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ABSTRACT
Automatically recognizing humans using their biometric
traits such as face and fingerprint will have very important
implications in our daily lives. This problem is challenging
because biometric traits can be affected by the acquisition
process which is sensitive to the environmental conditions
(e.g., lighting) and the user interaction. It has been shown that
post-processing the classifier output, so called score normal-
ization, is an important mechanism to counteract the above
problem. In the literature, two dominant research directions
have been explored: cohort normalization and quality-based
normalization. The first approach relies on a set of compet-
ing cohort models, essentially making use of the resultant co-
hort scores. A well-established example is the T-norm. In
the second approach, the normalization is based on deriving
the quality information from the raw biometric signal. We
propose to combine both the cohort score- and signal-derived
information via logistic regression. Based on 12 indepen-
dent fingerprint experiments, our proposal is found to be sig-
nificantly better than the T-norm and two recently proposed
cohort-based normalization methods.

1. INTRODUCTION

Automatic person identity recognition using biometrics is a
challenging problem [1] despite the decades of research. One
of the reasons is that raw biometric signals are susceptible to
various forms of degradation caused by, the acquisition envi-
ronment, the manner a subject interacts with a biometric ac-
quisition device, and natural alteration of biometric trait due
to sickness or aging. Because a matcher or classifier can-
not adequately cope with all of the above corrupting effects,
post-processing the resulting match scores, i.e. score normal-
ization, has been identified as an important stage. The goal of
score normalization is to map the original match scores to a
domain where the effect of noise on match score distribution
is neutralized.

Biometric match scores can be normalized using one the
following approaches:

• biometric trait quality: Variation in the raw biomet-
ric signal can be gauged by directly measuring the sig-
nal quality. Historically, this quality information is used
in the context of multimodal fusion where the idea is to
weigh the biometric modality heavier in the process of
computing the final combined score [2, 3, 4, 5, 6]. How-
ever, recent studies have shown that the quality informa-
tion can also be used in unimodal biometrics, e.g., [7, 8].
In fact, it is natural to handle raw signal quality variation
for each biometric modality separately because this vari-
ation is modality-dependent [9]. For instance, the noise
affecting the fingerprint signal is different from that af-
fecting the face signal. Some quality-based fusion can be

factorized into two stages wherein the first stage essen-
tially consists of modality-dependent quality-based score
normalization and only then the second stage considers
multimodal fusion. Examples of such fusion algorithms
are [10] using a Bayesian classifier with Gaussian Mix-
ture Model as a density estimator and [4] using logistic
regression and support vector machines. In [4], various
architectures considering both intramodal and multimodal
quality-based fusion are compared.

• decision score characteristic: An alternative method that
can be used to normalize against score distribution varia-
tion between the enrollment and query sessions is based
either on the reliability of the decision score or on measur-
ing the degradation effect in relation to a reference cohort
of users (competing hypotheses). The motivation for the
latter is that all competing client models (including the
claimed user model) will be subject to the same degrada-
tion. It is therefore sensible to normalize the match score
using a pool of user models, also known as the cohort
models. The class of such normalization procedures (with
T-norm being a special case[11]), is subsequently called
cohort-based score normalization in this paper. A disad-
vantage of this normalization is that for each query, all the
cohort models have to be used. When the cohort models
used are the models in the gallery (also known as enrollee
or client models) other than the claimed model, one ef-
fectively performs identification in the verification mode.
The former is a many-to-one matching whereas the latter
is a one-to-one matching.

Two diagrams depicting quality-based and cohort-based
score normalization are shown in Figure 1. In (a), the quality
assessment module directly provides an estimate of the sig-
nal quality known as a quality measure. This measure quan-
tifies the degree of excellence or conformance of biometric
samples to some predefined criteria known to influence the
system performance. For instance, for the face biometrics,
these measures assess image focus, contrast and face detec-
tion reliability. Since any quality measure is derived sepa-
rately from the classifier, there is no guarantee that the qual-
ity measures will correlate with the performance. The task of
selecting/designing an appropriate quality assessment module
is left to the system designer.

Figure 1(b) shows a cohort-based score normalization
procedure. This procedure requires a set of cohort models,
shown here as a pool of classifiers, each taking the query bio-
metric sample/features as input and outputting a match score.
The resulting set of match scores are submitted to a cohort-
analysis module, to calculate the maximum/minimum scores
as well as the first and second order moments, for instance.
The derived parameters are then used as input to a so-called
cohort-based score normalization procedure.
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(a) quality-based normalization

(b) cohort-based normalization

(c) our proposal

Figure 1: Block diagram of different normalizations method:
(a) Quality based normalization, (b) Cohort based normaliza-
tion, (c) Our proposal of combined Quality and Cohort based
normalization.

An important distinguishing characteristic of the two nor-
malization procedures is that in the cohort-based score nor-
malization, only the classifier outputs are used. As a re-
sult, there is an inherent tight coupling between the score-
derived parameters and the system performance. In contrast,
in quality-based normalization, this relationship is not guar-
anteed; additional knowledge from the system designer is
needed. We shall therefore describe the cohort-based nor-
malization as score-derived quality normalization as opposed
to the quality-based normalization which is signal-derived.
Recognizing that both approaches effectively capture differ-
ent pieces of information, we propose to combine them (see
Figure 1(c)). The role of normalization in this case is to con-
solidate both pieces of information. Our experiments based
on 6 fingers and two acquisition devices show that our pro-
posal is significantly superior to the well established T-norm,
as well as two recently reported cohort normalization meth-
ods in the literature [11, 12].

This paper is organized as follow: Section 2 presents prior
works of both score- and signal-derived score normalization
procedures. Our proposal is presented in Section 3. This is
followed by experimental validation in Section 4 and conclu-
sions in Section 5.

2. RELATED PRIOR WORK

2.1 Signal-derived Normalization

recent advances in multi-biometrics include quality-based fu-
sion, e.g., [2, 3, 4, 5, 6], where the quality associated with the
template (or model) as well as the query biometric sample are
taken into account in fusion. For this purpose, a plethora of
quality measures have recently been proposed in the literature

for various biometric modalities, e.g., fingerprint [13, 14],
iris [7], face [15], speech [16] and signature [17].

There are two ways quality measures can be incorporated
into a fusion classifier, depending on their role, i.e., either as
a control parameter or as an evidence. In their primary role,
quality measures are used to modify the way a fusion clas-
sifier is trained or tested, as suggested in the Bayesian-based
classifier called “expert conciliation” [2], reduced polynomial
classifier [18], quality-controlled support vector machines [3],
and quality-based fixed rule fusion [19]. Alternatively quality
measures are often concatenated with the expert outputs to be
fed to a fusion classifier. This role lends itself to quality-based
score normalization, since the resulting fusion module can be
decoupled to process one modality at a time. Examples in this
category are [20, 5, 8, 4, 21]. Among these approaches, we
shall use the one described in [4] for its simplicity.

Let y be the match score and q be the vector of quality
measures derived from the training data (template) as well as
the query data. Kittler et al. [4] proposed to use discrimina-
tive classifiers such as logistic regression and support vector
machines to combine y and q. In the case of logistic regres-
sion, the resultant classifier score, which can be viewed as a
normalization score, can be written as:

yq = P(C|y,q) (1)

Our proposal will be an extension of this normalization
method by augmenting the observation space with the cohort
information, to be described in Section 3.

2.2 Cohort-based Normalization

Furui [22] described the cohort-based score normalization
as a likelihood ratio-based normalization since the expected
(mean) score derived from the cohort models can be inter-
preted as a competing hypothesis. A variation to the above
approach includes the claimed model in the pool of cohort
models (which the author call posterior probability-based nor-
malization to contrast with the original approach). Both ap-
proaches are shown to perform equally well.

While T-norm has been a dominant approach since its
proposal, attempts have been made to improve its efficiency,
e.g., [23]. Three notable works pursuing the latter direction
include [24, 12] and [11].

Let yc ∈ Y c be a cohort score obtained by comparing a
query sample with a cohort model, and Y c be a set of cohort
scores. Note that y is different from yc because y is a result
of comparing a query sample with a claimed model, whereas
yc is the result of comparing the sample with a cohort model.
Furthermore, we define the expected value (mean) of yc as
µc = E[y] and its variance as (σ c)2 = E

[

(yc − µc)2
]

. In this
notation, the T-norm is given by:

yT =
y− µc

σ c
(2)

In [24], a generalized form of T-norm is given by:

yX = y +
(y− µc)2

2(σ c)2

It was reported that the original and generalized form of the
T-norm are not significantly different in performance. This
can be expected since both formulations use the same infor-
mation.
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Tulyakov et al. [11] proposed a different form, which can
be described by

yTul = P(C|y, max
yc∈Y c

{yc}), (3)

where the posterior probability is obtained via multi-layer
Perceptrons using [y,maxyc∈Y c{yc}] as observations. In their
work, a generative classifier based on the log-likelihood ratio
test was also examined. The term maxyc∈Y c{yc} is the maxi-
mum of the impostor scores, and is referred to as the “second
best score” by the authors. The “best score” would be y (the

score of the claimed identity)1.

Aggarwal et al. [12] proposed the following normaliza-
tion:

yAg =
y

maxyc∈Y c{yc}
(4)

The advantage of this approach is that no additional training
is required, as compared to (3). However, designing a score
normalization that is tailored to a specific system output can
potentially increase the generalization performance further,
hence justifying this approach.

We note that if the scores y and yc are interpreted as like-
lihoods, the ratio of (4) is simply a likelihood ratio test, a
concept already noted by Furui [22]. However, rather than
taking the average, here the maximum operator is used. The
motivation here is that only the strongest cohort model (that
is the most similar to the claimed model) will be used. Fol-
lowing this intuition, Aggarwal et al. proposed to use only a
subset of cohort models pre-selected for each claimed model
to improve the algorithm efficiency without hampering its ef-
fectiveness.

3. METHODOLOGY

We propose a novel score normalization method combining
the score- and signal-derived quality information. As we shall
see in the Experimental Section T-normalization is superior in
performance to methods (2) and (3). We shall therefore use
it as a basis for combination with the biometric trait quality
information to construct a new normalization method:

yp = P(C|yT
norm,q) (5)

In (5) the weights of the two pieces of inherently different in-
formation are obtained via training. The logistic regression al-
gorithm optimizes the likelihood of the model given the data,
following the usual formulation of the maximum likelihood
principle [25]. However, since the model is discriminative,
the maximum likelihood solution (unlike the usual generative
models) in this case maximizes the class-separability between
the genuine and impostor classes. In other words, the fea-
ture observations are weighted by a discriminative criterion,
hence, justifying our choice of using logistic regression.

A scatter plot of match scores of [yT−norm,q] for a finger
print data set is shown in Figure 2. We observe that both fea-
tures provide complementary information for discriminating
the genuine accesses from the impostor ones.

1It is not clear what the second best scores would mean in the case where
the cohort score set contains the genuine score. This is the case when one
actually performs verification in the identification mode. We shall limit our-
selves to the case where the pool of cohort models and the gallery of client
models are disjoint, such that Y

c contains no genuine match score.
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Figure 2: Scatter plot of the T-normalized score (Y-axis) vs
the template quality measure of fingerprint. The inferred pos-
terior are shown in the background, with the optimal decision
boundary being 0.5.

4. EXPERIMENTAL RESULTS

4.1 Database and matching algorithms

In order to demonstrate the efficiency of our method, we used
a subset of the Biosecure data set [26], limiting to the study
to the fingerprint modality. We used the NIST fingerprint
matcher (“Bozorth3”). This software also has a quality as-
sessment module called “NFIQ” (NIST’s Fingerprint Imag-
ing Quality). In this database, six fingers – thumb, middle
and index fingers of both hands were used. The fingerprints
were scanned with two devices, namely thermal and optical-
based sensors. Each subject provides 4 impressions per de-
vice and per finger. Therefore, each subject supplied a total
of 4 impressions×6 fingers×2 devices = 48 impressions.

Five disjoint groups of users were identified, with the first
four groups (respectively referred to as g1–g4) constituting
enrollees and the final group forming a separate set of cohort
users to provide cohort models. Subjects in g1 and g2 were
used as enrollees in the development (dev) set; and, g3 and g4
as enrollees in the evaluation (eva) set. The total number of
subjects in g1–g4 are {84,83,83,81} respectively. The total
number of cohort users is 84. For the purpose of obtaining a
cohort score, only the first of the four samples of a cohort user
was used.

We require that each of dev and eva sets has its own
enrollment and query data set, i.e.,Dd,enrol, Dd,query for d ∈
{dev,eva}. Recall that there are four impressions per finger
and per device. The first impression was used as a template
(or model). The second impression was used to generate a
genuine score for Ddev,enrol whereas the remaining two query
samples were used for Deva,query (for each client/enrollee).

To generate the impostor match scores, for,Ddev,enrol we
used query samples of g3; for Ddev,query, g4; for Deva,enrol , g1;
and, for Ddev,query, g2. In this way, the impostor match scores
in all the four data sets are completely disjoint. This has
the advantage that algorithms (operating at the score level)
trained will not have seen the impostor match scores pre-
sented during testing.
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In the empirical evaluation reported, in the next section
we use Ddev,query as our training set and Deva,query as our test
set. Note that the enrollees and impostor subjects in these two
match scores are completely disjoint. This simulates a sce-
nario where the development and operational data have dis-
joint subjects, a realistic condition.

4.2 Results

We compared the following approaches:

• Baseline: the original system output without any post-
processing

• T-norm: post-processing using T-norm, as in (2)

• Tulyakov’s approach: post-processing using (3) (labeled
as “SecondBestScore”)

• Aggarwal’s approach: post-processing using (4) (la-
beled as “src/maxOfCohort”)

• Quality-based approach: Combination of score with
biometric trait quality using (1) (labeled as “[baseline
SigQlty]”)

• Our proposal: post-processing using (5) (labeled as
“[Tnorm, SigQlty]”)

Since there are 12 independent experiments (due to 2 devices
× 6 fingers), we shall summarize the results using relative
change of Equal Error Rate (EER) with respect to the perfor-
mance of the baseline system:

rel. change of EER =
EERalgo −EERbaseline

EERbaseline

A negative change of EER implies an improvement over the
baseline system. This statistic has the advantage that the per-
formance of different systems can be collated, hence estab-
lishing confidence intervals when visualized using a boxplot
(showing median, the first and third quarter, as well as the
fifth and 95-th percentiles of the data) when several indepen-
dent experiments are conducted.

The relative changes of EERs for the above mentioned
algorithms are shown in Figure 3. As can be observed, our
proposal outperforms all the competing algorithms, including
the T-norm. Our results, obtained on a more extensive set of
experiments, do not support the claim of Tulyakov et al. that
their approach is better than the T-norm. Aggarwal et al. did
not compare their proposal with the T-norm as done here.

Acknowledging that EER is not the only point of inter-
est in many applications, we also plot the more conventional
detection error trade-off (DET) curve for one of the 12 exper-
iments selected at random in Figure 4. The result is consistent
with Figure 3.

5. CONCLUSION

In this paper, we have proposed a novel score normalization
method combining both the signal- and score-derived quality
information. By exploiting these two pieces of complemen-
tary information, our approach significantly improves over
the T-norm and two recently reported methods.

Future works in this direction will investigate (i) the ef-
fect of our proposed score normalization on fusion, (ii) in-
cluding genuine score information, (iii) the choice of cohort
users; and (iv) the generality of our proposal on other biomet-
ric modalities.
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Figure 3: Boxplot of relative change of EER.

Acknowledgment

This work was supported partially by the advanced re-
searcher fellowship PA0022 121477 of the Swiss National
Science Foundation and by the EU-funded Mobio project
(www.mobioproject.org) grant IST-214324.

REFERENCES

[1] A.K. Jain, S. Pankanti, S. Prabhakar, L. Hong, and
A. Ross, “Biometrics: A grand challenge,” in Proc.
17th Int’l Conf. Pattern Recognition (ICPR), 2004, pp.
II: 935–942.

[2] J. Bigun, J. Fierrez-Aguilar, J. Ortega-Garcia, and
J. Gonzalez-Rodriguez, “Multimodal Biometric Au-
thentication using Quality Signals in Mobile Com-
munnications,” in 12th Int’l Conf. on Image Analysis
and Processing, Mantova, 2003, pp. 2–13.

[3] J. Fierrez-Aguilar, J. Ortega-Garcia, J. Gonzalez-
Rodriguez, and J. Bigun, “Kernel-Based Multimodal
Biometric Verification Using Quality Signals,” in De-
fense and Security Symposium, Workshop on Biomet-
ric Technology for Human Identification, Proc. of SPIE,
2004, vol. 5404, pp. 544–554.

[4] J. Kittler, N. Poh, O. Fatukasi, K. Messer, K. Kryszczuk,
J. Richiardi, and A. Drygajlo, “Quality Dependent
Fusion of Intramodal and Multimodal Biometric Ex-
perts,” in Proc. of SPIE Defense and Security Sympo-
sium, Workshop on Biometric Technology for Human
Identification, 2007, vol. 6539.

[5] K. Nandakumar, Y. Chen, S. C. Dass, and A. K. Jain,
“Likelihood ratio based biometric score fusion,” IEEE
Trans. on Pattern Analysis and Machine Intelligence,
vol. 30, pp. 342–347, 2008.

[6] K. Kryszczuk and A. Drygajlo, “Credence estimation
and error prediction in biometric identity verification,”
Signal Processing, vol. 88, pp. 916–925, 2008.

[7] Y. Chen, S. Dass, and A. Jain, “Localized iris image
quality using 2-d wavelets,” in Proc. Int’l Conf. on Bio-
metrics (ICB), Hong Kong, 2006, pp. 373–381.

[8] N. Poh, G. Heusch, and J. Kittler, “On Combination
of Face Authentication Experts by a Mixture of Quality

73



  0.1   0.2   0.5    1     2     5    10    20    40    60  

   0.1

   0.2

   0.5

     1

     2

     5

    10

    20

    40

    60

FAR [%]

F
R

R
 [
%

]

device fo finger 4

 

 

baseline

[baseline SigQlty]

Second Best Score

scr / max of cohort

tnorm

[T−norm, Sig Qlty]

Figure 4: DET curves of different normalization methods for
left thumb.

Dependent Fusion Classifiers,” in LNCS 4472, Multiple
Classifiers System (MCS), Prague, 2007, pp. 344–356.

[9] J. Kittler N. Poh, T. Bourlai, “Quality-based score nor-
malisation with device qualitative information for multi-
modal biometric fusion,” IEEE Trans. on Systems, Man,
and Cybernatics (part B), 2009, accepted.

[10] K. Nandakumar, Y. Chen, S.C. Dass, and A.K. Jain,
“Quality-based Score Level Fusion in Multibiometric
Systems,” in Proc. 18th Int’l Conf. Pattern Recognition
(ICPR), Hong Kong, 2006, pp. 473–476.

[11] S. Tulyakov, Z. Zhang, and V. Govindaraju, “Compar-
ison of combination methods utilizing t-normalization
and second best score model,” in IEEE Conf. on Com-
puter Vision and Pattern Recognition Workshop, 2008.

[12] G. Aggarwal, N.K. Ratha, R.M Bolle, and R. Chellappa,
“Multi-biometric cohort analysis for biometric fusion,”
in IEEE Int’l Conf. on Acoustics, Speech and Signal
Processing, 2008.

[13] H. Fronthaler, K. Kollreider, J. Bigun, J. Fier-
rez, F. Alonso-Fernandez, J. Ortega-Garcia, and
J. Gonzalez-Rodriguez, “Fingerprint image-quality es-
timation and its application to multialgorithm verifica-
tion,” IEEE Trans. on Information Forensics and Secu-
rity, vol. 3, pp. 331–338, 2008.

[14] Y. Chen, S.C. Dass, and A.K. Jain, “Fingerprint Qual-
ity Indices for Predicting Authentication Performance,”
in LNCS 3546, 5th Int’l. Conf. Audio- and Video-Based
Biometric Person Authentication (AVBPA 2005), New
York, 2005, pp. 160–170.

[15] X. Gao, R. Liu, S. Z. Li, and P. Zhang, “Standardization
of face image sample quality,” in LNCS 4642, Proc. Int’l
Conf. Biometrics (ICB’07), Seoul, 2007, pp. 242–251.

[16] National Institute of Standards and Technology, “Nist
speech quality assurance package 2.3 documentation,” .

[17] S. Muller and O. Henniger, “Evaluating the biomet-
ric sample quality of handwritten signatures,” in LNCS
3832, Proc. Int’l Conf. Biometrics (ICB’07), 2007, pp.
407–414.

[18] K-A. Toh, W-Y. Yau, E. Lim, L. Chen, and C-H. Ng.,
“Fusion of Auxiliary Information for Multimodal Bio-
metric Authentication,” in LNCS 3072, Int’l Conf. on
Biometric Authentication (ICBA), Hong Kong, 2004, pp.
678–685.

[19] O. Fatukasi, J. Kittler, and N. Poh, “Quality Con-
trolled Multimodal Fusion of Biometric Experts,” in
12th Iberoamerican Congress on Pattern Recognition
CIARP, Via del Mar-Valparaiso, Chile, 2007, pp. 881–
890.

[20] D. E. Maurer and J. P. Baker, “Fusing multimodal bio-
metrics with quality estimates via a bayesian belief net-
work,” Pattern Recognition, vol. 41, no. 3, pp. 821–832,
2007.

[21] F Alonso-Fernandez, J. Fierrez, D. Ramos, and
J. Ortega-Garcia, “Dealing with sensor interoperability
in multi-biometrics: The upm experience at the biose-
cure multimodal evaluation 2007,” in Proc. of SPIE De-
fense and Security Symposium, Workshop on Biometric
Technology for Human Identification, 2008.

[22] Sadaoki Furui, “Recent advances in speaker recogni-
tion,” Pattern Recognition Letters, vol. 18, no. 9, pp.
859 – 872, 1997, Audio- and Video-Based Person Au-
thentication.

[23] D.E. Sturim and D.A. Reynolds, “Speaker adaptive co-
hort selection for tnorm in text-independent speaker ver-
ification,” Acoustics, Speech, and Signal Processing,
2005. Proceedings. (ICASSP ’05). IEEE International
Conference on, vol. 1, pp. 741–744, 18-23, 2005.

[24] Johnny Marithoz and Samy Bengio, “A Bayesian
Framework for Score Normalization Techniques Ap-
plied to Text Independent Speaker Verification,” IEEE
Signal Processing Letters, vol. 12, no. 7, pp. 532–535,
2005.

[25] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi-
fication and Scene Analysis, John Wiley and Sons, New
York, 2001.

[26] Javier Ortega-Garcia, Julian Fierrez, Fernando Alonso-
Fernandez, Javier Galbally, Manuel R. Freire, Joaquin
Gonzalez-Rodriguez, Carmen Garcia-Mateo, Jose-Luis
Alba-Castro, Elisardo Gonzalez-Agulla, Enrique Otero-
Muras, Sonia Garcia-Salicetti, Lorene Allano, Bao Ly-
Van, Bernadette Dorizzi, Josef Kittler, Thirimachos
Bourlai, Norman Poh, Farzin Deravi, Richard Ng,
Michael Fairhust, Jean Hennebert, Andreas Humm,
Massimo Tistarelli, Linda Brodo, Jonas Richiardi, An-
drzej Drygajlo, Harald Ganster, Federico Sukno, Sri-
Kaushik Pavani, Alejandro Frangi, Lale Akarun, and
Arman Savran, “The multi-scenario multi-environment
biosecure multimodal database (bmdb),” IEEE Trans.
on Pattern Analysis and Machine, 2009.

74


