17th European Signal Processing Conference (EUSIPCO 2009)

Glasgow, Scotland, August 24-28, 2009

CLASSIFICATION OF USER STATESWITH PHYSIOLOGICAL SIGNALS: ON-LINE

GENERIC FEATURESVS. SPE
F. Honig" J. Wagnet,

* Lehrstuhl fir Mustererkennung,

Universitat Erlangen-Nirnberg,

Martensstr. 3, 91058 Erlangen, Germany

phone: +49 9131 852 7872, fax: +49 9131 30 38 11
email: hoenig@informatik.uni-erlangen.de

web: http://www5.informatik.uni-erlangen.de/hoenig

ABSTRACT

For on-line classification of user states such as emotiorsress
levels, we present a new, generic, and efficient physiobbdea-

ture set. In contrast to common approaches using featuessfisp
cally tailored to each physiological signal, we break upgdeaex-

traction into a simple, signal-specific pre-processing,stéad the
calculation of a comprehensive set of signal-independestiifes.
This systematizes feature design for each physiologigmasiand
facilitates the transfer to other signals. The time comipfenf the

approach is independent of the size of the analysis windawoén
the frequency with which feature vectors are computed fassit

fication. We also provide a variant of the feature set thatlbas
memory requirements. Thus, our approach is well suitedrfor
plementing real-time applications. We evaluate the pregdsa-

tures with an emotion and a stress classification task, stupthiat

they are competitive w.r.t. the performance of classiftoratiusing
signal-tuned state-of-the-art features.

1. INTRODUCTION

In Human-Computer-Interfaces, there is great potentiakizount-
ing for and appropriately reacting to the current cognitisfec-
tive, or emotional state of the user. User states are sighailvar-
ious channels, for example speech, gesture, or facial ssiore
Of particular interest arphysiological signalsi. e. recordings of
body functions such as heart rate or skin conductivity. Ttey-
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physiological data requires a relatively large contexd,amounts of
data to be processed in real-time can pose a problem for catgmo
used feature extraction approaches. Also, the efficienpodation
makes our feature set suitable for the limited hardware lubipes

of embedded applications. In this context, we also preseatiant
of our features that has very modest memory requirements.

Another goal in developing the feature set was to simplifg an
systematize the feature design process. This is achievelédnu-
pling signal-specific processing from the actual featurteagxion:
per signal, previous knowledge can be integrated into divelg
simple pre-processing step; the computation of the acaalfes
is then carried out by a generic, comprehensive featur@eian
module. Thus, the signal-specific part of the implementegaonin-
imized, and the transfer to other signals and modalitieitizted.
This also speeds up the developing cycle in physiologiaahagi
research: new signals can be added as input and tested fior the
usefulness quickly and with low effort.

We evaluate our approach on two databases with differeks tas
(four-class emation recognition and stress/non-stressification)
and compare the proposed features with state-of-the-gnals
tuned features that are computed off-line. For computiegétspe-
cialized features we use the Augsburg Biosignal ToolboxBm)}
which has been developed within the HUMAIREesearch project.
These features contain statistical measures such as meataam
dard deviation of the preprocessed signals as well as sgpaiific,
physiologically relevant quantities like heart rate vhiiity (HRV)

not be controlled up to the same extent by the user and ame ofteor energy of HRV in certain frequency bands. For the signigis-e

not consciously perceived. Cognitive and affective preessffect
physiological signals which therefore are an intriguingdidate
for acquiring information on user states.

It has been shown that under favourable conditions, emaltion
states can be recognized automatically from physiologiaials
by means of pattern recognition techniques with high rditsb
[7, 4, 9]. Most of the existing studies, however, are baseaffline
processing of relatively long, pre-defined segments ofrakeeord-
ings covering steady and pronounced instances of the wm@isst

to be recognized. It remains yet to be answered whether accep

able performance across subjects can be obtained undeegte |
restricted conditions of applications where a classificagystem
must possibly deal with artefacts, half-blown, changing enixed
user states; moreover, decisions have to be delivered |itimsz
Extending the work of Vyzas et al. [8], we take a step into the
direction of more realistic conditions by proposing a featset that
can be computed on-line with a low and steady computatiarzal.|
This is critical because in applications, the classificatioodule
can be required to deliver a continuously updated resporite w
minimal delay. As a reliable classification of the user sfaben
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trocardiogram (ECG), electromyogram (EMG), skin conduiti
(SC) and respiration (Resp), 84, 21, 67, and 21 speciallyréa
features are provided, respectively. They are a superdbedea-
tures used in [9] which have proven to be both well suited fooe
tion classification and competitive to those used in [7].

2. FEATURES

2.1 Derived Signals

As indicated above, we use an identical, generic featuraetin
module for all signals. For applying signal-specific knaige and
capturing important information that is contained in thgnsils but
present only in a very implicit representation, we compttarac-
teristic measures from selected signals over time. Thlesived
signalsare then added to the recorded signals and processed by the
generic feature extraction module just as the recordedkign

Given the recorded signals ECG, EMG, SC, skin temperature
(Temp), blood volume pulse (BVP), and Resp, we derive fodi-ad
tional signals. The instantaneous heart rate is computedséep-
function from ECG and BVP, yielding the signals ECG-HR and
BVP-HR. Similarly, the respiration rate (Resp-rate) isicint from

Lhttp://mm-werkstatt.informatik.uni-augsburg.de/aubt
2http://lemotion-research.net
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the respiratory signal. Finally, the pulse transit time TlPTom-

A robust estimate of the derivative »fis given by the slope of

puted from ECG and BVP (measured at a finger), which can béhe regression line for the lagtvalues. A recursive formulation is

regarded as a surrogate parameter of the systolic bloodyeeE3],
is added. These derived signals can be seen as a more statioda
more explicit representation of important properties @f ¢higinal
signals facilitating subsequent feature extraction.

In the following, the generic features that are extractenfr
each original and derived signal are outlined. We preseotvavi-
ants of our approach: the set of tmeving featureand the set of the
sliding features Both are very efficient in terms of time complex-
ity and thus suited for on-line classification. The slidimgtures,
which are an approximation of the moving features, additiign
have very low memory requirements, offering themselvesqi-
cations where few memory is to be spent.

2.2 Moving Features

We denote the-th sample of the current signal by, the sampling
frequency byfs, the length of the analysis window in samples by
w, the step size (distance between successive analysis wsndo
samples) bys, and the frequency with which feature vectors are
required for classification by = fs/s. The value of the-th feature
for an analysis window ending & is m; .

To efficiently implement on-line computation, each featigre
computedecursively using only its previous valuey n—1, the cur-
rent samplex, and a few auxiliary variables where required. As
a consequence, the time complexitycienstantin both w and f.

It depends only on the sampling frequency an®{ds). In con-
trast, common approaches using all samples of the currahiss
window for calculating a feature have a time complexity ofeaist
O(f-w) =O(fs- ¥). Thus, recursive computation is to be preferred
in terms of efficiency ifw is considerably larger thag i. e. if the
overlap of the analysis windows is large. This is the casenifire
physiological signal classification, as a relatively lamgmtext is
required for a robust decision.

Prototypical for the computations is the moving average,,
the mean of thev previous values afy,

1 w
= — Xn_ H
Hw,n Wi; N—W-ti

which is why this feature set is calledoving featuresA recursive
formulation is given by

@)

To store and access the necessary sample history efficiamthg-

Hwn—1 — Xn—w/W=Xn /W.
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Among other used estimates of the derivative, a smootheiover
is given by the auxiliary variable

(4)

Hw,n
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Non-linear measures are the standard deviatipn and the

root mean energy,/Ewn determined from

Ewn-1— X%,W/W+ X%/W

EW-,n - /Jvzv.n-

Ewn

2
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Minimum and maximum of the last values are approximated,
e.g.minyn by

mi Xn n=omodw
Maon min(X,, Mingon—1) else ’
Minynx = min(Miny i/ n)

which yields a value betweemniny, andminpy,. (k11)/k],n (OUr cur-
rent choice ik = 10). Further, the median is approximated by

medyn—1

—C1-Own X1 <MeGyn-1

medyn = medyn—1 Xn = Medyn_1
medyn—1

+C1-Own  Xn > MeGyn—1

with ¢; = % chosen such thahed,,» = 0 for x, = sgn(n) and
a — o. Other non-linear quantities use the discrete derivative
An =Xy — Xn—1 and are computed as the moving averag&/af|,
|max(An,0), |min(Ap,0)], A2, maxX(A2,0) and mirf(AZ,0)
analogously to Equation (1). In total, 50 moving features@m-

buffer of sizew is used. When using the update rule given by Equaputed.

tion (1) repeatedly to computgyn with finite-precision floating-
point arithmetic, rounding errors can accumulate for largand
render the result useless with time. Our solution is to wupdat
the computed value periodically by keeping a second acctowul
Sh = Sh—1+ Xn. Eachw steps, the recursively computed estimate of
Hw,n is substituted b, /w ands, is zeroed. Thus, a reasonable de-
gree of numerical stability can be achieved for all featuvhie in-
creasing the computational effort only by a constant faletes than

2. Apart frommg n = twn, @lSOMy n = |Liwn| andmp n = (Uwn)? are
used as features. A similar scheme is used for the other deahpu
quantities.

Lwn is the mean value of the signal when weighted with a rect-

angular window of lengtliv. The mean values when using a trian-
gular and bell-shaped window are given by

2 )

Hwn = Hyp1— Hwz,n—wy /W1 + Hw,,n/We,
wy = [w/2] +1w, =w+1—w; and
3 3 2 2
Ilw.r)1 = “\5\4%,1 - \EVA),nfw3/W3 + H\szl).n/WS:

w3 = |W/3] +1,wg =w+1—ws.

2.3 Sliding Features

The features described above have storage requiremergsrpro
tional to the sample coumt of the analysis window, or a space com-
plexity of O(w). For circumstances where this is not affordable, we
present approximations of the features which do not departtie
sample history, thus requiring only an amount of memmgstant
inw, i. e. they have a space complexity®@f1).

The approach is based on the sliding averpge, which is
why the feature set is callesliding features
= O Ugp-1+(1—0a) X

%aixnfiv
=

with 0 < o < 1. lg n is the mean of the signal when weighted with
an infinite, exponentially decaying window with a time camst
7= -1/In(a). As a measure for the effective window length, we
use the standard deviation of a rectangular and exponeveight-

ing window and setr = 1— 2/3/w, which yields an exponentional

Han

(1-a) )
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window with the standard deviation of a rectangular winddw o or relaxed state was intended by the experimental setupdivea
sizew. This rectangular window contains approx. 97 % of the mas$oint in time. For classification, statistical classifiersresapplied

of the exponential window. An update rule using (2) for reowe
computation does not suffer from numerical instability. wéwer,
due to the fact that the weighting window never actually hesc
zero, outlier values of a signal can corrupt the mean valua fong

to the moving feature set of Section 2.2 computed from mieltip
resolutions.

A continuous estimate of the stress level that is needed for
studying real-time classification is provided in DRIVAWORiY

time. Therefore,uq n is periodically substituted by a value that a manual annotation from three labellers. It has been demte

would result if the exponentially decaying window functieas set

cording to thefeeltrace[1] approach by tracing the perceived stress

to zero at 99 % of its mass. Again, a second accumulator is, usetevel on a continuous scale between 0 for maximally relaxatila

increasing the computational effort by less than a condtator
of 2.

for maximally stressed while watching and listening to tligeo
and audio recordings of a session. The annotations of tvelléab

In analogy to Equation (2), approximations can be calcdlate for one participant have a Pearson correlation coefficie@t#6 on

for most moving features. With the auxiliary variable

@

s )

21 = 01~Hal‘n,l+(1—01)'ua1,n7
a;=2a—1,

smoothed derivatives are given by

on = Mih—ul . a2=(a+1)/2 and
a8+ (1—a) - (W - ).

=)
Il

For minimum and maximum, we use an approximation, e. g.
Xn Xn < MiNg n_1
mingn = a-MiNg n-1
+(1—a)-xn else

The median is approximated by

med; n—1

—C2-Ogn  Xn < MeGyn_1

medin = medy n-1 Xn =mety n1
med; n—1

+C2-Tgn  Xn > Mmedy n_1

with gq n analog toown andcy = nl/%‘jl chosen so thahed, , and

Ha n intersect at zero fox, = sgn(n) anda — 1. In total, 44 sliding
features are calculated.

3. DATA

For evaluating our approach, we use two datasets posirneyetiff
classification tasks: the Augsburg database of biosigHal®B)
which contains physiological recordings of four inducedoéions
[9], and the DRIVAWORK (DRIving under VArying WORKIoad)
database which contains different stress levels [6].

average. In [5], the mean annotated stress rating of a fpeicis
predicted with linear regression from the moving featumaguted
from one minute of physiological data with a Pearson cofiaieof
0.69 in a subject-independent cross-validation.

4. CLASSIFICATION

Once the features from each original and derived signal baea
computed, they are analysed and combined by the clasificas-
tem for the final recognition result. Concatenating theueatec-
torscj from all Ssignals would result in a high-dimensional vector
which is disadvantageous for classification. Also, acdogntor
possible drop-out of a sensor would not be straightforward.

As a solution, we use the conceptlate fusion where each sig-
nal’s feature vector is classified separately and the fuisiample-
mented by combining the classifiers’ outputs. For clasgiioawe
apply a statistical approach and use Linear Discriminardalysis
to estimate the conditional probabilityc;|k) for classk. Taking
the (simplifying) assumption of statistical independertbe fusion
is carried out by multiplying the class probabilities of gignals:

S
ples.ca.....cslk) = [ plej k).
=1

Note that in this setup, drop-out of signals can triviallydoeounted
for by omitting the unavailable signals in the multiplicati

More elaborate classification and fusion mechanisms exst,
the goal of our experimental evaluation is to compare diffefea-
ture sets. For this purpose, it is instructive to choose afigenple
and robust setup for classification.

5. EXPERIMENTSAND RESULTS

We compute the moving and sliding features described in@e2t
and the specialized features supplied by AuBT and test pleefor-
mance for classifying the target states of AuDB and DRIVAWOR
As a baseline comparison, we also compute results with tinglest
possible feature, the raw signal valge The class-wise averaged

AuDB has been collected by recording ECG, EMG, SC andrecognition rates (CL) are reported.

Resp of one participant while listening to music that wasseimoto
induce one of the emotions joy, anger, sadness and pledsG@.

For the moving and specialized features, we extract festure
from one minute of physiological data; for the sliding faaty the

was sampled at 256 Hz, the remaining signals at 32 Hz. Thedeco correspondingr is used according to the rule given in Section 2.3.

ings have been taken in 25 separate sessions on differesit Eay
each session and emation, a 2-minute segment of data ialaeail
totalling to 200 minutes of data. In [9], one feature veckcdom-

puted from each segment and classified with different diessi

The induced emotion is recognized with accuracies arourid BO

a leave-one-session-out cross-validation. With featelection ap-

plied, recognition rates up to 92 % are achieved.

We simulate on-line processing by only using data from th&t,pa
i.e. the analysis window ends at the current point in time.e Th
length of one minute is a compromise between a large context e
abling a robust decision and the locality necessary for akgre-
sponse to user state changes. The frequenoy feature vector
computation and classification is 0.1 Hz, i. e. the distaretevéen
two consecutive analysis windows is 10 seconds. Note thedtarf

DRIVAWORK contains recordings of ECG, EMG, SC, Temp, rate would not increase the computational effort for the imgwor
BVP and Resp plus audio and video recordings of participants sliding features; however, to limit processing time for theBT
a simulated car-drive. ECG and EMG are sampled at 2048 Hz, thieatures, this relatively low frequency was chosen.

other signals at 256 Hz; the data amounts to a total of 15 hours

from 24 participants. Relaxed and stressed states havesheited
by giving the participant different tasks, partly on top afirdving
task. The structured design of the recordings can be useekiteed
coarse stress labels. In [6] it is shown that using one miofite
physiological data as input, it can be recognized with an@eay
of 89 % in a subject-independent cross-validation whetlsémressed

It should be noted that the specialized features are at altsy
advantage as the derived signals used for the sliding andngov
features can implicitly contain some context: ECG-HR, feare-
ple, has an estimate of the heart rate at its disposal imnedyliat
the start of the analysis window while for the AuBT featurdesart
rate cannot be estimated until the second R-Peak in the wihds
been observed.
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ECG ECG- EMG SC Resp Resp- all all orig
Features HR rate orig  +derived
raw 25.0 48.4 284 334 233 523 343 72.0
AuBT 63.3 - 69.1 409 723 - 80.7 -
moving 49.1 60.3 63.6 459 66.6 65.1 720 78.4
sliding 52.7 59.3 544 450 61.0 64.3 724 79.6
AUBT+ 673  66.0¢ 717 470 736 73.1* 811  83.4*
moving

Table 1: Recognition raté%o] for the 4-emotion AuDB task with different feature sets ahgigiological inputs. Rowraw” refers to current
value of the signal. RowAuBT’ uses the features computed by the AuBT toolbox, rom®Ving and “sliding” the features proposed in
Sections 2.2 and 2.3, respectively. In the last row, AuBT rmoging features are combined. In each column, results aendor specific
physiological inputs. Column “all orig” combines featufesm the originally recorded signals ECG, EMG, SC, and Réaf;orig +

derived” additionally uses the derived signals ECG-HR ardfRrate

. Note that AuBT does not distinguish betweenmalgnd derived

signals. Therefore, rowAuBT’ contains no results for derived signals (indicated by ,“dhd the results in the last row marked with an
asterisk (*) were obtained by combining moving featuresfitbe derived signals with AuBT features from the originghsils.

5.1 Evaluation on AuDB

The experiments on the AuDB corpus were carried out in a leave

one-session-out cross-validation to account for dayayp-daria-
tions. Table 1 lists the recognition rates that resultedttiis 4-
emotion classification task.

When using the trivial feature, the current value of the aign
the resulting recognition rates are close to chance (25 %f@L)
the originally recorded signals (cf. rowdw”, columns “ECG”,
“EMG”, “Sc”, “Resp” and “all orig”). For the derived signals
(cf. columns “ECG-HR” and “Resp-rate”), results improvehem
combining all originally recorded and derived signalst(tasgumn),

using all inputs together, the resulting recognition raft88.4 %
clearly exceeds the performance of the moving features amgirA
features alone (78.4 % and 80.7 %, respectively).

5.2 Evaluation on DRIVAWORK

In the experiments on the DRIVAWORK corpus, the continuous
stress level annotation was used to define a binary stresstress
classification task: the ratings were mean-variance-nizethper
labeller, averaged, and then discretized with threshald. Zehe re-
sulting target classes are almost balanced (52 % stress)tdthe
complexity of the task, inter-rater agreement is not todhhigo-

72.0% CL results. The specialized features provided by AuDBhen’sk is 0.44 for the individual labels; mean class-wise agre¢men

(row “AuBT’) reach considerably higher recognition rates for the
individual signals. The combination of AuBT features (cotu“all
orig”) yields 80.7 % CL, which corresponds to about half the er-
ror rate of the trivial features computed on all original atedived
signals.

is 74.7 % when comparing one labeller with the remainingllate
in turn.

AuBT currently provides specialized feature sets for ECG,
EMG, SC and Resp. Our generic approach, however, can be ap-
plied to all signals available in DRIVAWORK. To account fdrig,

Next, the classification performance of the newly proposedexperiments on DRIVAWORK were carried out for different iip

moving features (cf. rowrtioving) is compared with that of AuBT.
Also the moving features are considerably better than iialtfea-
tures, but for the original signals, they do not reach théoperance
of the AuBT feature& For example, the moving features yield
63.6 % CL for EMG while AuBT vyields 69.1 % CL. When applied
on the derived signals, however, the moving features comsecl

sets: “all-AuBT” comprising ECG, EMG, SC and Resp, and “all”
additionally covering BVP and Temp. Table 2 lists the resolt
the experiments which have been obtained in a leave-orjeesub
out cross-validation to estimate subject-independergsifiaation
performance.

As in the experiments above, the trivial feature (cf. raam’”)

to the performance of AuBT. On ECG-HR, they reach 60.3 % CLYi€lds recognition rates close to chance (50 % CL). The Augd f
which is near the performance of the AuBT ECG features (63.3 94ures (cf. row AuBT’) in combination reach 72.5 % CL. Again, the

CL). For Resp, this is not so evident; however, when comigitiire

moving features (cf. rowrhoving) on the original signals do con-

moving features from Resp and Resp-HR, 69.7 % CL are reachegiderably better (65.7% CL when combined, column “all-AuBT

(not contained in Table 1), which is again near the perfocaaf

orig”) than the trivial features, but only when adding theizd

the AuBT Resp features (72.3% CL). Combining the moving feafeatures, results comparable to AuBT are achieved. This tiaw-

tures from all original and derived signals, a CL of 78.4 %e&ahed
which is near the performance of all AuBT features (80.7 %.CL)

The sliding features are a memory-efficient approximatibn o
the moving features. When comparing the performance ofwbe t
variants (cf. rows foving and “sliding’), it turns out that the
overall performance is similar. For example, when usingrgdut
modalities, the sliding features yield 79.6 % CL, even éelitetter
than the result of the moving features (78.4 % CL).

Finally, the moving features were combined with the AuBT-fea
tures to see whether complementary information is codedhby t
feature sets (cf. last row). This seems indeed to be the aqase:
gardless of whether the physiological inputs are used atgdgror
in combination, joining AUBT and moving features alwAyselds
better results than any of the feature sets alone. For exampkn

3SC is an exception and is utilized better by the new featutesy give
45.9% CL while the AuBT for SC only gains 40.0% CL.

4with the exception of ECG, where the score 62.3 % for the coatlin
is lower then the score 63.3% CL for AuBT alone

ever, the moving features (73.6 % CL, column “all-AuBT orig +
derived”) are slightly better than the AuBT features (72.8%).

Apart from the signals that AuBT currently accounts for (ihp
set “all-AuBT"), DRIVAWORK contains also recordings of BVP
and Temp. Adding these inputs (last two columns), the peréoce
of the moving features rises from 65.7 % CL to 71.2% CL in case
of the original signals (cf. column “all orig”) and from 736 CL
to 74.5% CL when using derived signals as well (cf. last calym

Next, the sliding features (cf. row “sliding”) were studied
an approximation of the moving features. As in the evaluetio
on AuDB, their performance is similar. For example, whemgsi
all original and derived signals (last column), the slidfiegtures
(74.3% CL) perform nearly equal to the moving features (74.5
CL).

Combining the moving and AuBT features (last row) generally
improves results, but not as clearly as was the case in theBAuD
evaluations. The combination of all moving features withAalBT
features gives the best observed result (74.6 % CL, lastreglu
minimally better than the moving features alone (74.5% CL).
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all-AuBT  all-AuBT all all
Features orig  orig+derived orig orig + derived
raw 51.6 52.9 51.7 57.8
AuBT 72.5 - - -
moving 65.7 73.6 71.2 74.5
sliding 65.7 73.3 71.0 74.3
AUBT+ 71 g 73.6* 740+ 74.6*
moving

Table 2: Recognition rate8o| for on-line stress/non-stress recog-
nition on the DRIVAWORK corpus with different feature setsda
physiological input sets. The features are abbreviated @able 1.
“all-AuBT orig” refers to ECG, EMG, SC and Resp. “all-AuBT
orig + derived” additionally uses the derived signals ECR-&hd

In the evaluations on the AuDB corpus, the combination of
the proposed moving features with the AuBT features leadde p
nouncedly better recognition performance than using featfrom
one of the approaches alone. This indicates that the featige
code complementary, useful aspects of the physiologigabss. In
the future, we will study these differences to further imgraur
approach. This will include, but not be limited to the deyetent
of more derived signals for the currently studied signalsother
direction of research will be the transfer of our approacméw
signals and modalities, utilizing its generic nature. baste will
evaluate our approach using different target states fesiflaation
and using other physiological datasets.

7. SUMMARY

In this paper, we have presented a new approach to physialogi
feature extraction. The evaluation on two databases shmtshe

Resp-rate. “all orig” comprises ECG, EMG, SC, Resp, Temp andecognition performance of our features, although invajvonly a

BVP. “all orig + derived” additionally uses the derived sigm ECG-
HR, Resp-rate, BVP-HR and PTT. The asterisk (*) refers toingv
features combined with AuBT features from “all-AuBT orig”.

6. DISCUSSION AND FUTURE WORK

In the evaluations in the previous Section, the proposedmgdea-
tures perform very similar to the AuBT features with resgedias-
sification accuracy. When using all physiological inpute mov-
ing features are slightly worse on the AuDB corpus, and #lgh

minimum of signal-specific processing, is competitive vgitdte-of-
the-art approaches where a dedicated feature set has hexopdel
for each physiological modality. We illustrate how the sysatic
and generic nature of the proposed approach facilitatekeimgn-
tation and the transfer to new signals and modalities. Fini
algorithmic formulation is shown to be efficient in terms ohe
and space complexity making it suitable for real-time dfasgion
and meeting the requirements of embedded applications.
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formance of moving features and AuBT features. Finally,ahsy
transfer to new signals is illustrated by the experiment®BAVA-

WORK where two signals (BVP and Temp) for which no special-

ized features are available in AuBT, can readily be utilibgcbur
approach, improving the recognition rate.

The second advantage of our approach is that it is idealtgdui
for on-line classification of physiological signals in teyrof effi-
ciency. This is because the large analysis windows reqdamed
robust decision on the one hand and a high update rate rddujre
an on-line classification system on the other hand resuhatysis
windows with large overlap. For that, the chosen recursom-c
putation is very efficient, as shown in Section 2.2. This fficy
is nice to have when doing research using a full-featuredqued
computer; in an embedded application, it can be crucial. tbeest
pressure in mass production, it is important to use as fedwemne
resources as possible in such a context. This is not onlyftnue
processing capabilities, but also for memory capacity. mexam-
ple may serve the adiddlsrunning shoe which features real-time
classification of the surface condition using a biomectarsignal
(shoe heel compression) in order to dynamically adapt tekion-

ing setting — in an embedded system with 512 bytes of main mem-

ory [2]. For applications where memory is similarly expemsiwe
provide the sliding features, a highly memory-efficient mpgma-
tion of the moving features. The experimental evaluatioowsh
that the classification performance of moving and slidirgtdees
is very similar. Thus, the sliding features constitute apcate
solution for such application contexts.
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