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ABSTRACT
Channel order estimation problem is considered for FIR (Fi-
nite Impulse Response) modeled single-input multi-output
(SIMO) communication systems. The performance of the
channel estimation algorithms depends on the accuracy and
robustness of the channel order estimation. A new channel
order estimation algorithm with high accuracy and robust-
ness is proposed for SIMO systems. The proposed algorithm
is based on the least squares smoothing (LSS) algorithm for
channel estimation. It is guaranteed to find the true channel
order from finite number of samples for noise free case. Sev-
eral experiments are performed and it is shown that the pro-
posed algorithm significantly enhances the performance in
channel order estimation in noisy observations. The compar-
isons with the alternative techniques show that the proposed
method is very effective for the channel order estimation.

1. INTRODUCTION

Channel order estimation is an important problem in many
signal processing applications. In this paper, this problem
is considered for single-input, multi-output (SIMO) systems.
The input and channel coefficients can be estimated accu-
rately when the true channel order is known. When the chan-
nel order is underestimated, channel coefficients cannot be
found and the result is a complete failure. When the chan-
nel order is overestimated, the performance of the algorithms
such as subspace (SS), LSS [5] and cross relation (CR) de-
creases [11]. There are methods that work in a robust man-
ner in case of channel order overestimation [9, 10, 11, 12].
The main disadvantage of such techniques is that their per-
formance is not as good as the SS or LSS algorithm when the
true channel order is supplied to those algorithms [11]. Un-
der these circumstances, channel order estimation with high
accuracy is important and it determines the performance of
the channel estimation algorithms.

There are different algorithms for channel order estima-
tion in the literature. Minimum Description Length (MDL)
[1] and Akaike Information Criteria (AIC) [2] algorithms are
based on the information theoretic criteria. These algorithms
require long observations for accurate extraction of the sta-
tistical parameters. It is known that MDL usually performs
better than the AIC and AIC has a tendency for channel over-
estimation [3, 14]. Both of these algorithms are sensitive to
deviations from white noise assumption [14]. Liavas algo-
rithm [3] is proposed in order to overcome the limitations of
AIC and MDL. This algorithm has a tendency to underes-
timate the channel order [4]. A review of different channel
order estimation algorithms can be found in [8].

One problem in channel order estimation is the fact that
cost functions monotonically decrease as the channel order

increases. This problem is tried to be solved by using an em-
pirically chosen penalty coefficient [8]. This penalty term
leads to over or under estimation in many of the information
theoretic techniques. In [4], a new cost function is proposed.
This cost function is obtained by combining two cost func-
tions due to channel estimation (ID) and channel equalization
(EQ). The main feature of this cost function is its ”convex -
like” shape. Therefore channel order estimation can be per-
formed by finding the global minimum. Our motivation is to
construct a similar cost function which allows us to obtain
the channel order from the global minimum.

Joint least squares smoothing (JLSS) [6] and ID+EQ[4]
are the two algorithms that can find the true channel order
from finite number of samples in noise free case. Until now,
JLSS and ID+EQ were the only algorithm known to have
finite convergence property for the channel order estimation.

In this paper, a new channel order estimation algorithm
is proposed, namely channel matrix recursion (CMR) algo-
rithm. CMR is based on the properties of the LSS algorithm.
Channel matrix is estimated using LSS algorithm for a range
of channel orders. The relation between the channel matrices
with consecutive channel orders are used to obtain a new cost
function for channel order estimation. It has the finite conver-
gence property. Therefore CMR finds the true channel order
by using finite number of samples in noise free case. In addi-
tion, it has several distinct features which make it one of the
most effective algorithm in the literature. Its performance is
very good for noisy observations. Furthermore, CMR is ro-
bust to different parameters such as the number of channels,
channel order and the number of samples.

Several experiments are done in order to compare the
proposed algorithm with the alternative techniques such as
MDL, AIC, Liavas, ID+EQ [4] and JLSS [6]. It is shown that
the proposed algorithm has significantly better performance
than the other methods for a variety of cases.

The organization of this paper is as follows. Section 2
describes the system model and the problem. The proposed
method is presented in Section 3. The performance of the
proposed method is evaluated in Section 4.

2. SYSTEM MODEL AND PROBLEM DEFINITION

The system structure for a single-input multi-output (SIMO)
channel is shown in Figure 1. s(t) is the input signal, and
there are P channels with channel order L.

The channel output vector can be written as;

y1 (t) =
L

∑
k=0

hL (k)s(t− k)+n1 (t) (1)

where

y1 (t) = [ y1 (t) y2 (t) · · · yP (t) ]T
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hL (k) = [ hL,1 (k) hL,2 (k) · · · hL,P (k) ]T

n1 (t) = [ n1 (t) n2 (t) · · · nP (t) ]T

The vector valued quantities y1 (t), hL (k) , and n1 (t) are
the received signals, channel impulse response and additive
noise respectively. Subindex for channel coefficients rep-
resents the channel order and other subindexes indicate the
block dimension of the vector. The number of channel is as-
sumed to P, hence y1 (t), h (k), and n1 (t) are P dimensional
column vectors. The order of channel is L and the number of
snapshots is N for each channel. t is the discrete time index.
yi (t), hi (k), and ni (t) are the scalar values of output signal,
channel impulse response and additive noise for ith channel
respectively. The vector counterpart of the model,

y1 (t) = H1sL+1 (t)+n1 (t) (2)

where,

H1 = [ hL (L) hL (L−1) · · · hL (0) ]

sL+1 = [ s(t−L) · · · s(t) ]T

To fully utilize the time correlation properties of the SIMO
system, M vector samples are studied simultaneously.

yM (t) = HMsM+L (t)+nM (t) (3)

where

yM (t) =
[

yT
1 (t−M +1) · · · yT

1 (t)
]T

nM (t) =
[

nT
1 (t−M +1) · · · nT

1 (t)
]T

sM+L (t) = [ s(t−L−M +1) · · · s(t) ]T

HM =




hL (L) · · · hL (0)
. . . · · · . . .

hL (L) · · · hL (0)




Where, MP× (M +L) block Toeplitz matrix HM is called
the channel matrix. The equation (3) can be written as fol-
low, when N channel output vectors yM are stacked as the
columns of the matrix Y.

Y = HMS+N (4)

Where,

Y = [ yM(t) · · · yM (t +(N−1)M) ]
S = [ sM+L(t) · · · sM+L(t +(N−1)M) ]
N = [ nM(t) · · · nM(t +(N−1)M) ]

Our goal is to estimate the unknown channel order L from
the observed data. The following assumptions are used dur-
ing the order estimation. The channel transfer functions do
not share common zeros or the channel matrix is full column
rank. Input signal, s(t), has linear complexity greater than
2M + 2L, which is the requirement for the LSS algorithm
used in the proposed method.

3. CMR ALGORITHM

Channel matrix recursion (CMR) algorithm is based on the
estimation channel matrix via LSS algorithm for different
channel orders. Before the explanation of the algorithm de-
tails, it is better to indicate some important properties of LSS
algorithm for noise free case.

Figure 1: SIMO channel model for channel order, L, and
number of channel, P.

• When the channel order is overestimated, LSS results
common zeros besides the true channel zeros.

• When the channel order is overestimated, the estimated
channel matrix is not full column rank as a result of com-
mon zeros.

Properties of LSS algorithm given above are stated by
Lemma-1, Lemma-2 in this paper. Proofs are not given due
to space limitation.

Lemma-1: Least Squares Smoothing algorithm [5] gen-
erates common channel zeros when the channel order is over-
estimated for noise free case. The remaining zeros are the
true channel zeros. If the true channel order is L and the
overestimated channel order is L̂, the number of common ze-
ros is L̂−L.

Lemma-2: If FIR channels of SIMO system have com-
mon zeros, then the channel matrix, HM whose row size is
greater or equal than the column size, is not full column rank.

As a result of Lemma-1, the channel matrix with overes-
timated channel order, i.e., L̂ = L+m, m > 0, can be written
as follows.

H(L+m+1)
M = H(L)

M H(m+1)
c (5)

where H(m)
c is a Toeplitz matrix with first row and first col-

umn being [cm(0) · · ·cm(m) 0 · · · 0] and [cm(0) 0 · · ·0]T re-
spectively. cm(k) are the coefficients of the transfer function
of m common zeros. CMR algorithm uses the relation be-
tween the estimated channel matrices with consecutive chan-
nel orders. The relation between the channel matrices with
channel order L+m and L+m+1 can be written as follow.

H(L+m+1)
M = H(L+m)

M Am (6)

The proposed algorithm is based on the estimation of the re-
lation matrix Am, which is defined as follows.

Âm = F¯
((

H(L̂)
M

)†
H(L̂+1)

M

)
(7)

where, (¯) is the Hadamard product and (M+L+m)×(M+
L+m+1) matrix F is a Toeplitz matrix with first row equal
to [1 1 0 · · ·0] and first column equal to [1 0 · · ·0]T . (.)† in-
dicates the Moore-Penrose pseudoinverse. With the matrix
F, only the matrices having Toeplitz structure with two co-
efficient (as in H(1)

c ) go outside to the matrix operation with-
out any distortion. It is shown that Âm has Toeplitz structure

2152



only when m = 0. This property of Âm is used to define a
new cost function to estimate the channel order. Using the
estimated relation matrix, H(L+m+1)

M is recalculated and dif-
ference between the estimated and calculated channel matri-
ces are compared. The difference between them are taken
as the new cost function and it is proven that it has a global
minimum at the true channel order in Theorem-1.

Theorem-1 : It is assumed that a SIMO system is given
as in Figure 1. For a range of channel order values, L̂ =
L+m = Lmin, · · · ,Lmax, the channel coefficients are estimated
by the LSS algorithm. Let the estimated channel matrix is
given by HL̂

M for the channel order L̂. M is chosen such that
channel matrix is a tall matrix. The cost function is defined
as,

errCMR
(
L̂
)

=
∥∥∥H(L̂+1)

M −H(L̂)
M Âm

∥∥∥
2
/
∥∥∥H(L̂+1)

M

∥∥∥
2

(8)

Âm = F¯Bm (9)

Bm =
(
H(L+m)

M

)†
H(L+m+1)

M (10)

has global minimum at true channel order, L̂ = L, in the noise
free case.

Proof : The proof is given at the Appendix.
In Figure 2, Theorem-1 is also verified for noisy obser-

vations through simulation. Channel output error is plotted
against the channel order at different SNR values. 200 tri-
als are used in the simulation. Channel order is five and the
number of channels is three. Channel coefficients are com-
plex values chosen randomly from a zero mean unit variance
Gaussian set. As shown in Figure 2, channel output error has
a global minimum at the true channel order, L = 5.

4. SIMULATIONS

The proposed algorithm (CMR) is compared with differ-
ent algorithms including MDL, AIC, Liavas , JLSS [6] and
ID+EQ [4]. Input signal is chosen as a QPSK signal and
input length is 100. Noise is a zero mean Gaussian sig-
nal uncorrelated with the input. Channel coefficients are
randomly generated complex values. Minimum channel or-
der and maximum channel order are selected as Lmin = 1
andLmax = L + 5 respectively. The block length is chosen
as M = L̂, which is the lower limit for the LSS algorithm. L̂
indicates currently processed channel order in the CMR al-
gorithm. The number of trials used in the simulations is 200.

Table 1 and Table 2 summarize the performance of CMR,
MDL, AIC and Liavas algorithms for different number of
channel and channel orders. The robustness of the proposed
algorithm for different SIMO parameters can be seen easily.
For the CMR algorithm, the estimation performance is im-
proved as the number of channels increases and it decreases
as the channel order is increased. Overall, CMR algorithm
shows the best performance almost all of the cases consid-
ered in the tables. Liavas algorithm has the same character-
istics as the CMR. In other words, its performance increases
with the number of channels and it decreases as the chan-
nel order is increased. AIC and MDL show somehow mixed
and opposite characteristic. While AIC performance has ten-
dency to fall as the number of channels increases, MDL per-
formance mostly improves except for L = 2 and it is better in
a small region where the number of channels is large.

Figure 3 shows the performance of different algorithms
with respect to SNR, when the number of channels, P, is 3,
the channel order, L, is 3, and the length of the signal is 100.
The proposed algorithm performs much better than the oth-
ers for all SNR values. When the channel order is increased
to L = 5, a similar characteristics is observed as shown in
Figure 4. As the number of channels in the SIMO system
is increased from three to five, as shown from the Figure 5,
CMR performs much better than the other algorithms in all
SNR values.

5. CONCLUSION

A new channel order estimation algorithm is proposed. CMR
is based on the LSS algorithm and uses a cost function which
has a global minimum at true channel order. It has finite
convergence property, i.e., the channel order can be found
exactly from the finite number of samples in the absence of
noise. Its performance is compared with the algorithms cur-
rently available in the literature for different channel settings
and it is shown that the performance of the proposed algo-
rithm is significantly better and more robust to the changes
in SIMO parameters.

6. APPENDIX

6.1 Proof of Theorem-1
For the proof of the theorem, correctly estimated channel or-
der, overestimated channel order and under estimated chan-
nel order cases are studied separately to show that the cost
function defined in (8) is zero only when the channel order is
correctly estimated in noise free case.

Channel order is estimated correctly: Consider that the
channel order is correctly estimated, i.e. L̂ = L. LSS al-
gorithm finds the true channel coefficients in the noise free
case, when the true channel order is given [5, 6]. Therefore,
Ĥ(L)

M = H(L)
M . We want to show that the cost function de-

fined through equation (8) is equal to zero when L̂ = L, i.e.
errCMR(L) = 0.

According to Lemma-1, when the channel order is over-
estimated by one, one common zero is added to true channel
transfer function. In this case, channel matrix H(L+1)

M can be
written as the product of the true channel matrix, H(L)

M , and
the matrix, H(1)

c .

H(L+1)
M = H(L)

M H(1)
c (11)

Since the channel coefficients are estimated exactly for the
true channel order, channel matrix, HL

M , is full column rank
under assumption that there is no common zeros between
SIMO channels. Therefore,

(
H(L)

M

)†
H(L)

M = I (12)

The matrix, Â , can be written as follow.

Â = F¯
((

H(L)
M

)†
H(L+1)

M

)
(13)

= F¯
((

H(L)
M

)†
H(L)

M H(1)
c

)
(14)
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= F¯
(
H(1)

c

)
(15)

= H(1)
c (16)

Replacing, Â, in equation (8), the cost function is obtained
as follows,

errCMR (L) =
∥∥∥H(L+1)

M −H(L)
M H(1)

c

∥∥∥
2
/
∥∥∥H(L+1)

M

∥∥∥
2
(17)

=
∥∥∥H(L+1)

M −H(L+1)
M

∥∥∥
2
/
∥∥∥H(L+1)

M

∥∥∥
2

(18)

= 0

Channel order is overestimated: Consider that the chan-
nel order is overestimated, i.e., L̂ = L + m and m > 0. As
noted before, the function of F is to extract the Toeplitz form
from the matrix Bm. If Bm is Toeplitz matrix with first row
and first column [bm(0) bm(1) 0 · · ·0] and [bm(0) 0 · · ·0]T

respectively. Then Âm = Bm. If this is the case, multiplying
from left by H(L+m)

M , we obtain,

H(L+m)
M Âm = H(L+m)

M Bm

= H(L+m)
M

(
H(L+m)

M

)†
H(L+m+1)

M

= H(L)
M H(m)

c

(
H(L)

M H(m)
c

)†
H(L+m+1)

M

= H(L)
M H(m)

c

(
H(m)

c

)† (
H(L)

M

)†
H(L+m+1)

M

= H(L)
M

(
H(L)

M

)†
H(L+m+1)

M

= H(L)
M

(
H(L)

M

)†
H(L)

M H(m+1)
c

= H(L)
M H(m+1)

c

= H(L+m+1)
M (19)

Note that Moore-Penrose pseudoinverse property is used for
the fourth row equation. With the equality in (19), errCMR(L̂)
in (8) becomes zero. errCMR(L̂) is different than zero as long
as Âm is not equal to Bm or Bm is not a Toeplitz matrix with
two coefficients. In this proof, it is shown that B can not
become a Toeplitz matrix for m > 0.

The proof will be by contradiction. First assume that B
is Toeplitz matrix with the formation described in the pre-
vious paragraph. In (19) it is also shown that H(L+m+1)

M =
H(L+m)

M Bm. Rewriting 10 and replacing H(L+m+1)
M with

H(L+m)
M Bm,

Bm =
(
H(L+m)

M

)†
H(L+m+1)

M (20)

=
(
H(L+m)

M

)†
H(L+m)

M Bm (21)

= PBm (22)

where Pm =
(
H(L+m)

M

)†
H(L+m)

M 6= I, because H(L+m)
M is

not full column rank as a result of Lemma-1 and Lemma-
2. Therefore if Bm is a Toeplitz matrix, PBm can not
be a Toeplitz matrix with same formation for m > 0, i.e.

PBm 6= Bm. Equality only holds when P = I, which cor-
responds to m = 0 case. Hence, it contradicts with the as-
sumption about Bm. Hence errCMR(L+m) > 0 for m > 0.

Channel order is underestimated: When the channel or-
der is underestimated, the channel coefficients are not cor-
rectly estimated [6] and this leads to nonzero cost function
for underestimated channel orders.
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Table 1: CMR and MDL performances (percentage of true
channel order estimate)for different channel order and num-
ber of channel. SNR is 15dB.

Channel Number of channels, P
order CMR MDL

L 2 3 4 5 6 7 2 3 4 5 6 7

2 92.2 99.4 99.8 99.8 100 100 67.8 66.2 69 65.4 68.8 65.6
3 80.4 95.4 98.8 98.6 99.4 99.4 69.0 19.8 76.2 74.4 80.0 79.4
4 74.0 92.8 98.2 98.4 98.8 99.6 35.0 67.4 76 83.4 79.8 85.4
5 66.6 86.8 93.4 96.8 98.4 98.4 21.8 66.2 82.8 88.0 90.8 91.8
6 54.8 79.8 90.6 93.8 97.2 97.8 11.0 57.2 77.8 86.0 90.2 89.4
7 42.2 69.8 83.8 90.4 93.4 94.6 5.4 46.6 74.2 85.8 89.8 91.4
8 37.0 62.4 78.6 86.6 90.8 93.0 2.6 38.4 71.6 85.0 93.2 93.6
9 30.4 55.4 69.4 79.4 84.8 90.2 1.0 27.6 61.2 82.6 89.0 94.4

10 22.0 43.4 61.8 70.2 77.4 83.8 0 16.0 51.8 73.4 85.2 90.8

Table 2: AIC and Liavas performances (percentage of true
channel order estimate)for different channel order and num-
ber of channel. SNR is 15dB.

Channel Number of channels, P
order AIC Liavas

L 2 3 4 5 6 7 2 3 4 5 6 7

2 52.6 23.4 14.0 7.8 6.0 4.8 18.6 44.2 62.4 82.2 90.0 92.2
3 44.2 29.2 17.4 10.0 11.2 10.0 7.4 30.4 45.0 63.8 73.6 80.6
4 44.0 35.6 19.4 16.8 11.8 8.0 3.2 17.2 33.8 44.2 58.8 68.8
5 36.4 34.2 23.0 17.4 13.6 10.2 1.6 9.6 25.4 37.6 46.8 60.0
6 32.2 40.2 27.6 21.4 14.2 12.0 0.2 6.8 14.4 23.6 32.0 41.4
7 22.6 40.0 30.2 22.2 16.0 12.2 0 2.0 6.6 14.2 19.2 26.0
8 24.8 39.0 31.6 22.2 20.2 15.2 0 0.6 2.6 8.6 14.0 16.6
9 16.4 42.6 33.0 24.6 19.0 13.4 0 0.2 2.6 5.4 8.0 12.6

10 0 38.6 34.0 23.0 20.4 17.0 0 0 0.8 1.6 5.0 6.8
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Figure 2: Channel order versus channel output estimation
error. True channel order is 5.
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Figure 3: Channel order estimation performance comparison
for L = 3, P = 3.
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Figure 4: Channel order estimation performance comparison
for L = 5, P = 3.
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Figure 5: Channel order estimation performance comparison
for L = 5, P = 5.
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