
ADAPTIVE STRUCTURAL ANALYSIS OF MUSIC RECORDINGS

Aggelos Pikrakis and Sergios Theodoridis

Department of Informatics
University of Piraeus

80 Karaoli and Dimitriou Str., 18534, Piraeus, Greece
phone: + (30) 2104142128, fax: + (30) 2104142264

email: pikrakis@unipi.gr
web: www.unipi.gr

Dept. of Informatics and Telecommunications
University of Athens

Panepistimioupolis, 15784, Athens, Greece
phone: + (30) 2107275328, fax: + (30) 2107275214

email: stheodor@di.uoa.gr
web: www.di.uoa.gr

ABSTRACT

This paper presents a structure mining scheme for music
recordings. The term adaptive refers to the fact that the
method relies on an adaptive scheme to detect similarity on
the diagonals of the self-similarity matrix of the recording
and removes the need for hard thresholds during this pro-
cessing stage. Structural analysis is subsequently cast ina
clustering framework. The output of the adaptive scheme
is used to initialize a hierarchical data clustering algorithm
whose output is a representation of the recording in terms
of non-overlapping repeating patterns. The proposed method
has been evaluated on a corpus of popular music recordings
and various performance measures have been computed.

1. INTRODUCTION

Automated structural analysis of music recordings has at-
tracted significant research effort over the last few years due
to the need for fast browsing techniques for music recordings
and efficient content-based music retrieval and indexing. In
the literature, variations of the problem of structural analy-
sis [1, 2, 5] are encountered under different names, including
music summarization [7, 11, 13, 14], repeated (or repeating)
pattern finding [12] and audio thumbnailing [4]. A survey of
research activity reveals that the terms audio thumbnailing
and summarization are used interchangeably and refer to the
same task, i.e., the extraction of the most representative part
of a music recording. Thumbnailing has a direct commercial
interest, because it is very common among music vendors
on the Internet to allow visitors to their sites to listen to the
most representative extract of a music recording. Therefore,
it does not come as a surprise that a lot of research effort has
so far been invested on music thumbnailing.

In this paper, the term structural analysis refers to the
more general problem of locating pattern repetition in raw
music recordings (i.e., not MIDI), while providing the means
to associate repeating patterns in such a way so as to high-
light how longer patterns can be formed from smaller build-
ing blocks. From the point of view of problem definition, the
proposed method falls in the same category with [1], [12],
[9], [5] and [11]. A common starting point in most meth-
ods is the self-similarity matrix of the recording, which is
processed so as to reveal pattern repetition. This is usually
achieved by means of Dynamic Programming techniques,
e.g., [1], [5]. The problem of redundancy in the resulting
patterns has been tackled with various techniques, including
a heuristic iterative scheme in [1] and a RP-tree in [11]. It
is also interesting to note, that in most of the above methods
certain assumptions (in the form of hard thresholds) need to

be made at various processing stages, e.g., the allowable si-
milarity between short-term frames. The goal of this paper is
twofold:
• To remove the need for hard thresholds at various pro-

cessing stages of the self-similarity matrix. To this end,
an adaptive scheme is introduced that takes as input the
self-similarity matrix of the recording and converts it to
a binary map, where sequences of 1’s on the diagonals
indicate pattern repetition. This adaptive scheme deter-
mines the values of two parameters, namely the similarity
threshold and the minimum pattern length, starting from
some initial values. The two parameters control crucial
properties of pattern repetition, i.e., the redundancy and
the fraction of the audio stream that has been covered
with repeating patterns.

• To cast the problem of structural analysis in a pure hierar-
chical data clustering framework. To this end, the binary
map (i.e., the output of the previous stage), serves to ini-
tialize a hierarchical data clustering scheme, where each
repeating pattern is treated as a cluster. A merging oper-
ator is introduced that determines which pair of clusters
will be merged at each iteration of the clustering scheme.

The output of our method is the structure of the recording as
a tree of clusters, where the highest level is the most compact
representation of the music recording. It should be empha-
sized that the proposed method is not feature dependent. Any
self-similarity matrix can be used. The paper is organized
as follows: the next section describes the feature extraction
stage and Section 3 presents the adaptive scheme. The hi-
erarchical data clustering algorithm is presented in Section
4. The evaluation of the proposed method is carried out in
Section 5 and conclusions are drawn in Section 6.

2. FEATURE EXTRACTION

The goal of this stage is to extract the self-similarity matrix
of the recording. To this end, the chroma vector is computed
on a short-term frame basis using non-overlapping frames.
Although the length of the moving window is not crucial, the
recommended value is 1 sec. The chroma vector is computed
as in [4] except for the following modifications, which in our
study have shown to increase performance:
• All DFT coefficients take part in the computation
• The mean value of the vector is not subtracted from the

vector elements and each chroma element is normalized
to unity by dividing it with the sum of elements of the
vector.

To compute the self-similarity matrix, the Euclidean function
is used as the distance metric. Therefore, low values indicate

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 919

high similarity.
Let SM×M be the resulting self-similarity matrix, where

M is the number of short-term frames. Therefore,

S= {S(i, j);S(i, j) = ||ci ,c j ||, i, j = 1, . . . ,M} (1)

where||.|| is the Euclidean distance metric andci is the i-
th chroma vector. By its definition,S is symmetric around
the main diagonal and it thus suffices to focus on its upper
triangle only.

Matrix S is then smoothed with a moving average filter.
The filter that we have used is the identity matrix, i.e.,IK×K ,
whereK is odd. For a short-term frame length equal to 1
sec,K is set equal to 3, i.e, the equivalent ofK in seconds
is 3 secs. Due to the fact that the filter’s mask is diagonal,
the averaging operation only takes into account neighboring
elements on the diagonal.

3. ADAPTIVE BINARIZATION

The self-similarity matrix,S, is fed as input to an adap-
tive binarization algorithm, which is subject to two parame-
ters, namely, the similarity threshold an the minimum pattern
length. The algorithm determines the values of these two pa-
rameters, starting from some initial conditions and outputs a
binary map. The key idea behind this algorithm is that an
element of the resulting binary map is equal to 1, if:
• Condition (a): Its value in the self-similarity matrix is

“sufficiently” low.
• Condition (b): Its value in the self-similarity matrix is

lower than the values of its neighboring elements.
• Condition (c): It is part of a “sufficiently” long sequence

of 1 s on a diagonal of the binary map.
The proposed algorithm is iterative. At each iteration, the
value of a cost function is computed. The algorithm termi-
nates when the cost ceases to increase.

3.1 Cost function

In order to proceed, we first describe the adopted cost func-
tion. Let Bk, Tk and Lk be the binary map, the similarity
threshold and the minimum pattern length respectively, at the
k-th iteration. Clearly, the size ofBk is M ×M, whereM is
the number of feature vectors. The first two conditions stated
above suggest that:

Bk(i, j) =



















1, i ≤ j, S(i, j) ≤ Tk and
S(i, j) < S(i −1, j) and
S(i, j) < S(i +1, j) and
S(i, j) < S(i, j −1)

0, otherwise

(2)

Equivalently,S(i, j) has to be lower than its northern, south-
ern and eastern neighbors.

Matrix Bk is then“cleaned” by removing isolated 1’s.
This can be easily achieved by correlatingBk with the fol-
lowing rectangular mask,BM3×3:

BM =

[

1 1 1
1 0 1
1 1 1

]

(3)

As a result, isolated 1’s will yield zero correlation.

Each diagonal ofBk is then processed separately in order
to detect adjacent 1’s, i.e., diagonal segments solely consist-
ing of 1’s. We only keep segments whose length exceedsLk
(condition (c)). Any detected diagonal segment relates a pair
of corresponding patterns, where each pattern is a sequence
of adjacent frame indices. Therefore, if thei-th detected di-
agonal segment starts at(Pi1,Pi2) and isl i pixels long (i.e., it
consists ofl i 1’s), then the two corresponding patterns are:

{Pi1,Pi1 +1, . . . ,Pi1 + l i −1}

and
{Pi2,Pi2 +1, . . . ,Pi2 + l i −1}

i.e.,Pi1 andPi2 are the frame indices that mark the beginning
of each pattern. In addition, letPUi be the union of the above
two frame sets, i.e.,

PUi = {Pi1,Pi1 +1, . . . ,Pi1 + l i −1,Pi2,Pi2 +1, . . . ,Pi2 + l i −1}

It is important to note that, in most cases, the detected seg-
ments exhibit certain redundancy, i.e., the respectivePUi ’s
overlap (see Fig. 1). This is not desirable and our next goal

Frame index

Fr
am

e
in

de
x

50 100 150 200

50

100

150

200

Figure 1: Binary map at the output of the adaptive scheme.
Upon initializationT0 = 0.01 andL0 = 10 frames (seconds).

is to quantify redundancy. To this end, letPD be the union of
all PUi ’s, i.e.,

PD =
D
⋃

i=1

PUi ,

whereD is the number of detected segments. By the defini-
tion of union of sets, each frame index appears only once in
PD, even if it is a member of more than onePUi ’s. If VPD
is the cardinality ofPD, then the fractionCPD , of short-term
frames that have been “covered” by all detected patterns is
defined as

CPD =
VPD

M
, (4)

whereM is the total number of frames.Redundancy, RPD , is
then defined as

RPD = 1−
VPD

∑D
i=1 l i

, (5)

where l i , i = 1, . . . ,D is the length of thei-th diagonal seg-
ment. If thePUi ’s do not overlap at all, thenRPD is zero.

The proposedcost function, C f(.), is then defined as :

C f(PD) = CPD(CPD −CPDRPD) (6)

920

If CPD is close to 1 (the detected patterns cover most of the
recording) andRPD is close to zero (low redundancy), then
C f(PD) will be close to 1. In the extreme case of zero redun-
dancy, the cost function only depends onCPD . If, on the other
hand, bothCPD andRPD are large, the expression in parenthe-
sis will be close to zero. This indicates that although a large
fraction of the recording has been covered with patterns, this
has been achieved to the expense of high pattern redundancy.
Equation (6) suggests that the higher the value of the cost
function the better the “quality” of the binary map.

Having introduced the cost function the adaptive scheme
can now be presented as two separate iteration schemes; the
first one determines the similarity threshold and the second
one the minimum segment length.

3.2 First scheme

1. Initialization: Choose initial values,T0 and L0, for the
similarity threshold and the minimum pattern length
respectively. Generate the binary map and compute
C f(PD).

2. Iteration: Increase the similarity threshold by a given
step size, i.e,Tk = Tk−1 + ∆T. Generate the new bi-
nary map and compute the newC f(PD). If C f(PD) has
increased, repeat the iteration, otherwise terminate and
keep the similarity threshold that has yielded the maxi-
mum value ofC f(PD).

Note that this iterative procedure does not affect the mini-
mum segment length.

3.3 Second scheme

1. Initialization: Choose as the initial value for the simila-
rity threshold the value that has resulted from the pre-
vious scheme and use the sameL0 as before (note that
minimum pattern length remained unaltered during the
previous scheme). Generate the binary map and compute
C f(PD).

2. Iteration: Decrease the minimum segment length by a
given step size, i.e.,Lk = Lk−1+∆L. Generate the new bi-
nary map and computeC f(PD). If C f(PD) has increased,
repeat the iteration, otherwise terminate and keep the
segment length that has yielded the maximum value of
C f(PD)

This adaptation of the second scheme is subject to the
minimum segment length only. In Section 5, we show how
the initial conditions affect the performance of the adaptive
scheme and also discuss issues related to the number of iter-
ations that are needed to achieve convergence.

In the end of this iterative scheme, the values for simi-
larity threshold and minimum segment length have been de-
cided. The resulting binary matrix is then fed as input to a
hierarchical clustering scheme that yields the structure of the
music recording in terms of non-overlapping, repeated pat-
terns. Figure 1 presents the binary map at the output of the
adaptive scheme for the music track “Animal” by “Def Lep-
pard”.

4. HIERARCHICAL DATA CLUSTERING

The adaptive scheme converges to a solution that can be in-
terpreted as a trade-off between pattern redundancy and the
fraction of the music recording that has been covered with

repeating patterns. Our next goal is to process the binary ma-
trix B at the output of the adaptive scheme, so as to produce
non-overlapping repeating patterns, i.e., remove redundancy
and produce the structure of the recording in terms of re-
peating patterns. To this end, we have chosen a hierarchical
clustering scheme.

In our problem definition,a cluster is a set of similar
patterns, all of which have the same length. It is therefore
necessary to define how clusters are initialized, when two
clusters should be merged and what the outcome of such a
merging action will be.

4.1 Initialization

At a first step, matrixB is scanned row-wise. By the defi-
nition of B, if the j-th element on thei-th row is equal to 1,
then thei-th frame can be considered to be similar to thej-th
frame. To this end, let

Cri = {i}∪{ j;B(i, j) = 1, j = 1, . . . ,M, j 6= i},

wherei = 1, . . . ,M. In other words,Cri is the set of frames
which are similar to thei-th frame following the inspection
of the i-th row.

Matrix B is then scanned column-wise. Similarly, let

Cci = {i}∪{ j;B(j, i) = 1, j = 1, . . . ,M, j 6= i},

wherei = 1, . . . ,M. Equivalently,Cci contains the indices of
frames which are similar with thei-th frame, following the
inspection of thei-th column. In addition, let

Ci = Cri ∪Cci , i = 1, . . . ,M

Obviously,Ci is the set of all frames which are similar with
the i-th frame (including the frame itself). By the definition
of union of sets no repetitions are encountered inCi .

The Ci ’s are then examined pairwisely. IfCi ∩Ck 6= /0
thenCi is replaced byCi ∪Ck, Ck is disgarded and this is
repeated until no more merging is possible. LetK be the
number of sets that have survived when this procedure has
finished. EachCi , i = 1, . . . ,K is considered to be aninitial
cluster, which contains at least two frame indices.

For notational purposes, letNi , i = 1, . . . ,K, be the num-
ber of frames in thei-th cluster. Each frame is considered
to be anelementarypattern. Therefore, thei-th cluster con-
tainesNi patterns, all of which have the same length, equal to
one frame. For generalisation purposes, in the sequel we will
refer to this pattern length with the symbolLi , i = 1, . . . ,K. In
addition, due to the fact that, in the general case, each pattern
is a sequence of adjacent frames, it is convenient to represent
the pattern by means of the pair of indices that mark its end-
points. Therefore, thei-th cluster can be written as a set of
pairs of indices, i.e.,

Ci = {(i1, i2),(i3, i4), . . . ,(i2Ni−1, i2Ni),} (7)

wherei1 ≤ i2 ≤ . . .≤ i2Ni−1 ≤ i2Ni . Due to the equalities, this
definition accounts for the possibility that a pattern consists
of a single frame, as is the case at the output of the initializa-
tion stage,

4.2 Iteration - Merging clusters

Having adopted a hierarchical clustering scheme, at each it-
eration two clusters are chosen and merged based on a merg-
ing criterion. The pair of clusters to be merged is determined

921

by computing a merging cost for all possible pairs of clus-
ters. This process is repeated until no more merging can
take place. For convenience of presentation, the merging cost
along with the merging operator are first explained by means
of a real example drawn from the music track “People are
People” of “Depeche Mode”. For this track, at some point of
processing, the following two clusters have been formed:

C5 = {(3,4),(19,20)} andC6 = {(5,5),(21,21)}, i.e.,
N5 = N6 = 2, L5 = 2 andL6 = 1. It can be observed that
pattern(3,4) can be expanded by attaching pattern(5,5) to
its right end and similarly, pattern(19,20) can be expanded
by attaching(21,21) to its right end. In other words, the two
clusters can be merged to form cluster{(3,5),(19,21)}. In
this example, the merging cost equals zero because no pat-
terns have been left out of the merging operation. Further-
more, it can be seen that that a pattern from one cluster can
be merged with a pattern from another cluster, if the latter
can be attached to the former’s right or left end.

To continue the example, if

C6 = {(5,5),(21,21),(37,37)}

then the merging cost would be equal to one frame, because
pattern(37,37) will have to be left out. The result of the
merging operation would be the same as before, i.e., the pat-
tern that was omitted is disgarded. If it is not disgarded, it
should make a cluster of its own, but this would not make
sense, because a cluster has to contain at least two patterns.

As a third case, consider

C5 = {(3,4),(19,20),(42,43),(100,101))}

and
C6 = {(5,5),(21,21)}

The merging cost is now equal to 4 frames, because the last
two patterns from the first cluster cannot take part in the
merging operation (but can make a cluster of their own). The
merging result will be two clusters, i.e.,{(3,5),(19,21)} and
{(42,43),(100,101)}.

In the general case, two clusters, say A and B, can be
merged, ifLA ≥ LB, i.e., the number of patterns in A is larger
or equal than the number of patterns in B and one of the
following holds (mc stands for the merging cost andws for
the short-term processing step measured in seconds):
1. If NA = NB and all patterns in B can be attached to the

right end of an equal number of patterns in A (or all pat-
terns in B can be attached to the left end of an equal num-
ber of patterns in A), then a single cluster is formed. The
cluster contains the expanded patterns of A, B vanishes
andmc= 0;

2. If NA−NB = 1, ws×LA ≤ 2secsand all patterns in B can
be attached to the right end of an equal number of pat-
terns in A (or all patterns in B can be attached to the left
end of an equal number of patterns in A) then a single
cluster is formed. The cluster contains the expanded pat-
terns of A, B vanishes and also the pattern that has been
left out from A vanishes. In this case,mc= ws×LA.

3. If NA−NB ≥ 2 and all patterns in B can be attached to the
right end of an equal number of patterns in A (or all pat-
terns in B can be attached to the left end of an equal num-
ber of patterns in A) then two clusters are formed. The
first cluster contains the expanded patterns of A, B van-
ishes and the second cluster contains all the patterns that

have been left out from A. This is because the remaining
patterns are more than one and it still makes sense to let
them form a cluster. To compute the merging cost in this
case, we compute the cumulative length of patterns in
the second cluster and multiply it by the moving window
length.

Following the above, at each step the pair of clusters that
yields the lowest merging cost is selected as the winner and
the two clusters are merged. If more than one pairs of clusters
yield the same merging cost, the winner is selected randomly.
The clustering is repeated until no more merging is possible.
Note that the merging cost for a pair of clusters can be com-
puted withO(NA +NB) complexity, if the patterns of the two
clusters are sorted in ascending order according to their left
endpoints.

5. EXPERIMENTS

The proposed method has been evaluated on a cor-
pus of popular music recordings consisting of 104 mu-
sic tracks. The track listing can be accessed at
http://www.unipi.gr/faculty/pikrakis/cor.html. The corpus
consists of pop music tracks including mainstream pop, al-
ternative pop and a limited number of hard-rock tracks. The
tracks were chosen based on the fact that repetition is more
evident in this type of music, making it easier to evaluate the
structure returned by our method per track. We first present
issues related to the initialization of the adaptive schemeand
then proceed by defining a number of performance measures
related to the complexity of the structure returned by our
method. In the end, we discuss how close the results are
to the human perception of structure.

5.1 Initialization of the adaptive scheme

Given that the Euclidean distance is used as the distance met-
ric, the adaptive scheme is initialized with a threshold value
(T0) close to zero. After experimentation, we have found that
any value in the range 0.006−0.01 is a good candidate. If
a smaller value is chosen, then the number of elements inB
that survive binarization is too limited. The recommended
value for the threshold step,∆T, is 0.001. Concerning the
initialization of the minimum segment length (L0), a value
of 10 seconds is recommended, with∆L = 1 sec. We have
observed that small values ofL0 (around 5) result into over-
segmentation in most cases (i.e., large number of clusters
where pattern length is close to one). In the vast majority
of music tracks, the scheme converges in less than 10 itera-
tions.

5.2 Performance statistics related to the hierarchical
clustering scheme

Following our study, the average number of clusters at the
initialization stage of the clustering scheme is≈ 38. In 80%
of the clusters, the pattern length is shorter than 5 secs andin
95% of the clusters it is shorter then 10 secs. This reveals that
one expects a large number of clusters at the initialization
stage and due to the fact that the clusters do not overlap, the
average pattern length is inevitably small. Note that in 40%
of the music tracks the number of detected segments on the
diagonals is less than 10 and in 70% of the tracks is less than
20.

Furthermore, the average number of clusters at the end of
the hierarchical clustering scheme is 9. In 4 tracks out of 104

922

a single cluster was formed in the end, containing instances
of the thumbnail of the track. In 70% of the tracks the number
of clusters was less than 10. The average pattern length at the
end of the clustering stage was found to be≈ 16 secs and in
60% of the clusters it was larger than 10 secs.

Figure 2 presents in piano-roll format the repeating pat-
terns at the end of the clustering scheme for the track
“Animal” of “Def Leppard”. If a capital letter is as-
signed to each cluster, then the track can be written as
B EA B EA ACDC CD, where stands for a gap, i.e., a part
of audio that has not been assigned to any pattern. For this
particular recording, the music recall is≈ 62%. On average,
≈ 65% of a music track is covered by the extracted repeating
papers and for the majority of tracks (≈ 80%), the patterns
in the largest cluster practically coincide with instancesof
the chorus, given certain tolerance is acceptable around the
chorus endpoints.

Details on the relevance of the extracted clus-
ters with each track’s thumbnail can be accessed at
http://www.unipi.gr/faculty/pikrakis/cor.html.

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

Frame index

C
lu

st
er

 id

Figure 2: The track “Animal” of “Def Leppard” in piano-
roll format. Five clusters have been formed, the 4-th and
5-th of which contain two small patterns. The largest cluster
contains three repetitions of the song’s chorus.

6. CONCLUSIONS

This paper has presented a structure mining scheme for mu-
sic recordings. An adaptive scheme for detecting simila-
rity on the diagonals of the self-similarity matrix is first
employed and it is followed by a clustering scheme that
produces a hierarchy of non-overlapping clusters, i.e., re-
peating patterns. The proposed method removes the need
for hard thresholds during the processing stages of the self-
similarity matrix and in addition formulates the problem of
structure analysis in the context of a hierarchical data cluster-
ing scheme. As a result, the proposed solution can be treated
as a general, i.e., a method that can be applied on any self-
similarity matrix, irrespective of the short-term features be-
ing used, as long as the distance is bounded.

REFERENCES

[1] R. B. Dannenberg and Ning Hu, “Discovering Musical
Structure in Audio Recordings, ” inProc. Second Inter-

national Conference on Music and Artifical Intelligence
(ICMAI 02), Edinburgh, Scotland, 2002, pp. 43–57.

[2] M. Sandler and M. Levy, “Structural Segmentation of
Musical Audio by Constrained Clustering”,IEEE Trans-
actions on Audio, Speech and Language Processing, vol.
16(2), pp. 318–326, 2008

[3] M.A. Bartsch and G.H. Wakefield, “To catch a chorus:
Using chroma-based representations for audio thumb-
nailing ” in Proc. of the IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, 2001, pp.
15–18.

[4] M.A. Bartsch and G.H. Wakefield, “Audio Thumbnail-
ing of Popular Music Using Chroma-Based Representa-
tions”, IEEE Transactions on Multimedia, vol. 7(1), pp.
96–104, 2005.

[5] W. Chai, “Structural analysis of musical signals via pat-
tern matching ” inProc. of ICASSP -03, 2003, vol. 5, pp.
549–552.

[6] W.Chai and B. Vercoe, “Music thumbnailing via struc-
tural analysis ” inProc. of the 11th ACM International
Conference on Multimedia, 2003, pp. 223–226.

[7] M. Cooper and J. Foote, “Visualizing music and au-
dio using self-similarity ” inProc. of ACM Multimedia,
1999, pp. 77–80.

[8] Geoffroy Peeters, “Toward automatic music audio sum-
mary generation from signal analysis, ” inProc. Interna-
tional Conference on Music Information Retrieval, 2002,
pp. 94–100.

[9] C. Xu, Y. Zu and Qi Tian, “Automatic Music Summa-
rization based on temporal, spectral and cepstral fea-
tures, ” inProc. IEEE ICME’02, 2002, pp. 117–120.

[10] J. Wellhausen and M. Hoynck, “Audio thumbnailing
using MPEG-7 low level audio descriptors, ” inInternet
Multimedia Management Systems IV, 2003, pp. 65–73.

[11] C. Liu P. and Yao, “Automatic summarization of MP3
music objects ” inProc. of ICASSP’04, 2004, vol. 5, pp.
921–924.

[12] M. Wang, L. Lu and H. Zhang, “Repeating pattern dis-
covery from acoustic musical signals ” inProc. of the 6th
ACM SIGMM International workshop on Multimedia In-
formation Retrieval, 2004, vol. 3, pp. 2019–2022.

[13] C. Xu, X. Shao, N.C. Maddage, M.S. Kankanhalli and
Q. Tian, “Automatically summarize musical audio using
adaptive clustering ” inProc. of IEEE ICME’04, 2004,
vol. 3, pp. 2063–2066.

[14] S. Kim, S. Kwon and H. Kim, “A music summarization
scheme using tempo tracking and two stage clustering ”
in Proc. of the 8th IEEE Workshop on Multimedia Signal
Processing, 2006, pp. 225–228.

923

