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ABSTRACT

This paper presents a novel lane edge feature extraction al-
gorithm based on digital interpolation. Zooming towards the
vanishing point of the lanes creates a visual effect of driving.
The positions of the lanes should not change significantly
on the image plane while the vehicle is moving along the
lanes. Considering the position information, more accurate
lane features can be extracted. A gradient based vanishing
point detection algorithm is incorporated to select the zoom-
ing area. The proposed algorithm shows outstanding perfor-
mance on extracting features belonging solely to the lanes
from severe noise environment. The algorithm is capable of
removing non-relevant features produced by shadows, other
vehicles, trees, buildings etc. The extracted feature map was
tested with a classic lane detection algorithm, used in LOIS
system. The detection results show that the improved feature
map is an important factor to the performance of the whole
system.

1. INTRODUCTION

Throughout the last two decades, a significant amount of re-
search has been carried out in the area of lane detection. A
complete typical model-based lane detection system consists
of four parts: lane modelling, feature extraction, detection
and tracking. Lane modelling is concerned with the mathe-
matical descriptions that best represent the lanes. Feature ex-
traction aims to find particular lane features such as colour,
texture, edge etc. The detection stage then fits the lane model
to the feature map and selects the best set of parameters.
Lane tracking could then be applied to follow the change
of lanes and reduce the system complexity by reducing the
search region in the parameter space.

Many lane detection systems have been suggested. How-
ever, a robust system which is able to cope with very complex
situations is yet to come. [1] presented the Likelihood Of Im-
age Shape (LOIS) lane detection system. The left and right
lanes are modelled as two parallel parabolas on the ground
plane. The perspective projected model parameters are then
estimated by applying the Maximum A Posteriori (MAP) es-
timator [2] based on the image gradient. It is robust in noise
environment. The LANA system [3] is similar to the LOIS
system at the detection stage but uses frequency features of
the lanes instead of the edges. [4] introduced a system using
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the B-spline lane model as well as the Canny/Hough Esti-
mation of Vanishing Points (CHEVP) algorithm to locate the
vanishing points of the horizontally segmented lanes. The
control points are then positioned by the snake algorithm.
[5] uses texture anisotropy field as features to segment the
lane from the background. The SPRINGROBOT System [6]
uses colour and gradient as lane features and the adaptive
randomised Hough transform to locate the lane curves on the
feature map. [7] presented a lane model based on the lane
curve function (LCF). Each lane boundary is represented by
two curves, one for the far-field and the other for the near-
field. The algorithm uses lane edges as features. For most
of the existing systems, the global shape information is only
included in the detection stage but not in feature extraction.

This paper focuses on the lane feature extraction stage.
The most commonly used feature is the image gradient or
the edges. It requires small computational power and results
in a sharp transition in the image intensity. Well-painted lane
markings produce strong edges at the lane boundaries which
benefit the detection of the lanes. However, as the environ-
ment changes, the lane edges may not be as strong and could
be heavily affected by the shadows, rain etc. The choice of
the edge threshold has always been a difficult task and some
existing systems chose a very small value or use the gradient
directly without thresholding [1, 8]. This means that many
unwanted features are included such as edges corresponding
to trees, cars, buildings, shadows and so on. The detection of
lanes is thus more difficult and time consuming since a large
number of outliers are involved. Other lane features, such
as textures, have proved to be useful as well [5]. The com-
putation of texture is much more complex than the gradient
and it still considers only the local information. As a result,
distractive features could also be included.

The proposed feature extraction algorithm considers the
characteristics of the lanes and the global shape information.
The idea is to gradually zoom towards the vanishing point
of the lanes on a single frame in order to simulate the view
seen by the driver. The edges of the zoomed images are
compared with the original image edges and the previously
zoomed edge maps. Most of the irrelevant features can be
removed from the edge map after the process. The system
block diagram is shown in Figure 1.

Section 2 describes the theory behind the algorithm and
concentrates on the effect of digital interpolating a lane im-
age. Section 3 and 4 presents the proposed algorithm in de-
tails. Section 5 briefly introduces the detection algorithm
used for testing the proposed feature extraction algorithm and
Section 6 shows the experimental results.
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Figure 1: Block diagram of the proposed system.

2. DIGITAL INTERPOLATION ON LANE IMAGES

The purpose of the proposed algorithm is to find the features
solely possessed by the lanes from the image. Suppose a ve-
hicle is driven on a clear straight road with continuous lane
marking and maintaining a constant lateral offset from the
lanes. From the drivers point of view, it is easy to notice that
the positions of lane markings does not change over short
periods of time. Of course the lane markings are actually
moving backwards as the vehicle moves forward. However,
since the colour and the width of the markings are similar, the
driver is tricked and think the lane markings are not moving.
This algorithm takes advantage of the above phenomenon
and tries to find the slightly changing features from the scene.
However, instead of actually moving along the road, our al-
gorithm is based on a single still image.

In order to simulate the view of driving, digital interpo-
lation is applied. By carefully selecting a region of the im-
age and interpolating this region back to the original image
size, simulated view is obtained. All objects on the image
will move backwards and their sizes and the positions will
change. However, the lane markings or boundaries maintain
similar appearances after changing their sizes and positions.

The first task is to select an appropriate area on the image.
It is straight forward to see that the vanishing point of the
left and right lanes is where the vehicle is heading towards.

Figure 2: Selected zooming area of an image.

Also, after the interpolation, the vanishing point should stay
at the same position. As illustrated in Figure 2, defining the
position of vanishing point vp as (vpx, vpy), the total number
of image rows as M, and the number of columns as N, the
width and height of the selected area could be calculated as:

saN = z×N (1)

saM = z×M (2)

where z is the zooming ratio and z2 is the ratio between the
area of the selected region and the original image area. The
selection of the zooming area must follow the rule that:

vpx
N− vpx

=
vpx− saL

saL+ saN− vpx
(3)

vpy
M− vpy

=
vpy− saU

saU + saM− vpy
(4)

where saL and saU are the position of the left and upper bor-
der of the selected area.

Subsequently, the selected area is interpolated back to the
original size. This operation moves all points except the van-
ishing point to new positions, which are calculated as:

xI(t +1) = vpx+(xI(t)− vpx)× 1
1− z

(5)

yI(t +1) = vpy+(yI(t)− vpy)× 1
1− z

(6)

where xI(t), yI(t) and xI(t +1), yI(t +1) represent the x and
y coordinate of point I before and after the interpolation re-
spectively. A point on a straight lane boundary before inter-
polation needs to stay on the same line after interpolation. To
prove this, we assume a straight line:

yI = axI +b (7)

which passes through the vanishing point and a point I. Sub-
stitute Equation 7 into Equation 6:

yI(t +1) = a ·vpx+b+(a ·xI(t)+b−a ·vpx−b)
1

1− z
(8)

which could be rearranged to give:

yI(t +1) = a ·
[

vpx+(xI(t)− vpx) · 1
1− z

]
+b (9)
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Substitute Equation 5 into Equation 9, we get:

yI(t +1) = axI(t +1)+b (10)

Equation 10 proves that the points on the lane will stay
on the same line after interpolation.

So far we have assumed straight lanes and continuous
lane markings. However, a multiple vanishing points detec-
tion algorithm, along with a iterative zooming process readily
solves the problem for the cases of curved lanes and discon-
tinuous lanes. This will be discussed in details in section 3
and 4.

3. VANISHING POINT DETECTION

Vanishing point detection is the first step of the algorithm. Its
location is very important for the rest of the task. Although a
few pixels variation of the vanishing point position does not
significantly influence the system performance, the detected
vanishing point has to be corresponding to the lanes. Most
of the vanishing point detection algorithms are based on the
Hough transform [4, 9, 10]. However, these methods require
choosing hard thresholds for both edge detection and Hough
space accumulator. It is very difficult to find a suitable set of
thresholds for various tasks and environment. In this paper,
we assume the road is flat. The vanishing line or the hori-
zon could be calculated using the camera parameters. With
this, the detection of the vanishing point is reduced to a one
dimensional search.

First, the gradient map is generated by means of a Sobel
edge mask. A very small threshold is applied to reduce the
computation. The threshold in our case is between 10 and
40 from non-normalised gradient which is small enough to
locate lane features under various conditions. Assuming an
edge point is belonging to a lane, it is likely that the orienta-
tion of this edge is perpendicular to the gradient direction of
the lanes. In this case, a line passing through this edge with
the direction normal to its gradient orientation is generated
to estimate the lane. The intersection of this line and the van-
ishing line can contribute to the estimation of the vanishing
point.

A one dimensional accumulator with a length equals 2N
(−0.5N ∼ 0.5N) is created to account for the possibility of
the vanishing point being outside the image. Each edge pro-
duces a line and each time the line intersects the vanishing
line, the corresponding element in the accumulator incre-
ments by (1+gm) where gm is the normalised gradient mag-
nitude. The accumulator is then smoothed by a Gaussian low
pass filter to compensate the inaccuracy of edge orientation.
The element with the most votes corresponds to the vanishing
point position. The problem is that if the lane is a curve, the
vanishing point position of the lane changes gradually with
distance. To solve this problem, the image is partitioned into
a few horizontal sections as shown in Figure 3.

The vanishing points for different image sections are de-
tected only using the edge points in the current section. In
the far-field, the number of lane edges is comparably lower
than that of the near-field. In this case, a tracking process
is also included. The search region of the upper section is
based on the vanishing point position in the lower sections
and the previous vanishing point movement. An example of

Figure 3: Vanishing point detection result. The image is hor-
izontally partitioned and each partition is labelled. The white
horizontal line is the horizon or the vanishing line. The van-
ishing point of each region is labelled respectively.

the multiple vanishing point detection result is given in Fig-
ure 3. The vanishing point corresponding to each image band
is labelled respectively.

4. LANE FEATURE EXTRACTION

The task is now to find a way to extract the lane features.
Since the points on the lane will stay on the same line after in-
terpolation, the simplest idea is to apply the ‘logical and’ op-
erator to the original image edge map and to the interpolated
image edge pixel by pixel. This means that if the interpolated
edges overlap with the original image edges, these edges are
likely to be belonging to the lanes. Furthermore, the orienta-
tion of the overlapping edges should be similar. The allowed
direction difference is set to be between 0 ∼ π/2rads in or-
der to tolerate curves, edge detection errors and the orienta-
tion change caused by severe shadows. However, unwanted
edges have the potential to overlay and have similar orien-
tation as well. In this case, an iterative zooming process is
suggested. Based on experiments, 10 iterations of a gradu-
ally zooming process are normally sufficient to remove most
of the noise even under very severe conditions.

During the interpolation stage, bilinear interpolation is
chosen for its low complexity and satisfactory performance.
The one dimensional bilinear interpolation between two
points (x0,y0) and (x1,y1) is given by:

y = y0 +
(x− x0)(y1− y0)

x1− x0
(11)

In the 2D cases, interpolation is first applied in x-direction
then in y-direction.

Edge detection is performed after each interpolation pro-
cess. The edge map is then compared with the edge map
generated by previous iterations. Only the positions oc-
cupied by similarly orientated edges throughout the whole
process are preserved. Specifically, if the orientation of
I(x,y)original , I(x,y)1, . . . , I(x,y)iter are similar, then

I(x,y) f inal = I(x,y)original&I(x,y)1&
I(x,y)2& . . .&I(x,y)iter

(12)

Another possibility is to accumulate the overlapping
edges and set a threshold to ensure the final edge positions
are occupied most of the time.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a), (d) and (g): input images excluding the part above the vanishing line. (b), (e) and (h): detection results of (a),
(d) and (g) respectively based on image gradient. (c), (f) and (i): detection results of (a), (d) and (g) respectively based on
feature maps generated by the proposed algorithm.

The the zooming ratio, z, is also an important parameter.
It is unreasonable to select a very small zooming area. This
introduces large image distortion and also causes the system
to remove a large number of lane features if the lanes are
segmented lines. It has been found by experiment that the
minimum degree of zooming should be round 85%. Con-
sequently, a large zooming ratio is applied at each iteration
(decremented from 100% to 85%) and only a very small por-
tion of each segmented lane marking will be erased during
the process. This allows the algorithm to deal with seg-
mented or dashed lines.

For curved lanes, the vanishing point varies with dis-
tance. In this case, the zooming process is separated into
different sections. Each section of the image zooms into the
corresponding vanishing point. Also, the results of the edge
detection on each section are compared separately.

Finally, most of the unwanted features are removed from
the edge map and the remaining edges are marked to be ‘1’s.
In order to give each pixel a different weighting, the ‘1’s are
replaced by the corresponding gradient magnitudes. Further-
more, a weighted sum of the proposed feature map with the
original gradient map produces a new feature map with mag-
nified lane features. Some example feature extraction results
are shown in Figure 4.

5. DETECTION

The detection of the lanes is implemented using the de-
formable template matching algorithm proposed in [1]. The
lanes are modelled as two parallel parabolas as in the case of
on the ground plane, and transformed to the image plane as:

xL =
s1

y− vpy
+ s2(y− vpy)+ vpx (13)

xR =
s1

y− vpy
+ s3(y− vpy)+ vpx (14)

where xL and xR are the x-coordinate of the left and right
lane model. s1, s2 and s3 are the three parameters need to be
determined.

In contrast to LOISs method, by detecting the vanish-
ing points, vpx becomes a known parameter. Specifically, it
equals the vanishing point position of the lowest image band.
The Metropolis algorithm [11] is applied to iteratively opti-
mise the parameters and maximise the likelihood function.

6. EXPERIMENTAL RESULTS

In this section, we show the assessment of the proposed
method. The algorithm (only feature extraction) is success-
fully implemented in real time on the TMS320DM6437 DSP
platform from Texas Instruments. The system is able to
achieve above 23 frames per second with a 352×240 video
input. The frame rate could be further increased by optimis-
ing the code [12, 13]. It is worth noting that only the image
gradient map is chosen here for comparison since the pro-
posed algorithm only uses the gradient information during
the entire process and could be easily extended to incorperate
other features. Therefore, comparison between other types of
feature maps is not relevant.

The test images included in this section are chosen from
the most difficult scenes and from several video sequences.
In Figure 4 (a) and (d), both scenes are affected heavily by
shadows. A diverging lane scene is included in Figure 4 (g).
The corresponding gradient maps are shown in Figure 4 (b),
(e) and (h). All of these gradient maps contain a large number
of unwanted feature points. Figure 4 (c), (f) and (i) show the
feature map obtained using the proposed algorithm. Most
of the unwanted features are removed. Comparing with the
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gradient maps, the proposed feature maps are much cleaner
while the lane features are well preserved.

The detection of the lanes is based on the metropolis al-
gorithm, which does not guaranty to find the global maxi-
mum. The parameters update is based on a random selection
process. In this case, the detection result varies even based
the same feature map. The parameter settings during the de-
tection stage are optimised for both feature maps.

The input images shown in Figure 4 are tested 200 times
and the resultant parameters: s1, s2 and s3 from Equation 13
and 14, are compared with the manually selected true param-
eters. The average absolute error for each of the parameters
is calculated. As the required accuracies and dynamic ranges
of s1, s2 and s3 are different, the error ratio between the de-
tection results based on different feature maps would be il-
lustrative. Defining the parameter estimation error based on
proposed feature map as EP(s) and the parameter estimation
error based on gradient map as EG(s). The relationship be-
tween EP(s) and EG(s) could be represented as:

ER(s) =
EP(s)
EG(s)

(15)

Table 1 shows the ER value corresponding to different
parameters calculated from Figure 4 (a), (d) and (g) as well
as the detection time ratio TP/TG.

Figure 4(a) Figure 4(d) Figure 4(g)
ER(s1) 0.11 0.36 1.06
ER(s2) 0.27 0.99 0.41
ER(s3) 0.38 0.27 0.19
TP/TG 0.19 0.18 0.56

Table 1: ER values corresponding to s1, s2 and s3 and the
Time ratio TP/TG calculated from Figure 4 (a), (d) and (g).

As Table 1 shows, the proposed feature map exhibits sig-
nificant advantage over the traditional gradient map in ex-
tremely noisy environment. The detection processing time
based on the proposed feature map is also massively reduced
because much less feature points are included.

It is also important to note that sometimes the combina-
tion of the two feature maps gives better results since the pro-
posed algorithm removes edges corresponding to very short
segments of the lane markings. The weighted sum of the two
feature maps (normally a larger weighting for the proposed
feature map gives better performance) includes all the fea-
tures and magnifies the ones that most likely to be belonging
to the lanes.

7. CONCLUSION

In this paper, a novel lane feature extraction algorithm has
been presented. This algorithm not only uses local infor-
mation but also includes the global shape information of the
lanes. This is achieved by simulating the vision of driving
based on digital interpolation. Difficulties were encountered
while extracting features from curved and segmented lane
markings. However, the problems are solved by a multiple
vanishing points detection algorithm and an iterative zoom-
ing process. The results of this algorithm show huge advan-

tages over the traditional gradient maps but at the expense
of an increased computational complexity (although it does
significantly reduce the computational cost needed at the de-
tection stage). Experiments showed that the feature map is
very important for the detection stage. Removing unwanted
features in noise environment helps the detection algorithm
to locate the lane features quickly and the error rate has been
reduced.

Our current work is focused on the inclusion of more
features, such as texture and colour, in order to increase the
performance and reduce the number of iterations needed for
noise removal.

REFERENCES
[1] K. Kluge and S. Lakshmanan, “A deformable-template

approach to lane detection,” in Proceedings of the In-
telligent Vehicles ’95 Symposium, 1995, pp. 54–59.

[2] Steven M. Kay, Fundamentals of Statistical Process-
ing, Volume I: Estimation Theory, Prentice Hall Signal
Processing Series, 1993.

[3] C. Kreucher and S. Lakshmanan, “LANA: a lane
extraction algorithm that uses frequency domain fea-
tures,” Robotics and Automation, IEEE Transactions
on, vol. 15, pp. 343 – 350, 1995.

[4] Yue Wang, Eam Khwang Teoh, and Dinggang Shen,
“Lane detection and tracking using B-snake,” Image
and Vision Computing, vol. 22, pp. 269–280, 2004.

[5] Jinyou Zhang and H.-H. Nagel, “Texture-based seg-
mentation of road images,” in Proceedings of the Intel-
ligent Vehicles ’94 Symposium, 1994, pp. 260–265.

[6] Qing Li, Nanning Zheng, and Hong Cheng,
“SPRINGROBOT: A prototype autonomous vehi-
cle and its algorithms for lane detection,” IEEE
Transactions on Intelligent Transportation Systems,
vol. 5, pp. 300–308, 2004.

[7] Jong Woung Park, Joon Woong Lee, and Kyung Young
Jhang, “A lane-curve detection based on an lcf,” Pattern
Recognition Letters, vol. 24, pp. 2301–2313, 2003.

[8] Dong-Joong Kang and Mun-Ho Jung, “Road lane
segmentation using dynamic programming for active
safety vehicles,” Pattern Recognition Letters, vol. 24,
pp. 3177–3185, July 2003.

[9] J.A. Shufelt, “Performance evaluation and analysis of
vanishing point detection techniques,” Pattern Analysis
and Machine Intelligence, IEEE, vol. 21, pp. 282–288,
Mar. 1999.

[10] Yue Wang, Dinggang Shen, and Eam Khwang Teoh,
“Lane detection using spline model,” Pattern Recogni-
tion Letters, vol. 21, pp. 677–689, 2000.

[11] I. Beichl and F. Sullivan, “The Metropolis algorithm,”
Computing in Science and Engg, vol. 2, pp. 65–69,
2000.

[12] Naim Dahnoun, Digital Signal Processing Implemen-
tation: using the TMS320C6000 processors, Prentice
Hall PTR, 2000.

[13] Naim Dahnoun, C6000 DSP teaching ROM, Texas
Instruments, 2nd edition.

484


