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ABSTRACT

For on-line classification of user states such as emotions orstress
levels, we present a new, generic, and efficient physiological fea-
ture set. In contrast to common approaches using features specifi-
cally tailored to each physiological signal, we break up feature ex-
traction into a simple, signal-specific pre-processing step, and the
calculation of a comprehensive set of signal-independent features.
This systematizes feature design for each physiological signal and
facilitates the transfer to other signals. The time complexity of the
approach is independent of the size of the analysis window and of
the frequency with which feature vectors are computed for classi-
fication. We also provide a variant of the feature set that haslow
memory requirements. Thus, our approach is well suited for im-
plementing real-time applications. We evaluate the proposed fea-
tures with an emotion and a stress classification task, showing that
they are competitive w.r.t. the performance of classifications using
signal-tuned state-of-the-art features.

1. INTRODUCTION

In Human-Computer-Interfaces, there is great potential inaccount-
ing for and appropriately reacting to the current cognitive, affec-
tive, or emotional state of the user. User states are signalled in var-
ious channels, for example speech, gesture, or facial expression.
Of particular interest arephysiological signals, i. e. recordings of
body functions such as heart rate or skin conductivity. Theycan-
not be controlled up to the same extent by the user and are often
not consciously perceived. Cognitive and affective processes affect
physiological signals which therefore are an intriguing candidate
for acquiring information on user states.

It has been shown that under favourable conditions, emotional
states can be recognized automatically from physiologicalsignals
by means of pattern recognition techniques with high reliability
[7, 4, 9]. Most of the existing studies, however, are based onoff-line
processing of relatively long, pre-defined segments of clear record-
ings covering steady and pronounced instances of the user states
to be recognized. It remains yet to be answered whether accept-
able performance across subjects can be obtained under the less
restricted conditions of applications where a classification system
must possibly deal with artefacts, half-blown, changing, and mixed
user states; moreover, decisions have to be delivered in real-time.

Extending the work of Vyzas et al. [8], we take a step into the
direction of more realistic conditions by proposing a feature set that
can be computed on-line with a low and steady computational load.
This is critical because in applications, the classification module
can be required to deliver a continuously updated response with
minimal delay. As a reliable classification of the user statefrom
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physiological data requires a relatively large context, the amounts of
data to be processed in real-time can pose a problem for commonly
used feature extraction approaches. Also, the efficient computation
makes our feature set suitable for the limited hardware capabilities
of embedded applications. In this context, we also present avariant
of our features that has very modest memory requirements.

Another goal in developing the feature set was to simplify and
systematize the feature design process. This is achieved bydecou-
pling signal-specific processing from the actual feature extraction:
per signal, previous knowledge can be integrated into a relatively
simple pre-processing step; the computation of the actual features
is then carried out by a generic, comprehensive feature extraction
module. Thus, the signal-specific part of the implementation is min-
imized, and the transfer to other signals and modalities facilitated.
This also speeds up the developing cycle in physiological signal
research: new signals can be added as input and tested for their
usefulness quickly and with low effort.

We evaluate our approach on two databases with different tasks
(four-class emotion recognition and stress/non-stress classification)
and compare the proposed features with state-of-the-art, signal-
tuned features that are computed off-line. For computing these spe-
cialized features we use the Augsburg Biosignal Toolbox (AuBT)1

which has been developed within the HUMAINE2 research project.
These features contain statistical measures such as mean and stan-
dard deviation of the preprocessed signals as well as signal-specific,
physiologically relevant quantities like heart rate variability (HRV)
or energy of HRV in certain frequency bands. For the signals elec-
trocardiogram (ECG), electromyogram (EMG), skin conductivity
(SC) and respiration (Resp), 84, 21, 67, and 21 specially tailored
features are provided, respectively. They are a superset ofthe fea-
tures used in [9] which have proven to be both well suited for emo-
tion classification and competitive to those used in [7].

2. FEATURES

2.1 Derived Signals

As indicated above, we use an identical, generic feature extraction
module for all signals. For applying signal-specific knowledge and
capturing important information that is contained in the signals but
present only in a very implicit representation, we compute charac-
teristic measures from selected signals over time. Thesederived
signalsare then added to the recorded signals and processed by the
generic feature extraction module just as the recorded signals.

Given the recorded signals ECG, EMG, SC, skin temperature
(Temp), blood volume pulse (BVP), and Resp, we derive four addi-
tional signals. The instantaneous heart rate is computed asa step-
function from ECG and BVP, yielding the signals ECG-HR and
BVP-HR. Similarly, the respiration rate (Resp-rate) is derived from

1http://mm-werkstatt.informatik.uni-augsburg.de/aubt
2http://emotion-research.net
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the respiratory signal. Finally, the pulse transit time (PTT) com-
puted from ECG and BVP (measured at a finger), which can be
regarded as a surrogate parameter of the systolic blood pressure [3],
is added. These derived signals can be seen as a more stationary and
more explicit representation of important properties of the original
signals facilitating subsequent feature extraction.

In the following, the generic features that are extracted from
each original and derived signal are outlined. We present two vari-
ants of our approach: the set of themoving featuresand the set of the
sliding features. Both are very efficient in terms of time complex-
ity and thus suited for on-line classification. The sliding features,
which are an approximation of the moving features, additionally
have very low memory requirements, offering themselves forappli-
cations where few memory is to be spent.

2.2 Moving Features

We denote then-th sample of the current signal byxn, the sampling
frequency byfs, the length of the analysis window in samples by
w, the step size (distance between successive analysis windows in
samples) bys, and the frequency with which feature vectors are
required for classification byf = fs/s. The value of thei-th feature
for an analysis window ending atxn is mi,n.

To efficiently implement on-line computation, each featureis
computedrecursively, using only its previous valuemi,n−1, the cur-
rent samplexn and a few auxiliary variables where required. As
a consequence, the time complexity isconstantin both w and f .
It depends only on the sampling frequency and isO( fs). In con-
trast, common approaches using all samples of the current analysis
window for calculating a feature have a time complexity of atleast
O( f ·w) = O( fs · w

s ). Thus, recursive computation is to be preferred
in terms of efficiency ifw is considerably larger thans, i. e. if the
overlap of the analysis windows is large. This is the case in on-line
physiological signal classification, as a relatively largecontext is
required for a robust decision.

Prototypical for the computations is the moving averageµw,n,
the mean of thew previous values ofxn,

µw,n =
1
w

w

∑
i=1

xn−w+i ,

which is why this feature set is calledmoving features. A recursive
formulation is given by

µw,n = µw,n−1−xn−w/w+xn/w. (1)

To store and access the necessary sample history efficiently, a ring-
buffer of sizew is used. When using the update rule given by Equa-
tion (1) repeatedly to computeµw,n with finite-precision floating-
point arithmetic, rounding errors can accumulate for largew and
render the result useless with time. Our solution is to update
the computed value periodically by keeping a second accumulator
sn = sn−1 +xn. Eachw steps, the recursively computed estimate of
µw,n is substituted bysn/w andsn is zeroed. Thus, a reasonable de-
gree of numerical stability can be achieved for all featureswhile in-
creasing the computational effort only by a constant factorless than
2. Apart fromm0,n = µw,n, alsom1,n = |µw,n| andm2,n = (µw,n)

2 are
used as features. A similar scheme is used for the other computed
quantities.

µw,n is the mean value of the signal when weighted with a rect-
angular window of lengthw. The mean values when using a trian-
gular and bell-shaped window are given by

µ(2)
w,n = µ(2)

w,n−1−µw2,n−w1/w1 + µw2,n/w1,

w1 = ⌊w/2⌋+1,w2 = w+1−w1 and

µ(3)
w,n = µ(3)

w,n−1−µ(2)
w4,n−w3

/w3 + µ(2)
w4,n/w3,

w3 = ⌊w/3⌋+1,w4 = w+1−w3.

A robust estimate of the derivative ofx is given by the slope of
the regression line for the lastw values. A recursive formulation is

δ (reg)
w,n =

w−1
2

(xn−w +xn)−
(w−1)µw−1,n−1.

Among other used estimates of the derivative, a smoothed version
is given by the auxiliary variable

µ(4)
w,n = µ(4)

w,n−1−µ(3)
w6,n−w5

/w5 + µ(3)
w6,n/w5,

w5 = ⌊w/4⌋+1,w6 = w+1−w5,

and

δ (4)
w,n = µ(4)

w−1,n−µ(4)
w−1,n−1.

Non-linear measures are the standard deviationσw,n and the
root mean energy

√

Ew,n determined from

Ew,n = Ew,n−1−x2
n−w/w+x2

n/w,

σ2
w,n = Ew,n−µ2

w,n.

Minimum and maximum of the lastw values are approximated,
e. g.minw,n by

minw,o,n =

{

xn n≡ o modw
min(xn,minw,o,n−1) else ,

minw,n,k = min
i=0...k−1

(minw,⌊w·i/k⌋,n)

which yields a value betweenminw,n andmin⌈w·(k+1)/k⌉,n (our cur-
rent choice isk = 10). Further, the median is approximated by

medw,n =



















medw,n−1
−c1 ·σw,n xn < medw,n−1

medw,n−1 xn = medw,n−1
medw,n−1

+c1 ·σw,n xn > medw,n−1

with c1 = 8
πw chosen such thatmedw,w/2 = 0 for xn = sgn(n) and

α → ∞. Other non-linear quantities use the discrete derivative
△n = xn− xn−1 and are computed as the moving average of|△n|,
|max(△n,0)|, |min(△n,0)|, △2

n, max2(△2
n,0) and min2(△2

n,0)
analogously to Equation (1). In total, 50 moving features are com-
puted.

2.3 Sliding Features

The features described above have storage requirements propor-
tional to the sample countw of the analysis window, or a space com-
plexity of O(w). For circumstances where this is not affordable, we
present approximations of the features which do not depend on the
sample history, thus requiring only an amount of memoryconstant
in w, i. e. they have a space complexity ofO(1).

The approach is based on the sliding averageµα ,n, which is
why the feature set is calledsliding features:

µα ,n = α ·µα ,n−1 +(1−α) ·xn

= (1−α)
∞

∑
i=0

α ixn−i , (2)

with 0 < α < 1. µα ,n is the mean of the signal when weighted with
an infinite, exponentially decaying window with a time constant
τ = −1/ln(α). As a measure for the effective window length, we
use the standard deviation of a rectangular and exponentialweight-
ing window and setα = 1−2

√
3/w, which yields an exponentional
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window with the standard deviation of a rectangular window of
sizew. This rectangular window contains approx. 97 % of the mass
of the exponential window. An update rule using (2) for recursive
computation does not suffer from numerical instability. However,
due to the fact that the weighting window never actually reaches
zero, outlier values of a signal can corrupt the mean value for a long
time. Therefore,µα ,n is periodically substituted by a value that
would result if the exponentially decaying window functionwas set
to zero at 99 % of its mass. Again, a second accumulator is used,
increasing the computational effort by less than a constantfactor
of 2.

In analogy to Equation (2), approximations can be calculated
for most moving features. With the auxiliary variable

µ(2)
α ,n = α1 ·µ(2)

α1,n−1 +(1−α1) ·µα1,n,

α1 = 2α −1,

smoothed derivatives are given by

δ (2)
α ,n = µ(2)

α2,n−µ(2)
α2,n−1, α2 = (α +1)/2, and

δ (3)
α ,n = α1 ·δ (3)

α ,n−1 +(1−α1) · (µ(2)
α ,n−µ(2)

α ,n−1).

For minimum and maximum, we use an approximation, e. g.

minα ,n =

{

xn xn < minα ,n−1
α ·minα ,n−1

+(1−α) ·xn else
.

The median is approximated by

medα ,n =



















medα ,n−1
−c2 ·σα ,n xn < medα ,n−1

medα ,n−1 xn = medα ,n−1
medα ,n−1

+c2 ·σα ,n xn > medα ,n−1

,

with σα ,n analog toσw,n andc2 = 1−α
π/2−1 chosen so thatmedα ,n and

µα ,n intersect at zero forxn = sgn(n) andα → 1. In total, 44 sliding
features are calculated.

3. DATA

For evaluating our approach, we use two datasets posing different
classification tasks: the Augsburg database of biosignals (AuDB)
which contains physiological recordings of four induced emotions
[9], and the DRIVAWORK (DRIving under VArying WORKload)
database which contains different stress levels [6].

AuDB has been collected by recording ECG, EMG, SC and
Resp of one participant while listening to music that was chosen to
induce one of the emotions joy, anger, sadness and pleasure.ECG
was sampled at 256 Hz, the remaining signals at 32 Hz. The record-
ings have been taken in 25 separate sessions on different days. For
each session and emotion, a 2-minute segment of data is available,
totalling to 200 minutes of data. In [9], one feature vector is com-
puted from each segment and classified with different classifiers.
The induced emotion is recognized with accuracies around 80% in
a leave-one-session-out cross-validation. With feature selection ap-
plied, recognition rates up to 92 % are achieved.

DRIVAWORK contains recordings of ECG, EMG, SC, Temp,
BVP and Resp plus audio and video recordings of participantsin
a simulated car-drive. ECG and EMG are sampled at 2048 Hz, the
other signals at 256 Hz; the data amounts to a total of 15 hours
from 24 participants. Relaxed and stressed states have beenelicited
by giving the participant different tasks, partly on top of adriving
task. The structured design of the recordings can be used to derive
coarse stress labels. In [6] it is shown that using one minuteof
physiological data as input, it can be recognized with an accuracy
of 89 % in a subject-independent cross-validation whether astressed

or relaxed state was intended by the experimental setup for agiven
point in time. For classification, statistical classifiers were applied
to the moving feature set of Section 2.2 computed from multiple
resolutions.

A continuous estimate of the stress level that is needed for
studying real-time classification is provided in DRIVAWORKby
a manual annotation from three labellers. It has been created ac-
cording to thefeeltrace[1] approach by tracing the perceived stress
level on a continuous scale between 0 for maximally relaxed and 1
for maximally stressed while watching and listening to the video
and audio recordings of a session. The annotations of two labellers
for one participant have a Pearson correlation coefficient of 0.76 on
average. In [5], the mean annotated stress rating of a participant is
predicted with linear regression from the moving features computed
from one minute of physiological data with a Pearson correlation of
0.69 in a subject-independent cross-validation.

4. CLASSIFICATION

Once the features from each original and derived signal havebeen
computed, they are analysed and combined by the classification sys-
tem for the final recognition result. Concatenating the feature vec-
torsc j from all Ssignals would result in a high-dimensional vector
which is disadvantageous for classification. Also, accounting for
possible drop-out of a sensor would not be straightforward.

As a solution, we use the concept oflate fusion, where each sig-
nal’s feature vector is classified separately and the fusionis imple-
mented by combining the classifiers’ outputs. For classification, we
apply a statistical approach and use Linear Discriminant Analysis
to estimate the conditional probabilityp(c j |k) for classk. Taking
the (simplifying) assumption of statistical independence, the fusion
is carried out by multiplying the class probabilities of thesignals:

p(c1,c2, . . . ,cS|k) =
S

∏
j=1

p(c j |k).

Note that in this setup, drop-out of signals can trivially beaccounted
for by omitting the unavailable signals in the multiplication.

More elaborate classification and fusion mechanisms exist,but
the goal of our experimental evaluation is to compare different fea-
ture sets. For this purpose, it is instructive to choose a fixed, simple
and robust setup for classification.

5. EXPERIMENTS AND RESULTS

We compute the moving and sliding features described in Section 2
and the specialized features supplied by AuBT and test theirperfor-
mance for classifying the target states of AuDB and DRIVAWORK.
As a baseline comparison, we also compute results with the simplest
possible feature, the raw signal valuexn. The class-wise averaged
recognition rates (CL) are reported.

For the moving and specialized features, we extract features
from one minute of physiological data; for the sliding features, the
correspondingα is used according to the rule given in Section 2.3.
We simulate on-line processing by only using data from the past,
i. e. the analysis window ends at the current point in time. The
length of one minute is a compromise between a large context en-
abling a robust decision and the locality necessary for a quick re-
sponse to user state changes. The frequencyf of feature vector
computation and classification is 0.1 Hz, i. e. the distance between
two consecutive analysis windows is 10 seconds. Note that a faster
rate would not increase the computational effort for the moving or
sliding features; however, to limit processing time for theAuBT
features, this relatively low frequency was chosen.

It should be noted that the specialized features are at a tinydis-
advantage as the derived signals used for the sliding and moving
features can implicitly contain some context: ECG-HR, for exam-
ple, has an estimate of the heart rate at its disposal immediately at
the start of the analysis window while for the AuBT features,heart
rate cannot be estimated until the second R-Peak in the window has
been observed.
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ECG ECG- EMG SC Resp Resp- all all orig
Features HR rate orig +derived

raw 25.0 48.4 28.4 33.4 23.3 52.3 34.3 72.0

AuBT 63.3 - 69.1 40.9 72.3 - 80.7 -

moving 49.1 60.3 63.6 45.9 66.6 65.1 72.0 78.4

sliding 52.7 59.3 54.4 45.0 61.0 64.3 72.4 79.6

AuBT +
moving

62.3 66.0* 71.7 47.0 73.6 73.1* 81.1 83.4*

Table 1: Recognition rates[%] for the 4-emotion AuDB task with different feature sets and physiological inputs. Row “raw” refers to current
value of the signal. Row “AuBT” uses the features computed by the AuBT toolbox, rows “moving” and “sliding” the features proposed in
Sections 2.2 and 2.3, respectively. In the last row, AuBT andmoving features are combined. In each column, results are given for specific
physiological inputs. Column “all orig” combines featuresfrom the originally recorded signals ECG, EMG, SC, and Resp;“all orig +
derived” additionally uses the derived signals ECG-HR and Resp-rate. Note that AuBT does not distinguish between original and derived
signals. Therefore, row “AuBT” contains no results for derived signals (indicated by “-”), and the results in the last row marked with an
asterisk (*) were obtained by combining moving features from the derived signals with AuBT features from the original signals.

5.1 Evaluation on AuDB

The experiments on the AuDB corpus were carried out in a leave-
one-session-out cross-validation to account for day-to-day varia-
tions. Table 1 lists the recognition rates that resulted forthis 4-
emotion classification task.

When using the trivial feature, the current value of the signal,
the resulting recognition rates are close to chance (25 % CL)for
the originally recorded signals (cf. row “raw”, columns “ECG”,
“EMG”, “Sc”, “Resp” and “all orig”). For the derived signals
(cf. columns “ECG-HR” and “Resp-rate”), results improve; when
combining all originally recorded and derived signals (last column),
72.0 % CL results. The specialized features provided by AuDB
(row “AuBT”) reach considerably higher recognition rates for the
individual signals. The combination of AuBT features (column “all
orig”) yields 80.7 % CL, which corresponds to about half the er-
ror rate of the trivial features computed on all original andderived
signals.

Next, the classification performance of the newly proposed
moving features (cf. row “moving”) is compared with that of AuBT.
Also the moving features are considerably better than the trivial fea-
tures, but for the original signals, they do not reach the performance
of the AuBT features3. For example, the moving features yield
63.6 % CL for EMG while AuBT yields 69.1 % CL. When applied
on the derived signals, however, the moving features come close
to the performance of AuBT. On ECG-HR, they reach 60.3 % CL
which is near the performance of the AuBT ECG features (63.3 %
CL). For Resp, this is not so evident; however, when combining the
moving features from Resp and Resp-HR, 69.7 % CL are reached
(not contained in Table 1), which is again near the performance of
the AuBT Resp features (72.3 % CL). Combining the moving fea-
tures from all original and derived signals, a CL of 78.4 % is reached
which is near the performance of all AuBT features (80.7 % CL).

The sliding features are a memory-efficient approximation of
the moving features. When comparing the performance of the two
variants (cf. rows “moving” and “sliding”), it turns out that the
overall performance is similar. For example, when using allinput
modalities, the sliding features yield 79.6 % CL, even a little better
than the result of the moving features (78.4 % CL).

Finally, the moving features were combined with the AuBT fea-
tures to see whether complementary information is coded by the
feature sets (cf. last row). This seems indeed to be the case:re-
gardless of whether the physiological inputs are used separately or
in combination, joining AuBT and moving features always4 yields
better results than any of the feature sets alone. For example, when

3SC is an exception and is utilized better by the new features:they give
45.9 % CL while the AuBT for SC only gains 40.0 % CL.

4with the exception of ECG, where the score 62.3 % for the combination
is lower then the score 63.3 % CL for AuBT alone

using all inputs together, the resulting recognition rate of 83.4 %
clearly exceeds the performance of the moving features and AuBT
features alone (78.4 % and 80.7 %, respectively).

5.2 Evaluation on DRIVAWORK

In the experiments on the DRIVAWORK corpus, the continuous
stress level annotation was used to define a binary stress/non-stress
classification task: the ratings were mean-variance-normalized per
labeller, averaged, and then discretized with threshold zero. The re-
sulting target classes are almost balanced (52 % stress). Due to the
complexity of the task, inter-rater agreement is not too high: Co-
hen’sκ is 0.44 for the individual labels; mean class-wise agreement
is 74.7 % when comparing one labeller with the remaining labellers
in turn.

AuBT currently provides specialized feature sets for ECG,
EMG, SC and Resp. Our generic approach, however, can be ap-
plied to all signals available in DRIVAWORK. To account for this,
experiments on DRIVAWORK were carried out for different input
sets: “all-AuBT” comprising ECG, EMG, SC and Resp, and “all”,
additionally covering BVP and Temp. Table 2 lists the results of
the experiments which have been obtained in a leave-one-subject-
out cross-validation to estimate subject-independent classification
performance.

As in the experiments above, the trivial feature (cf. row “raw”)
yields recognition rates close to chance (50 % CL). The AuBT fea-
tures (cf. row “AuBT”) in combination reach 72.5 % CL. Again, the
moving features (cf. row “moving”) on the original signals do con-
siderably better (65.7 % CL when combined, column “all-AuBT
orig”) than the trivial features, but only when adding the derived
features, results comparable to AuBT are achieved. This time how-
ever, the moving features (73.6 % CL, column “all-AuBT orig +
derived”) are slightly better than the AuBT features (72.5 %CL).

Apart from the signals that AuBT currently accounts for (input
set “all-AuBT”), DRIVAWORK contains also recordings of BVP
and Temp. Adding these inputs (last two columns), the performance
of the moving features rises from 65.7 % CL to 71.2 % CL in case
of the original signals (cf. column “all orig”) and from 73.6% CL
to 74.5 % CL when using derived signals as well (cf. last column).

Next, the sliding features (cf. row “sliding”) were studiedas
an approximation of the moving features. As in the evaluations
on AuDB, their performance is similar. For example, when using
all original and derived signals (last column), the slidingfeatures
(74.3 % CL) perform nearly equal to the moving features (74.5%
CL).

Combining the moving and AuBT features (last row) generally
improves results, but not as clearly as was the case in the AuDB
evaluations. The combination of all moving features with all AuBT
features gives the best observed result (74.6 % CL, last column),
minimally better than the moving features alone (74.5 % CL).
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all-AuBT all-AuBT all all
Features orig orig + derived orig orig + derived

raw 51.6 52.9 51.7 57.8

AuBT 72.5 - - -

moving 65.7 73.6 71.2 74.5

sliding 65.7 73.3 71.0 74.3

AuBT +
moving

71.8 73.6* 74.0* 74.6*

Table 2: Recognition rates[%] for on-line stress/non-stress recog-
nition on the DRIVAWORK corpus with different feature sets and
physiological input sets. The features are abbreviated as in Table 1.
“all-AuBT orig” refers to ECG, EMG, SC and Resp. “all-AuBT
orig + derived” additionally uses the derived signals ECG-HR and
Resp-rate. “all orig” comprises ECG, EMG, SC, Resp, Temp and
BVP. “all orig + derived” additionally uses the derived signals ECG-
HR, Resp-rate, BVP-HR and PTT. The asterisk (*) refers to moving
features combined with AuBT features from “all-AuBT orig”.

6. DISCUSSION AND FUTURE WORK

In the evaluations in the previous Section, the proposed moving fea-
tures perform very similar to the AuBT features with respectto clas-
sification accuracy. When using all physiological inputs, the mov-
ing features are slightly worse on the AuDB corpus, and slightly
better on the DRIVAWORK database. That means they can be used
as an adequate substitute for the purpose of emotion and userstate
classification using physiological signals. This is intriguing because
although they use only a minimum of previous knowledge and spe-
cific processing for each signal, they can compete with state-of-the-
art features specifically designed for each physiological signal.

The new approach has two advantages. Firstly, splitting fea-
ture extraction into a simple, signal-dependent step (computation of
derived signals) and a comprehensive, generic module (computa-
tion of moving features) simplifies implementation per signal and
greatly facilitates the transfer to new signals. The effectiveness of
the concept of derived signals is shown by the experiments using
the original signals only, where recognition rates drop substantially
on both corpora. The adequacy of the generic extraction module, on
the other hand, is shown by the overall equivalent classification per-
formance of moving features and AuBT features. Finally, theeasy
transfer to new signals is illustrated by the experiments onDRIVA-
WORK where two signals (BVP and Temp) for which no special-
ized features are available in AuBT, can readily be utilizedby our
approach, improving the recognition rate.

The second advantage of our approach is that it is ideally suited
for on-line classification of physiological signals in terms of effi-
ciency. This is because the large analysis windows requiredfor a
robust decision on the one hand and a high update rate required by
an on-line classification system on the other hand result in analysis
windows with large overlap. For that, the chosen recursive com-
putation is very efficient, as shown in Section 2.2. This efficiency
is nice to have when doing research using a full-featured personal
computer; in an embedded application, it can be crucial. Dueto cost
pressure in mass production, it is important to use as few hardware
resources as possible in such a context. This is not only truefor
processing capabilities, but also for memory capacity. As an exam-
ple may serve the adidas1 running shoe which features real-time
classification of the surface condition using a biomechanical signal
(shoe heel compression) in order to dynamically adapt the cushion-
ing setting — in an embedded system with 512 bytes of main mem-
ory [2]. For applications where memory is similarly expensive, we
provide the sliding features, a highly memory-efficient approxima-
tion of the moving features. The experimental evaluation shows
that the classification performance of moving and sliding features
is very similar. Thus, the sliding features constitute an adequate
solution for such application contexts.

In the evaluations on the AuDB corpus, the combination of
the proposed moving features with the AuBT features lead to pro-
nouncedly better recognition performance than using features from
one of the approaches alone. This indicates that the featuresets
code complementary, useful aspects of the physiological signals. In
the future, we will study these differences to further improve our
approach. This will include, but not be limited to the development
of more derived signals for the currently studied signals. Another
direction of research will be the transfer of our approach tonew
signals and modalities, utilizing its generic nature. Lastly, we will
evaluate our approach using different target states for classification
and using other physiological datasets.

7. SUMMARY

In this paper, we have presented a new approach to physiological
feature extraction. The evaluation on two databases shows that the
recognition performance of our features, although involving only a
minimum of signal-specific processing, is competitive withstate-of-
the-art approaches where a dedicated feature set has been developed
for each physiological modality. We illustrate how the systematic
and generic nature of the proposed approach facilitates implemen-
tation and the transfer to new signals and modalities. Finally, its
algorithmic formulation is shown to be efficient in terms of time
and space complexity making it suitable for real-time classification
and meeting the requirements of embedded applications.
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