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ABSTRACT

We address in this paper the problem of transmitting data
to multiple mobile stations (MS) using a decode-and-forward
strategy. The links between the base station and relays are
considered ideal and we study the downlink between relays
and mobile stations. We propose a method to optimize the
precoding vector in relays to cancel out multiple access in-
terference and to maximize the signal to noise ratio at the
mobile stations. Simulation results show that the maximum
diversity advantage can be obtained, which is the product of
the number of antennas at each relay by the number of relays
minus the total number of system constraints. Furthermore,
using Lagrange multipliers to optimize precoding vectors, we
obtain a flexibility that enables us to consider different cases
for signal to noise ratio at mobile stations.

1. INTRODUCTION

Today it becomes inevitable to establish high speed and re-
liable communications to mobile stations in dense urban en-
vironments. Recent relaying techniques show to be very
promising in order to extend the wireless network cover-
age and has become a very hot research area. In gen-
eral, the relaying protocols are divided into two main cat-
egories: Amplify-and-forward (AF) and decode-and-forward
(DF) [1]. In the DF case, the relays decode the received
signal then retransmit the information via a suitable pro-
cessing to MS. In the case of successful decoding in a relay,
the noise effect from the first link (base station to relay sta-
tions) is removed. To improve the performance, maximum
ratio combining [2] together with distributed beamforming
[3] are used to eliminate multiple access interference (MAI)
and at the same time to maximize the signal to noise ratio
(SNR) at receivers.

This paper addresses the downlink cellular network link
to the mobile stations. It can also be applied to selective
broadcast of multimedia data to network subscribers. In an
urban environment, because of shadowing effect, a good link
between base station (BS) and mobile stations is not guaran-
teed, even using multiple antennas in both transmitter and
receiver. One attractive configuration is to use a base sta-
tion communicating with some relays using high speed and
reliable channels. This configuration is easily achievable be-
cause BS and relays are supposed not to move. They can
be related by wireless link, satellite communications, cable,
optical fiber or whatever else. Therefore a noise-free ideal
link is assumed between BS and relays. In this paper we
concentrate only on relay-mobile link.

In the configuration proposed in this paper, the relays,
using multiple antennas, send the information corresponding
to all the mobiles at the same time and at the same carrier
frequency to all mobile stations using optimized precoding
vectors. The objective is to maximize the signal to noise ra-
tio at each mobile station and at the same time to minimize
the multiple access interference. The relay-mobile channel
is supposed to be frequency non selective Rayleigh fading

channel. However, orthogonal frequency division multiplex-
ing (OFDM) modulation can be used in the case of multipath
channel and the principles will remain the same. Further-
more, we suppose that we are in the context of low mobility
where the channel state information (CSI) can be obtained
and fed back to relay station(RS).

The main contribution of this work lies in applying
the Lagrange multipliers method to multiple-input multiple-
output (MIMO) systems, which is a flexible approach to cal-
culate precoding vectors and may be adopted for different
schemes and strategies. This method allows us to obtain
different and therefore adjustable SNR at receivers. The
proposed method consists of linearizing a set of optimizing
equations and to use matrix derivations to calculate the op-
timum weighting vectors. This paper also generalizes the re-
sults of [4], in which only two relay stations and two mobile
stations were used, to the case of L relays and N mobile sta-
tions. Simulation results show that the proposed precoding
vectors achieve the maximum diversity advantage that can
be obtained, which is the product of the number of antennas
at each relay by the number of relays minus the number of
constraints. In this paper we study two different cases, i)
each relay knows only its own channel to all MS, ii) each
relay knows completely the CSI. We obtain for each case the
optimum precoding vectors.

The rest of this paper is organized as follows: Section 2
gives a brief description of system model and introduces the
equations that define the system. Section 3 uses the vector-
based Lagrange multipliers method introduced in Appendix
A to optimize the precoding vectors. Then in section 4, a
special case where the same SNR is imposed at each mobile
station is studied. Finally, section 5 presents the simulation
results confirming the system performance. Some mathe-
matical aspects are discussed in the appendices.

2. SYSTEM MODEL

The system is composed of one transmitter node with M
antennas, L relay stations each with R antennas, and N
single-antenna mobile stations. For simplicity we will focus
our study for the case L = 2, then we will generalize the
results for arbitrary L under section 4. The system model
where L = 2 is given in Figure 1. Let us consider that a
signal s = [s1, s2, · · · sN ]T is to be transmitted from the base
station (BS in Figure 1) to mobile stations (MS1 to MSN in
Figure 1). We desire that each mobile station receives only
its intended data, i.e. MS1 receives only s1, MS2 receives
only s2, and so on. The bottle neck of the system is the
second hop, where data is transmitted from relays to each
mobile station and we suppose that the link between the
base station and the relays is ideal. Thus we assume that
relays will perfectly receive and decode the signal s. Then the
signal is multiplied by some precoding vectors before being
transmitted to mobile stations. Here we have used the same
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Figure 1: System model.

notations as in [4]:

x1 =

N∑
j=1

sjw
1
j , x2 =

N∑
j=1

sjw
2
j (1)

where wi
j of size R × 1 represents the precoding vectors of

ith relay. xi are then transmitted to mobile stations via the
Rayleigh channels hij , i = 1, 2, j = 1 · · ·N . The second hop
being a Rayleigh flat fading channel of size 1×R, the signal
at the jth mobile station can be expressed as:

yj = h1j · x1 + h2j · x2 + nj (2)

= h1j ·
N∑

k=1

skw
1
k + h2j ·

N∑
k=1

skw
2
k + nj , j = 1 · · ·N

where hij ∼ CN (0, IR) and nj denotes the Gaussian noise.
As stated above, we want yj to depend only on sj , that is to
say: ∑

k 6=j

skh1j ·w1
k +

∑
k 6=j

skh2j ·w2
k = 0 (3)

The problem with (3) is that each relay needs the channel
state information of the other relay in order to calculate its
own precoding vectors. This implies that there should be an
inter-connection link between the two relays. To overcome
this limitation we can impose each of the terms at the left
hand side of (3) to equal zero:∑

k 6=j

skh1j ·w1
k = 0 ,

∑
k 6=j

skh2j ·w2
k = 0 (4)

Of course the optimization constraints in (4) are more strict
than those given by (3), but using (4) the precoding vectors
can be calculated independently in each relay.

If either (3) or (4) is satisfied the resulting signal at each
mobile station is given by:

yj = sj

(
h1j ·w1

j + h2j ·w2
j

)
+ nj (5)

with nj denoting the additive white Gaussian noise at the
jth station. The precoding vectors must also guarantee that
the term in parentheses at the right hand side of (5) is a real
positive number to guarantee a coherent addition.

3. CALCULATION OF PRECODING VECTORS

In this section the Lagrange method is used to calculate the
appropriate precoding vectors as explained in Appendix A.
The following notations are used in the rest of this paper:

Hi =
[

hi
1

T hi
2

T . . . hi
N

T
]T

N×R
, i = 1, 2 (6)

Wi =
[

wi
1 wi

2 . . . wi
N

]
R×N

, i = 1, 2 (7)

Wi =
[

wi T
1 wi T

2 . . . wi T
N

]T

NR×1
, i = 1, 2 (8)

The aim of this section is to calculate Wi or equivalently wi
j

subject to a number of constraints that optimize an objective
function. In the following subsections we will discuss and
determine the constraints and the objective function.

3.1 Interference cancellation

As stated in section 2 precoding vectors must be able to
eliminate the MAI by respecting (3) or (4). Since it is more
desirable to calculate the precoding vectors of each relay in-
dependently, we will use the criteria expressed in (4). Equa-
tion (4) can be written in a matrix form using (6) and (8):

Ai1Wi = 0 with Ai1 =
(
sT ⊗ 1N×1 − diag(s)

)
∗Hi (9)

where ⊗ and ∗ respectively denote Kronecker and row-wise
Kronecker products1. Equation (9) is a set of N linear com-
plex equations for each relay that guarantee the cancellation
of intersymbol interferences. In order to obtain the equiv-
alent real equations we use the method introduced under
Appendix B. Using (29) we will obtain a set of 2N real
equations for each relay station:

<
{(

Ai1 ⊗
[

1 j
−j 1

])}
<

{(
Wi ⊗

[
1
−j

])}
= 02N×1

This quation has two rows per mobile station, the first row
is the real part of (9) and the second row is the imaginary
part of (9). We will rewrite this equation to simplify future
developments.

Âi1Ŵi = 02N×1 (10)

Note that Âi1 and Ŵi are only composed of real values.

3.2 Coherent addition

If the interference canceling constraint is respected, accord-
ing to (5), each mobile station MSj receives a signal con-
taining sj from each relay. Since the signal received at the
mobile station is the sum of these two signals, it is obvious
that they must arrive in phase at the mobile station. In
order to maintain the original constellation, without loss of
generality, we impose the coefficient of sj in (5) to be a real
number. This can be written as:

=
{
hij ·wi

j

}
= 0, i = 1, 2, j = 1 · · ·N (11)

Equations in (11) for each relay (i.e. i = 1 or 2) can be
grouped in a single matrix equation:

={Ai2Wi} = ={(IN ∗Hi) Wi} = 0, i = 1, 2 (12)

with * denoting again the row-wise Kronecker product. Us-
ing (29), this equation can be written as:

<
{(

Ai2 ⊗ [ −j 1 ]

)}
<

{(
Wi ⊗

[
1
−j

])}
= 0N×1

⇒ Âi2Ŵi = 0N×1 (13)

Since (13) is only about the imaginary part of hij ·wi
j , the

matrix Âi2 has a single row per mobile station.

1Row-wise Kronecker product of matrices A and B is a matrix
each line of which is the Kronecker product of corresponding lines
in A and B.
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3.3 Power constraint and the objective function

When posed formally, the problem consists of finding Wi

maximizing the SNR at mobile stations that satisfy a power
constraint as well as (10) and (13). It means that we must
define a transmission power limit Pi for each relay and choose
the precoding vector Wi such that WH

i Wi ≤ Pi. This con-
straint is a quadratic function and as stated in Appendix
A results in nonlinear system equations. The Lagrange
multipliers method described in Appendix A applies only
to problems with linear constraints and quadratic objective
function. Note that when all other constraints are verified,
maximizing SNR with respect to a fixed transmission power
reduces to minimizing the transmission power while main-
taining a desired signal to noise ratio at the receiver. The
only difference is a scaling factor that will amplify (or at-
tenuate) the Wi to the desired power level. Since all other
constraints are linear, this scaling will not cause the precod-
ing vectors fail to satisfy a constraint that they had satis-
fied before being scaled. If W ′

i is a precoding vector which
minimizes the transmission power subject to a desired SNR
value, the scaled precoding vector can be easily calculated

by Wi = W ′
i

√
Pi

|W′H
i W′

i|
.

As stated above, we will fix a signal to noise ratio at
reception and we will minimize the transmission power while
maintaining the SNR at the desired level. SNR at a given
mobile station is simply derived from (5) as:

SNRij =
|hijw

i
j |2

E[n2
j ]

=
|hijw

i
j |2

N0
(14)

where SNRij is the contribution of ith relay in the signal
to noise ratio at jth mobile station. The advantage of this
method is the flexibility of the choice of constraints. Several
strategies and possibilities may be considered. One possi-
ble approach is maximizing

∑
SNRij while maintaining the

transmission power below a predefined threshold. This can
be achieved by imposing

∑
SNRij = SNRdesired and min-

imizing the required transmission power. Other possibility
may be to impose the same SNR at all mobile stations and
to maximize the signal to noise ratio at one mobile station.
Other possible strategy is to impose a different SNR at each
mobile station. For example we may use water-filling to as-
sign a SNR proportional to equivalent channel at each mobile
station. In fact, as long as the constraints are expressed as
linear combinations of wi

j , this method may be useful. It is
the designer’s task to choose the set of constraints the best
fits the situation.

Each constraint must be expressed as ÂinŴi = c where
Ŵi is the precoding vector Wi with real and imaginary
parts separated.

3.4 Solving the system

In this section we are going to use the method introduced
under Appendix A to solve the above equations. The prob-

lem consists of minimizing the transmission power ŴT

i Ŵi

while satisfying a set of linear constraints ÂinŴi = cn. The
algorithm is as follows:

• Form the system constraints equation ÂT
i Ŵi = c with

Âi =
[

ÂT
i1 ÂT

i2 . . . ÂT
in

]
and

c =
[

cT
1 cT

2 . . . cT
n

]T

• Write the equation to be solved, Aiui = b, for i = 1, 2
with

Ai =


2I2N Âi

ÂT
i 0

 , ui =

 Ŵi

λ

 , b =

 02N×1

c



• Find the solution as ui = A−1
i b and take the first 2N

elements of ui for Ŵi.
• Since Ŵi is the Wi with the real and imaginary parts

separated, combine every two consecutive elements of Ŵi

into a complex number and form Wi.
• From Wi, find precoding vectors wi

j with respect to (8).

The simulation result are given under section 5.

4. A SPECIAL CASE

In this section an alternative method is derived for a special
case where we impose the same signal to noise ratio at all
mobile stations. We will use the same notations as in section
3. Using (6) and (7), one can rewrite (2) as:

y = (H1W1 + H2W2) s + n (15)

= [ H1 H2 ]

[
W1

W2

]
s + n = HN×2RW2R×Ns + n

where y represents the column vector formed of all received
signals at the mobile stations and n denotes the vector of
reception noises. In order to assure that (15) satisfies (5)
and the signal to noise ratios at all mobile stations are equal,
we may write:

HWs = gs (16)

where g is a constant that indicates the system gain. Note
that if a matrix W satisfies (16) then every matrix W′ = aW
will also satisfy (16) with g′ = ag. For simplicity we will
choose a W′ for which g′ = 1. Thus we must solve HW′s = s
for W′. One possible solution2 is:

HN×2RW′
2R×N = IN (17)

Equation (17) has an answer if and only if H has full row rank
(i.e. R ≥ N/2). In this case W′ is the Moore-Penrose pseudo
inverse of H. Thus W′ can be calculated as a function of H
using

W′ = HH
(
HHH

)−1

(18)

In order to estimate the diversity gain of the system using
(18), we note that each mobile station (e.g. MS1) receives
2R replicas of the message (e.g. s1). However, the system
must cancel the interferences of N − 1 undesired messages
(e.g s2 to sN ). Thus, the diversity order would be 2R−N+1.
As stated under section 2, the problem with (17) is that it
requires each relay to have the channel information of other
relay. Thus once again we may require that each of the relays
satisfy

Hi(N×R)W
′
i(R×N) = IN , i = 1, 2 (19)

In this case since both H1 and H2 must have full row rank,
the number of relay antennas must be equal or grater than
the number of mobile stations (R ≥ N). Then W′

1 and W′
2

can be calculated independently in each relay:

W′
i = HH

i

(
HiH

H
i

)−1

, i = 1, 2 (20)

If the number of antennas in each relay is equal to the number
of mobile stations, then pseudo inverse reduces to normal
inverse and we can use W′ = H−1.

When W′
i is found, the relays will scale the precoding

vectors to available transmission power. Thus Wi is calcu-
lated such that the power of transmitted signal of each relay
equals Pi, that is to say:

Wi =

√
Pi W′

i

‖W′
i‖

(21)

2The only solution which holds for all s
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If Wi is calculated according to (21), the received signal at
each mobile station will depend only on the data symbol
intended to that specific mobile station, thus the system can
be seen as N separate channels. By substituting (20) and
(21) in (15) we will obtain y = y1 + y2 + n, where y1 and
y2 denote the contribution of the first and the second relays
in the signal transmission and are given by

yi =

√
PHiH

H
i

(
HiH

H
i

)−1

‖HH
i (HiHH

i )
−1 ‖

s

=

√
P

‖HH (HHH)−1 ‖
s (22)

As we can see in (22), the system may be considered as N in-
dependent channels each of which transmitting one signal sj .
In this case, like the case with complete CSI at both relays,
each mobile station receives 2R replicas of the message, but
here each relay must independently cancel N − 1 undesired
messages. Therefore the total number of system constraints
is 2× (N − 1), and diversity gain would be 2R− 2(N − 1).

The results can be simply generalized to the case of L
relays. System equations remain unchanged with the only
difference that we will have the channel vectors H1 to HL

and the precoding vectors W1 to WL. For the case that each
relay knows only its own CSI, we can calculate the precoding
vector W′

i of the ith relay as follows:

W′
i = HH

i

(
HiH

H
i

)−1

, i = 1, · · · , L (23)

Then the signal at the destination is given by (24).

y =

L∑
i=1

yi + n (24)

Again, the system may be considered as N parallel channels
each of which transmitting the signal sj to the jth mobile
station MSj , with a diversity gain of LR− L(N − 1).

For the case that all relays have the complete CSI, the
precoding vectors are calculated from (18) and the diversity
will be LR−N + 1.

5. SIMULATION RESULTS

This section introduces some simulation results that confirm
the equations in the previous sections. All simulations are
obtained for QPSK modulation using Monte Carlo method
in MATLAB for the case where the same SNR is imposed at
all mobile stations.

As stated under section 2, there are two possible sce-
narios depending on whether or not the relay stations are
provided with the knowledge of channel state information
of other relays. Figure 2 shows the system performance in
both cases when 2 three-antenna relay stations cooperate in
sending a message toward two mobile stations. It shows that
if the channel information is available to both relays, lower
BER and higher diversity is obtained (2×3−2+1 = 5). This
is at the cost of more complexity in the transmission proto-
col. On the other hand, if each of the relays knows only its
respective channel information, the system is more practical
at the cost of higher BER and lower diversity (2×(3−1) = 4).

Figure 3 shows the BER as a function of Eb/N0 for dif-
ferent number of mobile stations (N = 2 · · · 5), all for a given
number of relays (L = 2) and relay antennas (R = 4). Using
more relay antennas compared to mobile stations results in
lower bit error rate and higher diversity gain. We can see
that when the mobile stations outnumber relay antennas, an
error floor appears in the curves. Note that in this figure

Figure 2: System performance (L = 2, N = 2, and R = 3)for
i) when CSI is known to both relays and ii) when each relay
only has its own relative CSI

relays are considered to have no knowledge of the link be-
tween other relay and mobile stations. The diversity is thus
2×4−2(2−1) = 6, 4, and 2 when number of mobile stations
is respectively 2, 3, and 4.

Figure 3: System performance for two independent 4-
antenna relay stations with different mobile station numbers

Figure 4 depicts the system performance for different
number of relay stations. All curves are obtained for 3-
antenna relay stations and two mobile stations. The only
difference is the number of relay stations contributing in sig-
nal transmission. As we can see higher relay numbers results
in better system performance. the relays are considered to
be independent, thus the diversity is of order LR−L(N−1).

6. CONCLUSION

We have applied the Lagrange multipliers method to calcu-
late the optimum precoding vectors (i.e the set of precoding
vectors eliminating the multiuser interference and maximiz-
ing the signal to noise ratio at the mobile stations). Lagrange
multipliers method featured a high flexibility to introduce
the desired constraints and optimization equations.

We have demonstrated that if we want the SNR at all
mobile stations to be the same, the precoding vectors may
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Figure 4: System performance for different number of relay
stations (independent relays)

be calculated using the Moore-Penrose pseudo inverse. In
this case we have considered two different schemes. In the
first scheme all relays know all channel states, thus the whole
system is modelled by a single matrix equation. In the second
scheme relays are not inter-connected and thus each relay
only knows its own relative channel to mobile stations. The
latter is more practical but it has less degree of freedom
resulting in reduced performance. Diversity gain is evaluated
for both cases. Simulation results confirmed the accuracy of
given models and equations.

A. LAGRANGE MULTIPLIERS METHOD

The method of Lagrange multipliers is a method for finding
the local extrema of a function subject to constraints. For
example if we want to maximize f(x, y) subject to g(x, y) =
c, we introduce a variable λ and try to maximize f(x, y) −
λ (g (x, y)− c). It is easy to perceive that the final set of
equations will be linear, if and only if g is a linear function of
x and y while f is a quadratic function of these two variables.
Let us consider a case with a large number of parameters
and constraints, that satisfies the above description and thus
yields linear equations. This section introduces an approach
for application of the Lagrange multipliers method to such
cases using vector and matrix calculus.

Let u = [u1 · · ·uN ]T be a set of N independent variables.
We want to minimize the quadratic function f(u) = uT u
subject to P linear constraints expressed as aT u = c, where
a is an N × P matrix and c is a column vector of length
P . We introduce a vector variable λ = [λ1 · · ·λP ]T and an
objective function Λ(u, λ) = uT u−λT ·

(
aT u− c

)
. In order

to find the extrema of u respecting the constraints, we will
derivate Λ(u, λ) with respect to u and then λ:

∂Λ

∂u
= 2INu + aλ = 0,

∂Λ

∂λ
= aT u− c = 0

∇Λ =


∂Λ
∂u

∂Λ
∂λ

 =

 2INu + aλ

aT u− c

 =

 0

0



⇒

 2IN a

aT 0


 u

λ

 =

 0

c

 (25)

Thus the optimizing set of variables may be calculated by
solving a set of linear equations. This method is used in
section 3 to find the optimum precoding vectors minimizing
the required power of relays.

B. COMPLEX TO REAL MATRIX
CONVERSION

The transmitted data s, channel coefficients hij , and pre-
coding vectors wi

j are complex vectors. These values lead in
complex equations that are not easy to handle. It is thus pre-
ferred to break each complex variable into two real variables
and deal with real variables.

Let us write a complex number c as cR +jcI . In this case
the equation a · b = c, with a, b, and c being complex scalars
will be written as:[

cR

cI

]
=

[
aR −aI

aI aR

] [
bR

bI

]
(26)

Using the same principle, a complex matrix equation such
as AB = C where A is a complex matrix and B and C are
complex column vectors can be written as follows:[

AR −AI

AI AR

] [
BR

BI

]
=

[
CR

CI

]
(27)

Or:

<
{([

1 j
−j 1

]
⊗A

)}
<

{([
1
−j

]
⊗B

)}
=

<
{([

1
−j

]
⊗C

)}
(28)

Where ⊗ denotes the Kronecker product. For the further
simplicity of the application intended in this paper, we prefer
to use (29) instead of (28) which leads to the same equations:

<
{(

A⊗
[

1 j
−j 1

])}
<

{(
B⊗

[
1
−j

])}
=

<
{(

C⊗
[

1
−j

])}
(29)

Equation(29) has the advantage of having the real and
imaginary parts of an element next together.
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