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ABSTRACT
Spatial Multiplexing (SM) is an effective means for enhanc-
ing the transmission data rate in Multiple-Input Multiple-
Output (MIMO) systems, particularly when used in combi-
nation with precoding. Precoding based on the knowledge of
the slow-varying statistics of the channel exploits this infor-
mation at the transmitter to combat the effect of fading in SM
systems. Moreover, this technique requires little feedback
overhead and can therefore be used in fast fading environ-
ments. In this paper, we consider a MIMO-Orthogonal Fre-
quency Division Multiplexing (OFDM) system. We exploit
the knowledge of the tap correlation and the transmit antenna
correlation present in the frequency-selective channel to pro-
pose a low-complexity precoding scheme that minimizes the
sum of the symbol Mean Square Errors (MSEs) over all sub-
carriers. Simulations show that exploiting the knowledge of
both the tap and the spatial correlation improves the perfor-
mance of the MIMO-OFDM system.

1. INTRODUCTION
The presence of multiple antennas at both the transmitter and
the receiver in communication systems can provide a consid-
erable gain in terms of capacity, coverage and link reliabil-
ity. Thanks to these benefits, Multiple-Input Multiple-Output
(MIMO) techniques have become popular in emerging wire-
less standards (for example the 3GPP LTE [1]). Whereas any
type of modulation scheme can be used with MIMO systems,
the combination of multiple antennas techniques with the Or-
thogonal Frequency Division Multiplexing (OFDM) modula-
tion scheme is seen as the preferred choice for the next gen-
eration of wireless standards. The OFDM scheme divides a
frequency-selective channel into multiple narrow-band sub-
channels and enables low-complexity equalization.

While MIMO techniques already improve the perfor-
mance when the receiver alone knows the channel, the
achievable gain can be further enhanced when the transmit-
ter has knowledge of the channel [2]. If only the statisti-
cal knowledge of the channel is available, precoding exploits
these slow-varying properties (e.g. the channel covariance
matrix) to perform signal shaping before transmission [3],
[4].

Precoding is particularly attractive in the presence of cor-
relation between the antennas (spatial correlation) or corre-
lation between the taps of a frequency-selective channel. In-
deed, it is then used to alleviate the performance reduction of
a Spatial Multiplexing (SM) system due to these correlations.

Whereas the presence of spatial correlation is a well
known phenomenon, tap correlation has been justified in the

literature under some propagation scenarios [5], and is also
known to be caused by the pulse shaping filters at the trans-
mitter and the receiver [6], [7]. Following these assumptions,
Yoon and al. [8] proposed a precoding scheme that exploits
the knowledge of both the correlation between the transmit
antennas and the correlation between the channel taps to im-
prove the capacity of a MIMO-OFDM system.

In this paper, we develop a precoder that exploits the
knowledge of these correlations to minimize the sum of the
symbol Mean Square Errors (MSEs) over all subcarriers of a
MIMO-OFDM system.

Following the assumptions made in [6], [7] and [8], we
consider that the tap and the spatial correlations have inde-
pendent effects and can therefore be separated. We then de-
rive the form of our precoding matrix based on the Jensen’s
inequality and the derivations made in [3].

The outline of this paper is as follows. In section 2, we
introduce the channel model (including both spatial and tap
correlations) and the received signal model. In section 3, we
provide the derivations of our precoding matrix. Simulations
in section 4 present the performance of our precoder and sec-
tion 5 concludes our work.

The following notations are used in this paper. The
vectors and matrices are in boldface letters, vectors are de-
noted by lower-case and matrices by capital letters. The
superscripts (·)T and (·)H denote the transpose and Her-
mitian transpose operators, respectively. E[·]H is the ex-
pectation operator over H, IN is an identity matrix of size
(N ×N) and [A]i j denotes the (i, j) element of the matrix
A. CN×1 denotes the set of complex vectors of size (N ×1),
CN×M denotes the set of complex matrices of size (N ×M)
and x ∼CN(0,R) is the vector of zero-mean Gaussian dis-
tributed complex elements with covariance matrix R.

2. SYSTEM MODEL
We consider a MIMO-OFDM communication system with
K subcarriers, Nt transmit antennas and Nr receive antennas.
We define Ns as the number of transmit streams, where Ns ≤
min(Nr,Nt ). In this section, we express the channel model in
both the time domain (section 2.1) and the frequency domain
(section 2.2) and give the per-subcarrier representation of the
signal model (section 2.3).

2.1 Channel Model in the time domain
The L channel taps (frequency-selective) MIMO channel is
described in a matrix form as

Htotal = [H0 . . .HL−1] (1)
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where Hl ∈ CNr×Nt represents the MIMO channel at the
channel tap l and Htotal ∈ CNr×Nt L denotes the whole chan-
nel matrix. We consider the presence of correlation between
antennas at the transmitter whereas receive antennas are as-
sumed to be decorrelated. Physically, this corresponds for
example to a transmitter situated on a high location with
waves coming from a small angular spread while the receiver
is located in a rich scattering environment [9].

As introduced above, we assume the presence of correla-
tion between the channel taps. We consider in this paper that
the tap correlation and the spatial correlation have indepen-
dent effects, as justified in [6], [7] and [8], and can therefore
be separated. Following this assumption a particular repre-
sentation of the channel model in the time domain can be
expressed as mentionned in those papers:

Htotal = HE
w

(

R
T/2
mp ⊗R

1/2
ta

)

(2)

where ⊗ is the Kronecker product, and
• HE

w denotes an Nr × Nt L white Zero-Mean Circularly
Symmetric Complex Gaussian (ZMCSCG) channel ma-
trix with Independent and Identically Distributed (i.i.d.)
elements of unit variance (Rayleigh fading).

• R
1/2
ta is an Nt ×Nt matrix that represents the Cholesky

matrix of the transmit antenna correlation matrix Rta. It
is defined as

Rta =
(

R
1/2
ta

)H
R

1/2
ta . (3)

The entries of Rta are determined by the transmit an-
tenna spacing and the angular spread. We model Rta by
an exponential correlation model [Rta]i j = ρ |i− j|

ta , where
ρta = 0 means no correlation and ρta = 1 means full cor-
relation. As we assume no receive antenna correlation,
the columns h1 . . .hNr of HH

l can be assumed to be i.i.d.
h j ∼ CN (0,Rta).

• Rmp denotes the L×L taps correlation matrix and is de-
fined as

[Rmp]l1,l2 =
√γl1 ·

√γl2 ·ρ
mp
l1,l2 (4)

where γli is the average link power of the lth
i tap, under the

normalization constraint ∑L−1
li=0 γli = 1 and ρmp

l1,l2 denotes
the correlation factor between the taps l1 and l2, with its
magnitude satisfying 0 ≤ |ρmp

l1,l2 | ≤ 1.

2.2 Channel model in the frequency domain
Here, we give an equivalent per-subcarrier representation
of the channel model. Based on the time domain channel
model (2), we express the frequency representation of the
channel for the kth subcarrier (0 ≤ k ≤ K −1), as introduced
in [8]

Hk = HE
w

(

R
T/2
mp wk ⊗R

1/2
ta

)

(5)

where wk denotes the discrete Fourier trans-
form vector for the kth subcarrier, given as wk =

[e− j 2π
K k×0 . . .e− j 2π

K k×(L−1)]T .

2.3 Signal Model
We consider a MIMO-OFDM system as shown in the block
diagram in Fig. 1. At the channel output, the received vector

for the kth subcarrier is denoted by yk ∈ CNr×1 and can be
expressed as

yk = HkFkxk +nk (6)
where xk ∈ CNs×1 denotes the transmit symbol vector, Fk ∈
CNt×Ns is the precoding matrix and nk ∈ CNr×1 is the zero-
mean circularly symmetric complex additive white Gaussian
noise with unilateral power spectral density noise N0. At
the receiver, after suppression of the cyclic prefix, serial-to-
parallel conversion and Fast Fourier Transform (FFT), the
samples are processed by a Minimum Mean Square Error
(MMSE) equalizer.

3. DERIVATION OF THE PRECODING MATRIX
In this section, we derive a per-subcarrier based precoder that
minimizes the sum of the symbol MSEs over all subcarriers
for a MIMO-OFDM system. It is based on the knowledge
of both the tap and the spatial correlation matrices. We first
express the optimization problem for the MSE criterion (sec-
tion 3.1). Then, we simplify the objective function based on
our channel model (section 3.2) and reformulate it using the
Jensen’s inequality in section 3.3. Finally, we give the form
of the precoding matrix (section 3.4).

3.1 Definition of the Optimization Problem
The problem consists in finding the set of matrices Fk that
minimizes the sum of the symbol MSEs over all subcarriers,
i.e.

MSE = min
x̂k

K−1

∑
k=0

EH
[
tr

(
(x̂k −xk)(x̂k −xk)

H)]
(7)

= min
Fk

K−1

∑
k=0

EH
[
tr

(
(INs +ξ0F

H
k HH

k HkFk)
−1)] (8)

and subject to the power constraint

K−1

∑
k=0

tr(FkF
H
k ) ≤ Ptotal . (9)

We denote by x̂k the output of the linear MMSE equalizer
and assume E

[
xkx

H
k
]
= INs and ξ0 , 1/N0.

3.2 Simplification of the Objective Function
Using the Singular Value Decomposition (SVD) of the vector
R

T/2
mp wk and the matrix R

1/2
ta , we obtain

R
T/2
mp wk = UkΛkv

H
k (10)

R
1/2
ta = UtaΛ

1/2
ta VH

ta. (11)

Since the product of R
T/2
mp wk results in a vector, we have

vH
k = 1 (unitary matrix of dimension 1× 1). We can thus

express Hk as

Hk = HE
w
(
UkΛk ⊗UtaΛtaV

H
ta

)
. (12)

Then, using the following properties of the Kronecker prod-
uct

a⊗BC = (a⊗B)C (13)
AB⊗CD = (A⊗C)(B⊗D) (14)
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Figure 1: MIMO-OFDM with precoding

equation (12) becomes

Hk = HE
w(Uk ⊗Uta)(Λk ⊗Λta)V

H
ta. (15)

The Kronecker product of two unitary matrices leads to a
unitary matrix and the properties of a ZMCSCG matrix (HE

w)
do not change when multiplied by a unitary matrix. Thus, we
have

Hk ∼HE
w (Λk ⊗Λta)V

H
ta (16)

where A ∼ B indicates that B has the same distribution as
A. Also, since the product RT/2

mp wk is a vector, it has a single
non-zero eigenvalue denoted by [Λk]1,1. We can then write

HE
w(Λk ⊗Λta) =[Λk]1,1 ·Hw ·Λta

=
√gk ·Hw ·Λta (17)

with √gk , [Λk]1,1 and where Hw is an Nr ×Nt matrix con-
taining the leftmost Nt columns of HE

w. Substituting (17)
into (16) we obtain

Hk ∼
√gk ·Hw ·Λta ·VH

ta (18)

∼√gk ·Hw ·R1/2
ta . (19)

Following the derivations above, we then include the statis-
tical behavior of the channel given in (19) into the MSE ex-
pression (8). We obtain

MSE =min
Fk

K−1

∑
k=0

EH

[

tr
((

INs

+gkξ0F
H
k R

H/2
ta HH

wHwR
1/2
ta Fk

)−1
)]

. (20)

Next, we replace R
1/2
ta by its SVD (11) into (20) and get

MSE =min
Fk

K−1

∑
k=0

EH

[

tr
((

INs +gkξ0

×FH
k VtaΛ

1/2
ta UH

taH
H
wHwUtaΛ

1/2
ta VH

taFk
)−1

)]

.

(21)

3.3 Reformulation of the Objective Function
Since the properties of a ZMCSCG matrix do not change
when multiplied by a unitary matrix, we have HwUta ∼Hw.
Then, we use the Jensen’s inequality to move the expectation
operator inside the trace operator of (21). Since the function
f (X) = tr(X−1) is a convex function, we get an upper bound
on the expression of the MSE:

MSE ≥min
Fk

K−1

∑
k=0

tr
((

INs +gkξ0

×FH
k VtaΛ

1/2
ta EH

[
HH

w Hw
]

︸ ︷︷ ︸

INt

Λ
1/2
ta VH

taFk
)−1

)

. (22)

Using the following property of the trace

tr
(

(IN +AB)−1
)

= tr
(

(IM +BA)−1
)

+C (23)

where A is of size (N ×M), B is of size (M×N) and
C = M −N. In our case, C can be omitted because it does
not depend on Fk and thus, does not affect the optimization
problem. We can then write the expression of the trace in (22)
as

tr
((

INt +gkξ0Λ
1/2
ta VH

taFkF
H
k VtaΛ

1/2
ta

)−1
)

. (24)

Defining

Bk = Λ
1/2
ta VH

taFkF
H
k VtaΛ

1/2
ta (25)

we obtain

MSE ≥min
Bk

K−1

∑
k=0

tr
(
(INt +gkξ0Bk)

−1) . (26)

We then perform the eigenvalue decomposition of Bk

Bk = UBkΛBkU
H
Bk (27)

where UBk and ΛBk are square matrices and have same di-
mensions. Replacing it into (26), we get

MSE ≥min
ΛBk

K−1

∑
k=0

tr
(
(INt +gkξ0UBkΛBkU

H
Bk)

−1) (28)

≥min
ΛBk

K−1

∑
k=0

tr
(
(INt +gkξ0ΛBk)

−1) . (29)
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Equation (29) means that looking for a matrix Fk which leads
to a matrix Bk that is diagonal, does not make the optimiza-
tion problem suboptimal. Nevertheless, we still have to ex-
amine now, how the choice of a diagonal matrix impacts the
transmit power constraint. Using the following cyclic prop-
erty of the trace operator: tr (AB) = tr (BA), where the
product of the matrices A and B is a square matrix, we can
write the transmit power constraint as

K−1

∑
k=0

tr(FkF
H
k ) =

K−1

∑
k=0

tr(VtaV
H
ta

︸ ︷︷ ︸

INt

FkF
H
k ) (30)

=
K−1

∑
k=0

tr(VH
taFkF

H
k Vta). (31)

We can then equivalently write (31) as

K−1

∑
k=0

tr(Λ−1/2
ta Λ

1/2
ta VH

taFkF
H
k VtaΛ

1/2
ta

︸ ︷︷ ︸

Bk

Λ
−1/2
ta ) (32)

=
K−1

∑
k=0

tr(Λ−1/2
ta BkΛ

−1/2
ta ) =

K−1

∑
k=0

tr(Λ−1
ta Bk) ≤ Ptotal . (33)

Because it can be proved using the majorization theory [3]
that

K−1

∑
k=0

tr(Λ−1
ta ΛBk) ≤

K−1

∑
k=0

tr(Λ−1
ta Bk), (34)

we also have

K−1

∑
k=0

tr(Λ−1
ta ΛBk) ≤ Ptotal (35)

which means that a diagonal matrix ΛBk does not relax the
power constraint with respect to a generic matrix Bk. The
optimization problem is now expressed by (29) together with
the transmit power constraint in (35) and where the matrix
ΛBk has been defined in (25) and (27).

3.4 Solution of the Optimization Problem
We have shown above that a precoding matrix Fk that diago-
nalizes the MSE expression is a solution to the optimization
problem. Actually, the matrix Fk must have the form:

Fk = VtaΛFk (36)

where Vta denotes the eigenvectors of the transmit anten-
nas correlation matrix, these eigenvectors indicate the sta-
tistically preferred directions for transmission, and ΛFk is
a diagonal matrix that allocates power across the transmit
streams. Such a result has been obtained for flat fading chan-
nels in [4]. It can be easily extended to the OFDM case, with
no dependence of matrix Vta with respect to k, because the
correlation between the transmit antennas, Rta = VtaΛtaVH

ta
(combine (3) and (11)), is seen as constant over all subcarri-
ers in our channel model. A similar result with OFDM has
been obtained in [8] for the capacity criterion. Looking at
definition (25) of Bk, it can be verified that Fk = VtaΛFk
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Figure 2: BER for a non-precoded MIMO-OFDM system
(K = 64, L = 4, Ns = 2 and Nr = Nt = 2) for different val-
ues of correlation between the channel taps and between the
transmit antennas. At 20 dB, a tap correlation factor of 0.7
introduces a 1.2 dB loss. An antenna correlation of 0.7 brings
a loss of 3 dB and the presence of both tap and transmit an-
tenna correlations (ρta = ρmp

li,l j
= 0.7) bring a loss of 4 dB.

makes Bk diagonal. Based on this result, the problem be-
comes

MSE ≥min
ΛFk

K−1

∑
k=0

tr [(INt +gkξ0

×Λ
1/2
ta VH

taVtaΛFkΛFkV
H
taVtaΛ

1/2
ta

)−1
]

(37)

≥min
ΛFk

K−1

∑
k=0

tr
[(

INt +gkξ0Λ
1/2
ta ΛFkΛFkΛ

1/2
ta

)−1
]

(38)

where the diagonal elements of the matrix ΛFk are computed
by a waterfilling algorithm based on the statistical knowledge
of the channel. Its inputs are the number of transmit streams
(Ns), the maximum power (Ptotal) and the eigenvalues of the
matrices

Mk = gkξ0Λta for 0 ≤ k ≤ K −1 (39)

This power allocation algorithm is derived from the algo-
rithms presented in [10] (pages 127-135).

4. RESULTS
We consider a MIMO-OFDM system with 64 subcarriers
(K = 64) and a frequency-selective channel with 4 equally
spaced channel taps (L = 4). All the simulations are for
a 16 QAM modulation scheme and without channel cod-
ing. We consider no correlation between the receive an-
tennas and model the transmit antenna correlation matrix
as [Rta]i, j = ρ |i− j|

ta . The elements of the tap correla-
tion matrix [Rmp]li,l j

are modeled as introduced in (4) with
γl/γl+1 = 3dB.

Fig. 2 shows the impact of the correlation on the per-
formance of a MIMO-OFDM system with Nr = Nt = 2 and
Ns = 2. The Bit Error Rate (BER) curves are drawn for a
non-precoded scheme. We consider a correlation between
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Figure 3: Performance gain of exploiting the knowledge of
the correlation between the channel taps (with K = 64, L = 4,
ρmp

li,l j
= ρta = 0.7,Ns = 1 and Nr = Nt = 2). In this configura-

tion, exploiting the knowledge of the correlation between the
channel taps brings an extra SNR gain of 0.6 dB.

the transmit antennas (ρta) of 0 and 0.7 and a tap correlation
factor (ρmp

li,l j
) of 0 and 0.7 for all li and l j. We observe that

the performance of the system degrades with the presence of
these correlations.

In Fig. 3, we show the performance obtained for a
MIMO-OFDM system (with Nr = Nt = 2, Ns = 1 and
ρmp

li,l j
= ρta = 0.7) for the non-precoded scheme and for

two precoding schemes:
• one for which the precoder exploits only the knowledge

of the correlation between the transmit antennas (antenna
correlation based precoding)

• and the other one for which the precoder exploits the
knowledge of both the correlation between the transmit
antennas and the correlation between the channel taps
(antenna and tap correlations based precoding).

Fig. 4 compares the BER curves obtained with our MSE
precoder to that obtained with the capacity precoder of [3]
(with Nr = Nt = 4, Ns = 2 and ρmp

li,l j
= ρta = 0.7). We can ob-

serve that the MSE precoder achieves a better BER than its
capacity counterpart. Except at low SNR where the capacity-
based precoder suppresses more data streams than the pro-
posed MSE precoder. Simulated results (not reported in
this paper) logically support that in terms of bit per second/
Hertz (bps/Hz), the capacity criterion performs better than
our MSE-based precoder.

5. CONCLUSIONS
In this paper, we have proposed a precoding scheme for min-
imizing the sum of the symbol MSEs over all subcarriers for
a MIMO-OFDM system. The precoder exploits the knowl-
edge of the correlation between the channel taps and also
that between the transmit antennas. Simulation results show
that exploiting this knowledge brings extra performance gain
compared to a non-precoded scheme. We can also observe
that the proposed precoder achieves a lower BER than the
capacity-based precoding.
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Figure 4: BER for the capacity and the MSE criteria (with
K = 64, L = 4, ρmp

li,l j
= ρta = 0.7,Ns = 2 and Nr = Nt = 4). We

can observe that above a 5 dB SNR the MSE curve reaches
a lower BER than the capacity-based precoder. At 20 dB we
have a gain of 1.8 dB compared to its capacity counterpart.
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