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ABSTRACT
In this work, we propose an efficient image and video
colorization algorithm. To achieve natural colorization,
we first define initial color values and compute their re-
liabilities. For image colorization, initial colors are as-
signed by the user interaction. For video colorization,
initial colors are transferred from the previous frame and
their reliabilities are computed based on the motion in-
formation. Then, we formulate an energy function and
minimize the function to refine the initial colors. Simu-
lation results show that the proposed algorithm provides
more natural colorization results on various images and
videos than the conventional algorithms.

1. INTRODUCTION

Colorization is the process of adding colors to
monochrome images or movies. Since the human vi-
sual system can perceive color information more ef-
ficiently than monochrome information, the value of
monochrome images, films and TV programs can be
increased through the colorization process. However,
manual colorization consumes a lot of time and labor,
especially in the case of a video sequence, consisting of
a large number of still images. Therefore, it is essen-
tial to develop an efficient automatic or semi-automatic
colorization algorithm.

Welsh et al. [1] proposed a colorization algorithm,
which transfers colors from a source image to a gray tar-
get image by matching pixels based on luminance values
and standard deviations. Semary et al. [2] improved the
matching performance based on the texture classifica-
tion. These color transferring algorithms provide stable
results, provided that objects in input images have quite
distinct luminance values and textures.

In another class of colorization algorithms, a user as-
signs colors to a selected set of pixels, which are then
propagated to the whole image. Levin et al.’s algo-
rithm [3] propagates colors, so that the difference be-
tween the color of a pixel and the weighted color av-
erage of the neighboring pixels is minimized. In their
algorithm, the weight is inversely proportional to the
luminance difference between a pixel and its neighbor.
For video colorization, their algorithm employs tempo-
ral neighbors using an optical flow estimation scheme.
Yatziv and Sapiro’s algorithm [4] blends source colors to
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paint a target pixel based on the geodesic distances. A
geodesic distance measures the variation of luminance
values along a path between two pixels. For video col-
orization, they simply extended the geodesic distance to
the 3-D case by considering temporally adjacent pixels.
In general, these propagation algorithms [3, 4] provide
better colorization results on still images than the color
transferring algorithms [1, 2]. However, these propaga-
tion algorithms may yield color blurring artifacts, which
can be propagated and amplified in video colorization.

Irony et al. [5] combined the notion of color trans-
ferring with the Levin et al.’s algorithm [3]. First, they
matched pixels between a color image and a gray image
based on the segmentation and learning method. Then,
they used reliably matched pixels as color sources and
colorized the other pixels using the Levin et al.’s algo-
rithm. However, the Irony et al.’s algorithm inherits
the drawback of the Levin et al.’s image colorization,
although it improves the performance by transferring
the color values of reliable pixels.

In this work, we propose a new colorization algo-
rithm for images and videos. With a few brush strokes, a
user first assigns color values to a few pixels of an image
or the first frame of a video as initial color sources. For
video colorization, except for the first frame, initial col-
ors are temporally copied from the previous frame using
the motion information. Then, the proposed algorithm
computes the reliability of each initial color and uses the
reliability information to formulate an energy function.
Then, it minimizes the energy function to obtain the fi-
nal colorization result. Simulation results demonstrate
that the proposed algorithm provides much better and
reliable colorization results than the conventional algo-
rithms [3, 4].

The paper is organized as follows. The proposed
colorization algorithm is described in Section 2. Exper-
imental results are presented in Section 3. Finally, we
discuss our approach and draw conclusions in Section 4.

2. PROPOSED ALGORITHM

Given the luminance information of an image or a video,
the proposed algorithm uses an energy function with
color reliability to reconstruct natural and realistic color
values. We work in the Y CbCr color space, where the Y
is the luminance channel and Cb and Cr are the chromi-
nance channels.
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Figure 1: The colorization of the “Bird” image: (a) the
input gray image with assigned color values and (b) the
colorization result.

2.1 Initial Colors

To colorize an image or the first frame of a video se-
quence, a user first scribbles colors on a selected set of
pixels, as shown in Figure 1 (a) or the top image of Fig-
ure 2 (a). Let C(p) denote the chrominance value Cb or
Cr of pixel p. The initial color value C̃(p) is set to the
assigned color if a user paints p, or 128 otherwise.

In video colorization, video frames are colorized se-
quentially. Except for the first frame, the initial color
of pixel p at the tth frame, C̃t(p), is temporally copied
from Ct−1(p + mt(p)) using the motion vector mt(p).
The middle and bottom images of Figure 2 (a) show an
example of this initialization. The motion vector is esti-
mated to minimize the sum of squared differences (SSD)
as follows.

mt(p) = arg min
m∈S

SSD(m), (1)

SSD(m) =
∑

x∈B(p)

|Yt(x)− Yt−1(x + m)|2, (2)

where Yt(x) denotes the luminance value of pixel x at
the tth frame, S is a motion search range, and B(p) is
a block centered at p. In this work, the motion search
range S is [−7, 7]× [−7, 7] and the block size of B(p) is
5× 5.

(a) (b) (c)

Figure 2: From top to bottom, the colorization of the
27,892nd, the 27,905th frame and the enlarged part of
the 27,905th frame in the “Funny Face” movie: (a) ini-
tial colors, (b) the reliabilities of the initial colors, and
(c) final colorization results.

2.2 Reliabilities of Initial Colors

During the initial colorization, we also define the relia-
bility r(p) of each initial color C̃(p). The reliability is
a number within [0, 1]: 1 for the most reliably colored
pixel and 0 for the least reliably colored pixel. As shown
in the top image of Figure 2 (b), for the first frame, r(p)
is set to 1 if a user paints pixel p, and 0 otherwise.

Except for the first frame, the initial color C̃t(p)
of the tth frame is transferred from Ct−1(p + mt(p)).
Therefore, an incorrect motion vector mt(p) may cause
an incorrect initial color as shown in the middle and
bottom images of Figure 2 (a). Moreover, errors in
the previous frame may propagate to the current frame.
Therefore, we define the reliability of C̃t(p) by

rt(p) = rt−1(p + mt(p)) ·MVRt(p), (3)

where MVRt(p) stands for the motion vector reliability
of mt(p). We adopt the motion vector reliability in [6],
given by

MVRt(p) = (4)

exp
(
−β(min

q∈N
‖mt(p)−mt(q)‖2 + SSD(mt(p))

)
,

where N is the set of neighboring pixels of p. β is a
positive scaling factor, and is fixed to 60 in this work.
Thus, MVR is small if p has the motion vector that is
too different from those of the neighboring pixels. Also,
MVR is small if the motion vector is associated with a
large SSD.

Note that the reliability rt(p) in Eq. (3) becomes
lower, if the corresponding motion vector has a lower
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Figure 3: The colorization of the “Truck” video clip: (a) the 20th frame and its enlarged part and (b) the 21st
frame and its enlarged part.

MVR or if the matching pixel p + mt(p) in the previ-
ous frame has a lower color reliability rt−1(p + mt(p)).
The middle and bottom images of Figure 2 (b) show the
reliability map of the 27, 905th frame, where a brighter
pixel depicts a higher reliability. We see that low reli-
abilities are assigned to pixels near object boundaries,
where initial colors tend to be unreliable.

2.3 Color Refinement

We define an energy function using the initial colors and
their reliabilities. Then, we minimize the energy func-
tion to refine the colors and obtain the final colorization
results. The energy function E consists of two terms,
given by

E =
∑

p∈I
E1(C(p)) + λ

∑

(p,q)∈P
E2(C(p), C(q)), (5)

where I denotes the set of pixels in the image and P is
the set of pairs of neighboring pixels in the image. The
weighting coefficient λ is fixed to 5 in this work.

The first energy term E1(C(p)) measures a weighted
difference between the initial color C̃(p) and the desired
color C(p), which is given by

E1(C(p)) = r(p) · ‖C(p)− C̃(p)‖2, (6)

where r(p) is the reliability of the initial color C̃(p).
Thus, the first energy term indicates that a reliable ini-
tial color should not be changed drastically during the
refinement. The second energy term E2(C(p), C(q))
measures the color smoothness between neighboring pix-
els, given by

E2(C(p), C(q)) = Wp,q · ‖C(p)− C(q)‖2, (7)

where Wp,q is inversely proportional to the luminance
difference

Wp,q = exp
(−|Y (p)− Y (q)|2

2 · σ2

)
(8)

and σ2 is the variance of the luminance values in the
image.

We minimize the energy function E in Eq. (5) us-
ing the graph cut algorithm [7]. Notice that the energy

function is designed so that reliable initial colors are
not changed much during the refinement, whereas un-
reliable initial colors are modified and affected by more
reliable neighboring colors. As illustrated in the middle
and bottom images of Figure 2 (c), the proposed algo-
rithm suppresses the artifacts in the initial colorization
by minimizing the energy function, yielding a natural
color image.

Finally, after the color refinement, we update the
color reliability of each pixel. For the first frame, r(p)
is updated to 1. For the other frames, it is updated via

rt(p) ⇐ αrt(p) + (1− α), (9)

where α is a constant between 0 and 1. In the extreme
case α = 1, we do not trust the color refinement, and
the refined color has the same reliability as the initial
color. In the other extreme case α = 0, all refined colors
are assigned the reliability 1 and it is assumed that the
final colorization result is perfect without any errors. In
this work, we set α = 0.7 and increase the reliability
after the refinement, so that the smallest reliability is at
least 0.3 after the refinement.

Figure 3 shows the colorization results of two con-
secutive frames in the “Truck” video clip. In the 20th
frame, there is a colorization error. But, it is observed
that the error does not propagate to the next 21st frame.
This is because, if a pixel color in the 21st frame is ini-
tialized with an erroneous color in the 20th frame, it is
assigned a low reliability by Eq. (3), and thus the initial
error disappears during the color refinement.

3. EXPERIMENTAL RESULTS

We compare the colorization performance of the pro-
posed algorithm with those of the Levin et al.’s algo-
rithm in [3] and the Yatziv and Sapiro’s algorithm in [4]
on various test images and videos.

Figure 4 compares the results on the “Cosmos” im-
age. We assign color values to a few pixels in Figure 4
(a). In general, the Levin et al.’s algorithm achieves nat-
ural results by minimizing the color differences between
neighboring pixels. However, in Figure 4 (b), their al-
gorithm causes blurring in the sky region, which is far
from any assigned colors. In Figure 4 (c), the Yatziv and
Sapiro’s algorithm yields erroneous color propagation
near the edges of petals, which have similar luminance
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(c) (d)

Figure 4: The colorization results on the “Cosmos” im-
age: (a) the input monochrome image with assigned col-
ors, (b) the Levin et al.’s algorithm, (c) the Yatziv and
Sapiro’s algorithm, and (d) the proposed algorithm.

to the background sky. On the contrary, the proposed
algorithm provides much better quality reconstruction
without any noticeable artifacts as shown in Figure 4
(d).

Figure 5 demonstrates that the proposed algorithm
can be employed also to change the colors of a color im-
age, i.e., re-colorization. In Figure 5 (a), we assign new
colors to the car body, and the white color to other parts.
The white color indicates that the original color should
be preserved as the initial color. In Figures 5 (b)∼(d),
we see that the car body is re-colorized realistically.

Figure 6 shows the video colorization results of the
black and white film “Roman Holiday,” which was made
in 1953. In the first image of Figure 6 (a), a user first
paints a few colors on the 108,515th frame, which is used
as the first frame of the experiment. Using the those
colors, we automatically colorize the subsequent frames.
We see that the first frame is faithfully colorized by all
the Levin et al.’s algorithm, the Yatziv and Sapiro’s al-
gorithm, and the proposed algorithm. However, we see
that, in the subsequent frames, the Levin et al.’s algo-
rithm causes severe blurring errors, especially on the
woman’s arm and man’s face. Also, the Yatziv and
Sapiro’s algorithm yields errors on the man’s face. On
the other hand, the proposed algorithm provides better
performance and colorizes the subsequent frames reli-
ably without error propagation.

(a) (b)

(c) (d)

Figure 5: The re-colorization of the “Car” image: (a)
the input color image with user scribbles, where the
white color indicates that the original color should be
preserved, and (b)∼(d) the re-colorization results.

4. CONCLUSION

In this work, we proposed an efficient colorization algo-
rithm for images and videos. The proposed algorithm
first assigns initial colors and computes their reliabil-
ities. Then, based on the reliability information, the
proposed algorithm defines an energy function and min-
imizes the function to refine the colors. For the mini-
mization, we employed the graph cut algorithm. Simula-
tion results demonstrated that the proposed algorithm
yields significantly better colorization results than the
conventional algorithms.
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