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ABSTRACT

Brain-computer interfaces (BCI) provide a way to mon-
itor and treat neurological diseases. These interfaces
contain an array of sensors that gather and transmit
data. Given low-power and no-clock limitations, asyn-
chronous sigma delta modulators (ASDMs) are consid-
ered as an alternative to synchronous analog to digi-
tal conversion. ASDMs are non-linear feedback systems
that enable time-encoding of analog signals. In this
paper we provide an efficient reconstruction of time-
encoded band-limited signals using a prolate spheroidal
waveform (PSW) projection. Furthermore, we show
how a modified orthogonal frequency division multiplex-
ing (OFDM) technique using chirp modulation can be
used to transmit an array of time-encoded signals ema-
nating from the BCI. Our method generalizes the chirp
modulation of binary streams with non-uniform symbol
duration.

1. INTRODUCTION

Gathering and transmission of data from the brain, for
monitoring or treatment, can be done using an array of
sensors supported by analog circuitry. Two issues of spe-
cial interest in the design and implementation of these
brain-computer interfaces (BCI) [1] are energy manage-
ment and use of clocks. The power dissipation due to
analog to digital conversion and to wireless transmis-
sion is significant. Furthermore, the presence of clocks
in BCIs is problematic. In conventional sigma delta
modulators, for instance, the required high frequency
clocks may cause electromagnetic interference corrupt-
ing the analog signal to be sampled [2]. Given the lack of
clocks and the low power consumption required in bio-
monitoring systems, asynchronous data acquisition is a
viable alternative to analog to digital conversion [1, 2].

Asynchronous sigma delta modulators (ASDMs) [3]
are non-linear feedback systems, without a clock, that
transform amplitude information into time information
to represent analog signals in a discrete form. Their
simple circuitry allows them to operate at low power
levels. A band-limited signal can be reconstructed from
the zero crossings of the ASDM binary signal [2], just
like the amplitude information in a sampled signal al-
lows to recover the analog signal in Shannon’s sampling
theory. In this paper, we present a reconstruction of
the signal by means of the prolate spheroidal waveform
(PSW) projection presented in [4]. This projection is
based in the approximation of the sinc function in terms

of the PSWs giving a lower order representation than the
complex exponential-bases used in [2].

As the brain implant collects data from several AS-
DMs, it is necessary to multiplex these data for trans-
mission. The power consumption in the transmission
can be reduced by using the skin as a short-range com-
munication channel [5]. However, the non-uniformity
of the zero-crossings of the time-encoded signals makes
otherwise very efficient methods such as Orthogonal Fre-
quency Division Multiplexing (OFDM) not applicable.
We propose a combination of chirp and localized mod-
ulation of the ASDM time-encoded signals to achieve
an efficient transmission with a modified OFDM sys-
tem. OFDM is a multi-carrier communication technique
that divides the bit stream into sub-streams that are
more efficiently transmitted. Given that the communi-
cation channel is modeled as a linear time-varying sys-
tem, chirp modulation and time-frequency processing of
the signals in such a system is more appropriate than the
conventional linear time-invariant modeling and Fourier
domain processing [6].

A sequence of ortho-normal chirps can be used to
transmit multichannel data in an efficient way and with
robustness to additive noise. In [6, 7] it is shown that the
transmission of a sequence of binary symbols {bu(t)},
u = 1, · · · , U , with uniform duration of T seconds and
corresponding to U users, can be efficiently done by
modulating each of the binary signals with a set of ortho-
normal chirps. The orthonormality of these chirps can
be obtained using the kernel of the fractional Fourier
transform (FrFT) [8]. If the symbol duration is not con-
stant, the ortho-normality of the chirps is not sufficient
to recover the transmitted signal from a multiplexed ver-
sion of it. As we will show it is necessary to create a lo-
calized set of chirps capable of representing each of the
non-uniform pulses.

2. ASYNCHRONOUS DATA COLLECTION
AND WIRELESS TRANSMISSION FOR BCI

In this section, we will show how the data collection
in the BCI can be accomplished without a clock using
ASDMs, and how the data from a set of ASDMs can be
multiplexed and transmitted using chirp modulation.

2.1 Asynchronous Sigma Delta Modulators

An ASDM is a nonlinear feedback system that operates
at low power. It can be used to encode a band-limited
analog signal into a continuous-time signal with discrete
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amplitudes. The zero-crossing times of this signal per-
mit recovery of the original band-limited signal.

The structure of an ASDM is similar to that of the
better-known synchronous sigma-delta modulator but it
differs in that no sampling is done in the ASDM and as
such no quantization noise is input into the modulator.
Recently, the ASDM shown in Fig. 1, consisting of an
integrator and a non-inverting Schmitt trigger, has been
proposed for bio-monitoring [2]. This type of ASDM
transforms amplitude information into time information
by the limit cycles of the non-linear component.
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Figure 1: Example of ASDM.

The operation of the ASDM in Fig. 1 can be related
to the non-uniform sampling of a band-limited signal
x(t). Different from the uniform sampling, to recon-
struct x(t) from non-uniform samples requires knowl-
edge not only of the samples of the signal but also of
the times at which they occur. Although reconstruction
from non-uniform samples can be posed as a general-
ization of the sinc interpolation of the Nyquist-Shannon
sampling theorem, the problem is not well defined due
to the infinite dimension of the matrices and vectors in-
volved, and to the ill-conditioning of the matrix with
sinc entries.

Perfect reconstruction of x(t) from non-uniform sam-
ples can be achieved provided that the time sequence
{tk} at which the samples occur satisfies the condition
[2]:

max
k

(tk+1 − tk) ≤ TN (1)

where TN = π/Ωmax is the Nyquist sampling period. In
[2] it has been shown that the input signal x(t) of the
ASDM can be reconstructed from the zero-crossings of
the binary output signal z(t). Indeed, for a bounded
signal x(t)

|x(t)| ≤ c < b (2)

for a certain value of κ the output of the integrator, y(t),
is also bounded, i.e., |y(t)| < δ for all t, and the output
of the feedback system is binary,

z(t) = b(−1)k+1 tk ≤ t ≤ tk+1.

If at a time tk+1 > tk the output of the integrator is
y(tk+1) = y(tk) + 2δ and z(tk) = b(−1)k+1, then we
have

y(tk+1)− y(tk) =
1
κ

[∫ tk+1

tk

x(τ)dτ − b(−1)k+1(tk+1 − tk)
]

After replacing the right hand-side term by 2δ, it be-
comes∫ tk+1

tk

x(τ)dτ = (−1)k [−b(tk+1 − tk) + 2κδ] (3)

Furthermore, from |x(t)| ≤ c and condition (1) we have

2κδ

b + c
≤ tk+1 − tk ≤

2κδ

b + c
≤ TN (4)

which gives us the way to choose the parameters δ, and
κ in terms of the Nyquist sampling rate. The train of
rectangular pulses z(t) displays non-uniform transition
times depending on the input signal amplitude. Indeed,
approximating the integral by the trapezoidal rule we
have that if ∆ = (tk+1 − tk)/D for an integer D > 1
(the larger this value the better the approximation), we
have that∫ tk+1

tk

x(τ)dτ ≈ ∆

[
x(tk)

2
+

D−1∑
`=1

x(tk + `∆) +
x(tk+1)

2

]

Representing the band-limited signal by its PSW pro-
jection [4]

x(t`) =
L−1∑
k=0

γksk(t`) (5)

where sk(t) are the prolate spheroidal functions and L is
the order of the projection chosen according to the max-
imum frequency Ωmax of the band-limited signal x(t).
Using the trapezoidal approximation of the integral we
obtain the following reconstruction algorithm:

(i) v = Qx = QPγ

(ii) γ = [QP]†v
(iii) x = Pγ

where v is the right term in (3), Q is the matrix for the
trapezoidal approximation, x = Pγ is the PSW projec-
tion, and † indicates pseudo-inverse. Thus the signal
x(t) can be reconstructed from the zero crossings {tk}
of the output of the ASDM z(t).

2.2 Chirp Modulation for ASDM Signals

In the rest of the paper we consider the transmission of
binary signals {zn(t)}, n = 1, · · · , N from an array of
N ASDM’s conforming a BCI. These signals need to be
transmitted in the most efficient way from the BCI to an
intermediate personal digital assistant (PDA) capable of
transmitting the signal to a server where the signal anal-
ysis is performed. Each of the signals to transmit is a
train of pulses with non-uniform zero-crossings. We ex-
plore the application of OFDM using orthonormal chirp
basis for the modulation of the N time-encoded signals.

2.3 Uniform symbol period

Chirp modulation has been applied successfully in
OFDM [6, 7], a multi-carrier technique that transmits
data by dividing the bit stream into several parallel
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streams. This chirp modulation has been shown to mit-
igate the effects of the channel Doppler frequency shifts
(due to a moving receiver or transmitter) and to be ro-
bust to the presence of noise in the transmitted signal.

In the transmission of source symbols +1 or −1 with
a uniform period T , if we have ortho-normal chirps ck(t)
for users k = 1, · · · , U the baseband transmitted signal
for user k is given by

sk(t) = bk(t)ck(t) (6)

where bk(t) is either 1 or −1 for t0 ≤ t ≤ t0 + T . As-
suming perfect synchronization between transmitter and
receiver, and that the only channel effect is addition of
Gaussian noise η(t), the baseband received signal is

r(t) =
U∑

k=1

sk(t) + η(t) (7)

To recover the source symbols, multiplying the received
signals by the conjugate of the chirps, c∗k(t), we obtain
a decision variable for user k, yk, by integrating over a
period and using the orthogonality of the chirp signals:

yk =
∫ t0+T

t0

r(t)c∗k(t)dt

=
U∑

n=1

bn(t)
∫ t0+T

t0

cn(t)c∗k(t)dt +
∫ t0+T

t0

η(t)c∗k(t)dt

= bk(t) +
∫ t0+T

t0

η(t)c∗k(t)dt t0 ≤ t ≤ t0 + T (8)

The value bk(t), which is either 1 or−1, is estimated by a
thresholder. The ortho-normality of the chirps mitigates
the multiple-access interference caused by users different
from the user we are interested in.

Consider a set of frequency-modulated linear chirps
{ck(t)} with instantaneous frequencies

φk(t) = θt + 2fk k = 1, · · · , U (9)

where θ is the chirp rate, common for all the chirps, and
fk = k/T is a multiple of the frequency corresponding
to the symbol period T . The chirps are given by

ck(t) = ejπtφk(t) = ejπθt2ej2πfkt

The orthonormality of the chirps {ck(t)} depends on
the orthonormality of the {ej2πfkt} terms. Indeed, the
common chirp rate makes it so that

1
T

∫ t0+T

t0

ck(t)c∗n(t)dt =
1
T

∫ t0+T

t0

ej2π(fk−fn)tdt

=
{

1 k = n
0 k 6= n

(10)

In [6, 7] the orthonormal chirps are obtained from the
properties of the kernel of the fractional Fourier trans-
form, but such relation is unnecessary as shown above.

2.4 Non-uniform symbol period

Applying the chirp-modulated OFDM for the trans-
mission of the time-encoded signals obtained from N
ASDM’s is complicated by the fact that the pulses, cor-
responding to the symbols, do not have a uniform period
as before. Indeed, the duty-cycle modulation that is be-
ing used to get z(t) from x(t) gives that the pulse width,
αk(t), and the pulse period, τk(t), of two consecutive
pulses give a duty-cycle

αk(t)
τk(t)

=
1 + xk(t)

2

for xk(t) in [tk, tk+2]. Thus only when x(t) = 0 we would
have uniform pulse periods.

In this case we will again consider chirps with a com-
mon chirp rate θ, but with frequencies fn = 1/T̂ where

T̂ = min{Tn(k)}

and Tn(k) = tn(k + 1) − tn(k) are the time intervals
from the signals {zn(t), n = 1, · · · , N}. The bandwidth
allocated to the nth-ASDM, Fn = fn+1 − fn, is divided
into M sub-bands with frequencies

fn(m) = fn +
Fn

M
m m = 0, · · · ,M − 1 (11)

Using these frequencies and the zero crossings {tn(k)}
from zn(t) we create an array of chirps with instanta-
neous frequencies

φn,m(t) = θt + 2fn(m) (12)

when t ∈ [tn(m), tn(m + 1)] and −∞ otherwise (so that
the chirp is zero outside [tn(k), tn(k + 1)] ). Thus the
chirp

cnm(t) = ejπtφnm(t) = ejπθt2ej2πfn(m)t (13)

for tn(m) ≤ t ≤ tn(m + 1) and zero otherwise.
Considering an analysis time segment t0 ≤ t ≤

t0 + Tf , where Tf = βT̂ for a small integer β, the or-
thonormality of the chirps cnm(t) is kept by the common
chirp rate and by the orthogonality of the complex ex-
ponentials with frequencies {fn(m)}. Each consecutive
pulse in zn(t) is multiplied by a chirp with an increasing
frequency fn(m).

Assuming again that the effect of the channel is only
the addition of Gaussian noise, the received signal is now

r(t) =
N∑

n=1

M−1∑
m=0

snm(t) + η(t)

=
N∑

n=1

M−1∑
m=0

zn(t)cnm(t) + η(t) (14)

If we multiply this signal by e−jπθt2 the resulting signal
is

y(t) = r(t)e−jπθt2

=
N∑

n=1

M−1∑
m=0

zn(t)ej2πfn(m)t + η(t)e−jπθt2 (15)
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and when we pass this signal through a band-pass filter
of bandwidth Fn gives

ỹn(t) =
M−1∑
m=0

zn(t)ej2πfn(m)t + η̃(t) (16)

which is a combination of sinusoids in the bandwidth
assigned to channel n, and η̃(t) is the noise within that
band-width.

If we express zn(t) for t0 ≤ t ≤ t0 + Tf as a concate-
nation of rectangular pulses using the unit-step signal
u(t) and let d` = ±1 for the subchannels being occupied
and zero for those that are not, we get

zn(t) =
M−1∑
`=0

d`[u(t− tn(` + 1))− u(t− tn(`))] (17)

The Fourier transform of zn(t) is

Zn(ω) =
M−1∑
`=0

d`

∫ tn(`+1)

tn(`)

e−jωtdt (18)

and then the Fourier transform of ỹn(t) is given by

Ỹn(ω) =
M−1∑
m=0

Zn(ω − 2πfn(m)) + η̃(ω)

If we filter Ỹn(ω) with a band-pass filter of center fre-
quency fn(m) and determine the value of this function
at the frequencies fn(m), for m ∈ [0, · · · ,M − 1] we
obtain

Ŷn(fn(m)) = Zn(0) + η̃(fn(m))
= dm [tn(m + 1)− tn(m)]

+η̃(fn(m)) (19)

so that |Ŷn(fn(m))| ≈ tn(m + 1) − tn(m). We thus
have that for the m-subchannel in the nth-ASDM out-
putl with high signal to noise ratio the corresponding
period is

Tn(m) = tn(m + 1)− tn(m)

and the magnitude of Ŷn(fn(m)) is dm.

3. SIMULATIONS

To illustrate the duty-cycle modulation performed by
the ASDM we consider four different signals. When
x(t) = 0, the output of the integrator is a symmetric
triangular signal and the output z(t) of the ASDM is a
train of square pulses of uniform symbol duration. In
any other case we obtain rectangular pulses with a duty
cycle depending on the value of the amplitude of the in-
put signal. Figure 2 shows the cases when the input is
zero, a positive constant, a ramp and an arbitrary sig-
nal. A characteristic of these cycles is that the average
of the input signal x(t) equals the average of the output
signal z(t) in each of the intervals [tk, tk+2].

The transmission of four outputs {zn(t), n =
1, 2, 3, 4}, assumed to come from arbitrary signals, is

illustrated in Fig. 3. To illustrate the performance of
our procedure a Monte Carlo simulation with 500 trials
for each signal to noise ratio (SNR) between −10 and
10 dBs (with increments of 5 dBs) was implemented.
Gaussian noise is added to the chirp-modulated sig-
nal to obtain the different SNR’s. The binary signals
{zn(t), n = 1, 2, 3, 4} in a window of 4 msec are shown in
the top plot of Fig. 3 displaying different widths for the
two pulses in each zn(t). The magnitudes |Ŷn(fn(m))|
corresponding to different frequencies in the middle plot
are estimates of the width of the pulses in each of the
{zn(t), n = 1, 2, 3, 4}. The axis showing this informa-
tion is labeled symbol duration. The horizontal axis dis-
plays the frequency at which the chirp originates. The
effect of the noise (this corresponds to an SNR of 10
dBs) is shown. Thus our algorithm provides the dura-
tion of each of the symbols in seconds and also the value
±1, both of these provide the data necessary to recon-
struct the original signals in each of the channels. The
plot at the bottom of Fig. 3 displays the error proba-
bility when estimating the width of each of the pulses
in the binary signals for each of the SNR used in the
Monte-Carlo simulation.

4. CONCLUSION

In this paper we consider the time-encoding of signals
using ASDMs. The advantages of using ASDM’s are
the low-power consumed and the lack of clocks. For the
transmission of the outputs of a number of ASDM’s we
propose using chirp modulation OFDM. Since the con-
ventional approach cannot be implemented given the
non-uniformity of the pulses, we propose a novel ap-
proach that uses a sequence of localized linear chirps
that are orthonormal. The results are encouraging, es-
pecially its robustness to noise.
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Figure 2: Examples of the processing of ASDM for dif-
ferent inputs. From top to bottom, the input to the
ASDM is zero, a constant, a ramp and an arbitrary sig-
nal.
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Figure 3: Results of Monte-Carlo simulation for the
transmission of four channel ASDM binary signals
{zn(t), n = 1, 2, 3, 4}. Top figure illustrates the non-
uniform widths of the binary signals zn(t). Middle fig-
ure shows the estimated widths for each of the pulses
in {zn(t), n = 1, 2, 3, 4}. The bottom figure shows the
error probability of the estimation of the widths when
noise is added (SNR=10 dB).
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