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ABSTRACT

Applying a binary mask to a pure noise signal can result in speech
that is highly intelligible, despite the absence of any of the target
speech signal. Therefore, to estimate the intelligibility benefit of
highly nonlinear speech enhancement techniques, we contend that
SNR is not useful; instead we propose a measure based on the simi-
larity between the time-varying spectral envelopes of target speech
and system output, as measured by correlation. As with previous
correlation-based intelligibility measures, our system can broadly
match subjective intelligibility for a range of enhanced signals. Our
system, however, is notably simpler and we explain the practical
motivation behind each stage. This measure, freely available as a
small Matlab implementation, can provide a more meaningful eval-
uation measure for nonlinear speech enhancement systems, as well
as providing a transparent objective function for the optimization of
such systems.

1. INTRODUCTION

Speech enhancement concerns taking a target speech signal that has
been corrupted, by the addition of interfering sources and trans-
mission through an acoustic channel, and mitigating the impact of
these corruptions. Enhancement can have two, distinct goals: im-
proving quality, which relates to how “clear” or “natural” the en-
hanced speech sounds, and improving intelligibility, which focuses
on the more practical problem of whether a listener can understand
the message in the original target speech. Although we might expect
that quality and intelligibility are strongly correlated, there are am-
ple situations in which speech of relatively low quality can nonethe-
less achieve high intelligibility [17, 22], and where improving qual-
ity does not necessarily improve intelligibility [10].

In this paper we ignore quality (and related effects such as lis-
tener fatigue) and concentrate on intelligibility. We focus specif-
ically on time-frequency masking algorithms, which have been
widely used in automatic speech recognition [6], computational
auditory scene analysis [21], noise reduction [15, 2], and source
separation [23, 16]. In this type of algorithm, a time-varying and
frequency-dependent gain is applied across a number of frequency
channels. In some variants, the gains are quantized to zero or one,
giving a binary masking algorithm where the pattern of gains is re-
ferred to as the binary mask. One type of binary mask – the ideal
binary mask (IBM) – has shown to be able to increase speech intel-
ligibility significantly [3, 2, 14]. This mask is ‘ideal’ in that it relies
on perfect knowledge of both clean target and interference prior to
mixing, and is constructed to pass only those time-frequency cells
in which the target energy exceeds the interference. An intrigu-
ing property of the IBM is that applying such a mask to a sound
consisting only of noise results in high intelligibility for the speech
upon which the mask was based [22, 13], even though the perceived
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quality of the reconstructed speech is very poor: depending on the
resolution of the time-frequency distribution, it will have no pitch or
other fine structure, and fine nuances of energy modulation are lost.
Similar characteristics are found to those of noise-excited channel-
vocoded speech [17]. An attempt to measure the signal to noise ratio
(SNR) in such signals would find no trace of the original target in
the final output, so SNR-based measures will not be a useful basis
for accounting for this intelligibility. What is preserved, however,
is the broad envelope in time and frequency. This suggests that an
intelligibility estimate could be developed based on the similarity of
this envelope between target speech and system output.

In this paper, we use correlation as a measure of similarity
between time-frequency envelopes of target and enhanced speech.
Given this basic principle, we make a number of design choices and
system enhancements with a view to matching the general prop-
erties of observed subjective intelligibility of nonlinearly-enhanced
signals. At each stage, we strive for the simplest and most transpar-
ent processing that can effectively match the subjective results. Our
outcome is a simple correlation-based measure that can predict in-
telligibility with approximately the same fidelity as more complex
models based on far more detailed models of auditory processing
[4]. We feel this simplicity and transparency is a considerable ad-
vantage as a guide for developing enhancement systems.

2. NORMALIZED SUBBAND ENVELOPE
CORRELATION

To estimate intelligibility, the correlation between the time-
frequency representations of the target (reference) and the output
of the time-frequency masking algorithm is calculated:

∑
τ

∑
k

T(τ,k) ·Y(τ,k), (1)

where τ the time index, k the frequency index, T(τ,k) is the energy
envelope of the target signal, and Y(τ,k) is the energy envelope of
the output. This correlation will not have an upper bound, and in
low energy regions of T(τ,k) the inclusion of potential unwanted
energy in Y(τ,k) will have a very small impact on the correlation.
To improve this behavior, we normalize with the Frobenius norm
of T(τ,k) and Y(τ,k) and refer to this measure as the normalized
subband envelope correlation (nSec):

nSec = ∑
τ

∑
k

T(τ,k) ·Y(τ,k)

||T(τ,k)||||Y(τ,k)||
(2)

The nSec is bounded between zero and one. The lower bound is
reached if no energy is found in the same regions of T(τ,k) and
Y(τ,k). The upper bound is reached if the two signals are identical
or only differ by a scale factor. Geometrically interpreted, nSec is
the angle between T(τ,k) and Y(τ,k) if calculated using a single
time or frequency index.

3. EXPERIMENTAL DATA

To verify that nSec is a useful measure of speech intelligibility, we
use the results from Kjems et al. [13], where speech intelligibility of
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Figure 1: Estimated intelligibility by nSec compared to subjective listening tests in four different noise conditions and three SNR levels.
nSec is shown with solid lines/filled symbols, and subjective listening tests are shown with dotted lines/hollow symbols. The results are
plotted as a function of the RC value which determines the sparseness of the binary mask - higher RC values imply fewer ones in the binary
mask. The all-one mask (aom) is the unprocessed condition and does does not correspond to a specific RC value.

IBM-masked noisy speech is measured using normal hearing sub-
jects, three SNR levels, four noise types, and different local SNR
criterions (LC). LC is the threshold used to construct the IBM; a
larger LC results in an IBM with proportionally fewer nonzero val-
ues:

IBM(τ,k) =

{

1, if
T(τ,k)
N(τ,k)

> LC

0, otherwise
, (3)

where N(τ,k) is the energy envelope of the noise signal.

Two of the three SNR levels used in the experiments by Kjems
et al. were set to 20% and 50% intelligibility of the speech and
noise mixtures with no binary masking. The third SNR level was
fixed at -60 dB to examine the effect of applying the IBM to pure
noise. Four different noise conditions were used: speech shaped
noise (SSN), cafeteria noise, car interior noise with mainly low-
frequency energy, and noise from a bottling hall with mainly high-
frequency energy. The LC values resulted in IBMs consisting of
between 1.5% and 80% of nonzero cells, and an all-one mask (aom)
was used to measure the intelligibility of the unprocessed mixture
with no binary masking. A 64 channel Gammatone filterbank with
centerfrequencies from 55 Hz to 7742 Hz equally spaced on the
ERB (equivalent rectangular bandwidth) scale was used, and the
output was divided into 20 ms frames with 10 ms overlap. The
results are shown with dotted lines and hollow symbols in Figure 1
(and are repeated in subsequent figures). To align the results, they
are plotted as a function of the RC value defined as RC = LC−SNR
in units of dB. Using this x-coordinate, the binary masks will be
identical at the same RC value and independent of the SNR levels.

To compare the nSec with the results by Kjems et al., we use
10 sentences from their experiment which have been mixed with
noise and processed with the IBM. Silence between the sentences
are removed from the waveforms, and T(τ,k) and Y(τ,k) are cal-
culated using a 16 channel Gammatone filterbank with center fre-
quencies from 80 Hz to 8000 Hz equally spaced on the ERB scale.
The energy from each frequency channel in the filterbank is divided
into segments of 80 ms with 40 ms overlap. All processing is done
at 20 kHz. The calculated time-frequency representations T(τ,k)
and Y(τ,k) are inserted in Equation 2, and the nSec scaled by a
factor of 100 is shown with solid lines and filled symbols in Fig-
ure 1.

4. MODIFICATIONS TO THE nSec

Looking at Figure 1, it can be seen that even though the nSec is
not aligned with the subjective listening tests, the overall shape and
behavior is encouraging: Increasing SNR gives a better or simi-
lar nSec, and a distinct peak in correlation as a function of RC
value is seen at all curves expect for the -60 dB SNR cafeteria noise
(Fig.1.B). If this curve had been continued to higher RC values, it
would have made a peak at some point, because higher RC val-
ues makes the binary mask more sparse with fewer ones, and, ul-
timately, Y(τ,k) will be zero. At the other extreme, at low RC
values, the nSec levels off which is most evident from Figure 1.A
and 1.D. The reason is that at some RC value, the time-frequency
units added to Y(τ,k) by lowering the RC value will not change
the numerator of Equation 2 because no energy is found at these
time-frequency units in T(τ,k). At the same time, the denominator
will continue to increase as the RC value decreases, due only to the
added energy in ||Y(τ,k)||; ||T(τ,k)|| is a fixed value independent
of SNR and RC value.

Comparing the three SNR levels, it can be seen that the peak of
the nSec shifts towards lower RC values for higher SNRs – a rea-
sonable property, if we recognize that the IBM for a certain target
and noise sound is a function of the RC value only, and that increas-
ing SNR level implies that the RC value can be lowered without
increasing the number of noise-dominated time-frequency units in
the binary masked mixture. At increasing SNR levels, the RC value
is lowered by increasing the LC value with less than the increase in
SNR level.

The nSec for the speech shaped noise (Fig.1.D) with an all-
one mask is considerable higher at all three SNR levels compared
to other noise types. The nSec of the -60 dB SNR mixture with an
all-one mask is approximately 0.4, despite the fact that practically
no target sound is found in the mixture. Two random signals always
will give a positive correlation as long as they contain energy in
some of the same time-frequency regions, and the speech shaped
noise do, since it was made by superimposing 30 sequences of the
speech from the corpus with random silence durations and starting
times [20]

The last observation we make of the unmodified nSec is that
the location of the peaks are at higher RC values compared to the
subjective listening tests. This property is caused by the fact that
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Figure 2: The modified nSec with frequency normalization, compression, and DC removal compared to the subjective listening tests.

nSec is decreased when Y(τ,k) contains energy in the low energy
regions of T(τ,k); to get a high nSec, the binary mask should only
present the high energy regions of T(τ,k).

To improve the alignment between the subjective listening tests
and the nSec, the following modifications are introduced:

4.1 Frequency Normalization

In speech signals, high frequencies have less energy than low fre-
quencies, but this difference does not reflect the frequencies’ im-
portance to intelligibility. Using the nSec without any frequency
normalization will make the low frequencies dominate the result.
Furthermore, the auditory system can to some degree adapt to the
listening situation and a minor fixed coloration of the speech spec-
trum is not expected to affect intelligibility. To compensate for
the difference in energy and any fixed colorations, we normalize
the frequency channels to equal energy. This normalization has
the drawback that at increasing RC values, when the binary mask
becomes more sparse, some frequency channels will contain few
non-zero elements, which would become very large because of the
normalization. To avoid these high level time-frequency units, am-
plitude compression should follow the normalization (although in
frequency channels with no non-zero elements, no normalization
should be applied).

4.2 Compression

To decrease the relative importance of high level time-frequency
units mainly produced by the frequency normalization, compression
can be applied to T(τ,k) and Y(τ,k). Compression will move the
peaks of the nSec curves towards lower RC values, but also reduces
the difference between the three SNR levels. To align the nSec

peaks with the subjective listening tests, T(τ,k) and Y(τ,k) are
raised to the power of 0.15.

4.3 DC removal

As previously stated, the nSec will be positive even if two ran-
dom signals are used because their energy is always positive. To
reduce this offset in the time-frequency representations, each fre-
quency channel should be high-pass filtered. This high-pass filter-
ing will push the values down to zero in the case where we have
flat, but nonzero, energy and emphasize changes in energy instead
of absolute levels. The used high-pass filter has a single zero at 1
and a single pole at 0.95.

5. RESULT

As seen in Figure 2, the modifications improve the correspondence
between the subjective listening test and the nSec. The differences
are most pronounced at low and high RC values where the slope
of the modified nSec is too shallow, and in the unprocessed con-
dition (aom) the results are too low and too closely placed in the
bottling hall and cafeteria noise condition. Ideally, the three SNR
levels should give a intelligibility of 50%, 20% and 0%, but the
compression, which was introduced to shift the peaks of the nSec

towards lower RC values, also compresses the results at low RC val-
ues, making them more equal. At high RC values the shallow slope
of the modified nSec is also a outcome from using compression.
Compression increases the impact of low-amplitude time-frequency
units and a more sparse mask is needed to reduce the nSec.

To allow some nonlinearity in the relationship between the
nSec and speech intelligibility, a logistic function can be applied:

p(c) =
1

1+e(o−c)/s
, (4)

where o is the offset, and s is the slope of the logistic function [4].
To find the offset and the slope we use the unconstrained nonlin-
ear minimization function fminsarch in Matlab to minimize the
squared error between nSec and the results from the subjective lis-
tening test using speech shaped noise. The found offset and slope of
o = 0.62 and s = 0.09 are used to transform the nSec results from
Figure 2 into the results seen in Figure 3. The overall performance
is improved: a better correspondence between the subjective listen-
ing tests and the nSec is seen, but this is achieved at the expense of
the match in the situation with no binary masking (aom).

6. DISCUSSION

Our proposed method uses a different approach compared to intel-
ligibility measures as AI, SII, and STI [1, 8, 19] by using the corre-
lation as the fundamental function for measuring intelligibility. In
the AI, SII, and STI, the intelligibility is measured as a sum and
weighting of SNR in a number of frequency channel. A more simi-
lar approach to ours is used in [11] for measuring speech quality and
in [4] to measure intelligibility. In both works, the cross-correlation
coefficient is used to measure the similarity between internal repre-
sentations of the target and test signal. The internal representations
are the expected patterns of neural activity from the auditory periph-
ery calculated using the model by Dau et. al. [7]. In [4] the modu-
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Figure 3: The modified nSec transformed with a logistic function (Eq. 4) and compared to the subjective listening tests.

lation filterbank is replaced by a modulation low-pass filter, and the
cross-correlation coefficient is calculated using short time frames
of 20 ms with 50% overlap. The cross-correlation coefficients are
grouped into low, medium, and high level correlation frames as in
[12], but only the average of the high level correlation frames is
used in the model output which is mapped to intelligibility using a
logistic function equal to Equation 4.

The model by Christiansen et al. shows significant improve-
ments compared to the speech-based coherence SII method [12] and
the speech-based STI method [9], when using the same subjective
results as in this study. The predicted intelligibility, using the same
10 sentences as for the nSec, is shown in Figure 4, and a substan-
tial reason for the promising results is, as explained by the authors,
the use of 20 ms frames, which is an interesting difference from the
nSec. The main deviation between the model and the subjective
results is found using the bottling hall noise (Fig.4.A), which is ex-
plained by Christiansen et al. to be caused by a too high influence
from the low frequencies on the final result.

It is of interest to compare our approach and results with the
model by Christiansen et al., but concluding which one is better is
not appropriate from the results shown in Figure 3 and 4. Mainly
because the logistic function used in Figure 3 was fitted directly
to the subjective results using the speech shaped noise condition,
whereas the logistic function used by Christiansen et al. was fitted
to the psychometric curves from subjective listening tests of unpro-
cessed mixtures at different SNR levels. The consequence of this
difference is evident using the all-one mask, where the results from
the nSec are too close and too low, which is not the case for the
model by Christiansen et al. An interesting difference between the
two methods is the bottling hall noise, where the nSec, although
very similar at the three SNR levels, has a better alignment of the
peaks, which is caused by the frequency normalization as explained
in section 4.1.

We might question whether the proposed modifications of the
nSec are the correct ones to use, and if they appear in the correct
order. The modifications could be compared to processing steps
in the auditory system, but in this case we have selected and or-
dered them purely to adjust the nSec to the subjective results and
not to simulate specific aspects of the auditory system. Similarly,
the use of the correlation as underlying basis was supported by the
preliminary results seen in Figure 1, and not by assumptions about
correlation being used at some level in human perception. Intro-
ducing additional steps – simple or complicated – could potentially
improve the precision of the method, but would also introduce ad-

ditional processing and parameters that would make the system less
transparent for the user.

Another approach to measure intelligibility is the use of auto-
matic speech recognition systems, where the number of correctly
identified words or phonemes are used as a measure of speech in-
telligibility. This method has shown promising results [18, 5], but it
is vulnerable to peculiarities of speech recognition systems that can
make them differ widely from the perception of listeners. Trivial
mismatch between the processed signals and the training data used
by the recognizer can result in misleading low results.

A straightforward approach to evaluate time-frequency mask-
ing algorithms is to count the number of errors in the binary mask.
Although we believe that the binary mask itself can explain a large
amount of the intelligibility, this approach has various drawbacks
e.g. the type of errors can have widely differing impact [15], the
location of errors is important, and it is not certain which type of bi-
nary mask should be used as reference. Furthermore, this approach
will not show the difference between applying the same binary mask
to mixtures at different SNR levels.

The nSec has shown a fine agreement with subjective listening
test of the IBM applied to different mixtures and SNR levels, but
this is only one of many methods of time-frequency masking. In
the present work, we have not examined how the nSec will behave
using e.g. non-binary masks – the general case of applying a time-
varying gain in a number of frequency bands – but we are hopeful
that it will continue to agree with human performance. We note that
the nSec can fail if the target and system output become misaligned
e.g. if the processed mixture is delayed compared to the target,
however this could be accommodated by searching over a timing
skew parameter (full cross-correlation).

7. CONCLUSION

By focusing on the correlation between the broad spectral enve-
lope of target and system output, while completely ignoring the
fine structure, we arrive at an intelligibility measure able to match a
range of subjective results that would be very difficult to explain by
SNR measures. We therefore suggest that future work on nonlinear
speech enhancement, if it is concerned with intelligibility, should
use measures based on correlation in place of SNR. To this end,
we have released a simple drop-in implementation of our measure,

written in Matlab1.

1See http://labrosa.ee.columbia.edu/projects/intelligibility/
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Figure 4: The predicted intelligibility using the model by Christiansen et al. [4] compared to the subjective listening test.

Although there are other, existing intelligibility measures that
are able to match subjective data as closely as ours, our measure is
constructed to be as simple as possible, with a consequent benefits
in terms of transparency and diagnosis: when a system performs
poorly under this measure, it is relatively easy to look at the pro-
cessed envelopes going into the final correlation to see in which
regions they are most different, thereby suggesting where to look
for improvements. We hope that measures of this kind can help to
focus and promote progress in speech intelligibility enhancement
systems.
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