(0)
free are contained inCA1, by

definition we haved(0)
free≥ d(1)

free.

4. A TREE OF JSC-BIAC AUTOMATA

In this section, we will first show how all possible automata
for giveninitial parameters(T, fmax,P0,Pε) can be generated
in the JSC-BIAC case, then introduce how they can be or-
dered in atree of automata.

Assume thatA = {a0,a1} is the source alphabet.P0 and
P1 are the probabilities of occurrence ofa0 anda1, respec-
tively. (l ,h, f) is the current state of the encoder,w= h− l the
width of the current interval.[l0,h0) is the interval assigned
to symbola0 andw0 = h0− l0 its width, while[l1,h1) is the
interval assigned to symbola1. andw1 = h1− l1 its width.
When JSC-BIAC with a FS is performed, a positive proba-
bility Pε is assigned to the FS although it is never emitted by
the source. Letwε be the width of the interval assigned to FS.
Given the initial parametersPε andP0, the interval widths are

l l0 h0 l1 h1 h

ε0 a0 ε1 a1 ε2

Figure 2: Partitioning the coding interval in the more general
JSC-BIAC case

computed as follows:

wε = round(Pε ×w) , (1)
w0 = round(P0× (h− l −wε)) , (2)
w1 = h− l −w0−wε , (3)

where round(·) rounds toward the nearest integer. In the
more general case, a set of three FSs{ε0,ε1,ε2} may be de-
fined, with corresponding probabilities{Pε0,Pε1,Pε2}.

Figure 2 shows how the current interval is subdivided
during the coding process in the more general JSC-BIAC
case. To our best knowledge, no analytical method is known
that would allow to find the optimal proportions of the prob-
abilities assigned to{ε0,ε1,ε2}. In [1], an exhaustive search
algorithm over a grid of values(Pε0,Pε1) was proposed, with
Pε2 = Pε −Pε0 −Pε1 for a given constantPε that determines
the design code rate. The main characteristic of this approach
is that it isstatic with respect to the encoder evolution,i.e.,
the proportions and the order of the subintervals assigned to
source symbols and FSs are the same for every state.

In the present work, we allow theconfigurationof subin-
tervals to bedynamic, that is, only the sizesw0 andw1 of
the subintervals fora0 anda1 will be computed as in (2) and
(3), but the placement of these subintervals in the interval
[l ,h) may change from state to state. Thus the probabilities
{Pε0,Pε1,Pε2} may change with the state, only their sumPε
remains constant. Like in the static case, no analytic toolsare
available to determine the configuration yielding the largest
dfree. Potentially, all encoders for a given set of initial param-
eters need to be tested in order to maximizedfree.

The set of all encoders can be obtained by recursively
exploring the successors of all states, starting from the initial
state(l = 0,h= T, f = 0), for every admissible configuration
of the subintervals of a state. To this end, we let bothl0 and
l1 vary from l to h−1 in steps of one, then check if one of
the following two admissibility conditions is satisfied:

l ≤ l0 < h0 = l0 +w0 ≤ l1 < h1 = l1 +w1 ≤ h, (4)
l ≤ l1 < h1 = l1 +w1 ≤ l0 < h0 = l0 +w0 ≤ h. (5)

If that is the case, two new states (obtained from[l0,ho) and
[l1,h1) after applicable renormalizations) are created and ex-
plored in turn.

Clearly, the set of automata thus constructed becomes
quickly unmanageably large and it is therefore necessary to
structure it in a way that allows to exclude (using Lemma 1)
large parts from the search space for the largestdfree. The
set of partially explored states forms an IA, in which unex-
plored states are terminal states. This suggests using a tree
structure, where internal nodes correspond to IA and leaves
to CA, and each edge corresponds to the exploration of a ter-
minal state. The children of a given node correspond to all
admissible configurations of the state that is being explored.

Figure 3 shows how all the possible automata for given
initial parameters form a tree. At the root is the initial IA

1163

IA0

Initial unexplored state

[l1
0 ,h1

0, l
1
1 ,h1

1] [lM
0 ,hM

0 , lM
1 ,hM

1]

IA1 IA2 IA3 IAM

IA1,1 IA1,ν IA2,1 IA2,γ

CA0

: incomplete automaton (IA)

: unexplored state of an IA : subdivisions of an unexplored state

: complete automaton (CA)

Figure 3: All automata for given initial parameters on a tree

consisting of the sole initial state(0,T,0), which is also a
terminal (as yet unexplored) state. The first layer of internal
nodes corresponds toM distinct subinterval configurations
for the initial state.

Figure 4 shows an example of a tree of automata for the
initial parametersT = 8, fmax = 1, P0 = 1

4 andPε = 1
2. The

small circles labeledso,s1, . . . represent the states of the IA
or CA; they are shaded for unexplored (terminal) states. The
initial incomplete automaton IA0 consists of the initial state
s0 = (0,8,0) which is a terminal state. On exploration of the
initial state, the first configuration assigns the interval[0,1)
to symbola0 and the interval[1,4) to symbola1. This leads
to the second incomplete automaton IA1. The last config-
uration assigns the intervals[7,8) and [4,7) to symbolsa0
anda1, respectively, yielding the incomplete automaton IAM.
The first complete automaton CA0 is shown shaded on the
bottom left side of the tree.

IA0

IA1
IAM

IA1,1

IA1,ν

CA0

Initial Unexplored State

s0

s0

s0

s0s0

s0

s0

s0

s1

s1

s1

s1s1

s1

s1

s2

s2

s2s2

s2

s3

(0,8,0)

(0,8,0)

(0,8,0)

(0,8,0)

(0,8,0)

(0,8,0)

(2,8,0)

(2,8,0)

(2,8,0)

(2,8,0)

(0,8,2)

(0,8,2)

(0,6,0)

(0,6,0)

(0,8,1)

0/000

0/000
0/000

0/000

0/000 0/111

1/0

1/01/0

1/0

1/0 1/1

0/011
0/011

0/011 0/011

1/-1/-

1/- 1/1

1/011 1/100

0/01100 0/10011

[0,1,1,4] [7,8,4,7]

[2,3,3,5] [7,8,5,7]

[0,1,1,4] [7,8,4,7]

Figure 4: Part of the tree of automata for the initial parame-
tersT = 8, fmax = 1, P0 = 1

4, Pε = 1
2.

5. FINITE-STATE CODE SEARCH ALGORITHM

This section outlines how Lemma 1 can be used in a branch
and bound algorithm in order to substantially reduce the time
needed to find the best FSC (with largestdfree) for given ini-
tial parameters. Let IAc be the current IA to be completed.
IAc is initialized to IA0, which consists of the initial state
(0,T,0) as an unexplored state. Notice thatdfree(IA0) is in-
finite by definition. The idea of the branch and bound al-
gorithm is to set an initial integer valuedt as a threshold
value fordfree. If dfree(IAc) > dt, then an unexplored state
of IAc will be explored. According to the initial parame-
ters, a certain numberµ of new IAs or CAs will be created
as children of IAc. These automata are indexed IAc,i for
i = {1, . . . ,µ}. For instance, in Figure 4, forc = 0, µ = M,
and forc = 1, µ = ν. For i = {1, · · · ,µ}, if IA c,i is an IA
and dfree(IAc,i) > dt , then IAc,i is stored in a buffer to be
inspected later. Else, if IAc,i is a CA anddfree(IAc,i) > dt,
then the value ofdt is updated todt = dfree(IAc,i) and IAc,i
becomes the new best FSE. Otherwise, IAc,i is discarded, as
well as all IAs and CAs derived from it, if there are any. Ac-
cording to Lemma 1, all the IAs and CAs derived from IAc,i
will have adfree smaller or equal todfree(IAc,i), hence they
cannot have largerdfree than the best FSE found so far.

Then IAc is discarded and the next IA in the buffer is
chosen to be the current IA to be explored. And so on until
the buffer becomes empty.

Three ways of exploring the tree are proposed, which de-
pend on the way the newly generated IAs are stored in the
buffer. The first method puts the generated IAs at the front
of the buffer (Depth-First Exploration). The second stores
the generated IAs at the back of the buffer (Breadth-First Ex-
ploration). The last method sorts the buffer according to the
dfree of IAs and chooses the IA with the largestdfree to be
the current IA to be explored (Sort Method). The compar-
ison between these three methods will be made in the next
section.

6. FIRST RESULTS

This section first compares the computational efficiency of
the branch and bound algorithm to an exhaustive search for
the best FSE. Then we compare the three methods for explor-

1164

ing the tree presented in Section 5.
The first simulation is made with initial parametersT =

8, fmax = 1, P0 = 0.1, Pε = 0.1, for which the time needed
to exhaustively generate all possible automata and compute
their free distances is 1 h 45 min. Using the branch and bound
algorithm with Breadth-First Exploration, the time neededto
find the largestdfree is 25 sec., a time saving of 99.6%.

The second set of simulations compares the three explo-
ration methods for the initial parametersT = 16, fmax = 1,
P0 = 0.1, Pε = 0.26, for which an exhaustive exploration
is unreasonably time-consuming. Table 1 shows the times
needed for Depth-First Exploration, Breadth-First Explo-
ration and the Sort Method to find the best automaton (since
dfree is the only optimization criterion, different automata
may be found).

∥

∥S R−FSE
∥

∥ and
∥

∥T R−FSE
∥

∥ denote the num-
ber of states and the number of transitions of the correspond-
ing R-FSE, respectively. The coding rate is expressed in
bits/symbol. It can be seen that the Sort Method is the best
method to find the largestdfree. This is mainly due to the fact
that this method explores first the IA with the highest poten-
tial to have a largedfree, so thatdt may be rapidly increased.
Having a large value ofdt at the beginning of the algorithm
facilitates pruning large parts of the tree being explored.

It would be useful to find a relation between the initial
parameters and the computation time for finding the best au-
tomaton. However, this is very difficult, since the number of
automata generated depends on these parameters in intricate
ways. One may compute an upper bound on the number of
states per automaton and thus on the number of distinct au-
tomata, but this upper bound will likely be too loose to be
useful. An additional difficulty resides in estimating the time
consumption of the algorithm for computingdfree of an au-
tomaton. The best such algorithm has linear complexity in
the number bits of the output labels of the FSE. Again, this is
extremely difficult to estimate from the parameters without
building the actual FSE.

Methods Depth-First Breadth-First Sort Method
∥

∥S R−FSE
∥

∥ 8 2 3
∥

∥T R−FSE
∥

∥ 28 9 12
df ree 3 3 3
Rate 0.93 0.92 0.92
Time 125h 21mn 8h 42mn 3h 27mn

Table 1: Comparison between the three methods to explore the tree for
T = 16, P0 = 0.1, Pε = 0.26

7. CONCLUSION AND PERSPECTIVES

The presented results show that the branch and bound al-
gorithm (using the Sort Method) is a fast way to find the
JSC-AC with largestdfree for given initial parameters. But
compared to an equivalent tandem scheme (AC followed by
a Convolutional Code (CC)),dfree of the obtained JSC-AC
remains suboptimal. For instance, for the example of Ta-
ble 1, the equivalent tandem scheme uses an AC withT = 16,
P0 = 0.1,Pε = 0, followed by a rate 1/2 CC. The free distance
of the tandem scheme depends on the constraint length of the
CC. For constraint length 2 (3), the bestdfree of a rate 1/2 CC
is 4 (5) [13, Chapter 8]. The weakness of the JSC-AC is
mainly due to its small effective memory (which is related to
the set of states), that is more geared towards good compres-
sion than towards largedfree. Therefore, we are studying the

extension of the FSE states in JSC-BIAC with am-bit mem-
ory, which can be used to improvedfree by separating paths
that would lead to small distances. The memory holds an
integer 0≤ λ ≤ 2m− 1, so that the FSE state can be repre-
sented as(l ,h, f ,λ). The set of FSEs of JSC-AC with mem-
ory mcontains the set of tandem schemes with CC with con-
straint lengthm+1. Therefore one may expect to find at least
FSEs with performance (compression,dfree) equivalent to the
tandem schemes, but hopefully less complex (regarding the
number of states and transitions).

REFERENCES

[1] S. Ben-Jamaa, C. Weidmann, and M. Kieffer. An-
alytical tools for optimizing the error correction per-
formance of arithmetic codes.IEEE Trans. Commun.,
56(9):1458–1468, Sept. 2008.

[2] D. Bi, W. Hoffman, and K. Sayood. State machine
interpretation of arithmetic codes for joint source and
channel coding.Proc. of DCC, Snowbird, Utah, USA.,
pages 143–152, 2006.

[3] C. Boyd, J. Cleary, I. Irvine, I. Rinsma-Melchert, and
I. Witten. Integrating error detection into arithmetic
coding. IEEE Trans. on Comm., 45(1):1–3, 1997.

[4] V. Buttigieg. Variable-Length Error Correcting Codes.
Phd dissertation, University of Manchester, Univ.
Manchester, Manchester, U.K., 1995.

[5] C. Demiroglu, W. Hoffman, and K. Sayood. Joint
source channel coding using arithmetic codes and trel-
lis coded modulation.Proc. of DCC, Snowbird, Utah,
USA., pages 302–311, 2001.

[6] M. Grangetto, P. Cosman, and G. Olmo. Joint
source/channel coding andMAP decoding of arithmetic
codes.IEEE Trans. on Comm., 53(6):1007–1016,2005.

[7] T. Guionnet and C. Guillemot. Soft decoding and syn-
chronization of arithmetic codes: Application to image
transmission over noisy channels.IEEE Trans. on Im-
age Processing, 12(12):1599–1609, 2003.

[8] P. G. Howard and J. S. Vitter. Practical implementa-
tions of arithmetic coding.Image and Text Compres-
sion, 13(7):85–112, 1992.

[9] F. Jelinek. Fast sequential decoding algorithm using a
stack.IBM J. Res. Develop., 13:675–685, 1969.

[10] D. L. Neuhoff and R. K. Gilbert. Causal source codes.
IEEE Trans. Inform. Theory, IT-28(5):701–713, Sept.
1982.

[11] R. C. Pasco.Source Coding Algorithms for Fast Data
Compression. Ph.D. Thesis Dept. of EE, Stanford Uni-
versity, CA, 1976.

[12] B. D. Pettijohn, W. Hoffman, and K. Sayood. Joint
source/channel coding using arithmetic codes.IEEE
Trans. on Comm., 49(5):826–836, 2001.

[13] J. G. Proakis.Digital Communications. Maidenhead,
Berkshire, UK, 2001.

[14] J. Sayir. Arithmetic coding for noisy channels.Proc.
IEEE Information Theory Workshop, pages 69–71,
1999.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression.Communications of the
ACM, 30(6):520–540, 1987.

1165

