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ABSTRACT
A novel technique via Quadtree Gauss-Laguerre Transform
(LGT) for a complete localization of a complex image in an
multimedia database is presented. This technique is based
on an iterative Maximum Likelihood procedure that allows
to compare a region of interest (ROI) of an image with a
content of a database, independently from location, rotation
and scale. At this aim the ROI is expanded in terms of a
Riesz basis, consisting of a set Circular Harmonic Gauss
Laguerre functions, selected in order to make a trade off be-
tween accuracy and computational complexity. Numerical
results obtained by a Monte Carlo simulation illustrate the
performance of the method.

1. INTRODUCTION

The accurate localization of patterns is an important issue in
many image and video processing applications. For instance,
estimation of position, rotation and scale of a given template
within a complex scene, is a fundamental task in multime-
dia database management systems (DBMS), in indoor and
outdoor surveillance, in human interactions recognition and
classsification, in automatic vehicle guidance and in robotic
applications, just to mention a few. Conventional solutions
are based on invariants, i.e. on object features that are un-
affected by one or more localization parameters. Typically,
the pattern position t is estimated using a correlation-based
invariant matching procedure [1],[2], and subsequently ro-
tation and scale are estimated with respect to the already
known position. Using invariants, suboptimum solutions
from the accuracy viewpoint are obtained, but the complex-
ity of the problem reduces to search in parameter spaces of
lower dimension.

In this paper, a novel method based on a Riesz hy-
percomplete basis whose elements are the Gauss-Laguerre
Circular Harmonic functions (CHFs) is presented. Gauss-
Laguerre CHFs are complex, polar separable filters charac-
terized by harmonic angular shape, a useful property to build
rotationally invariant descriptors. Local expansions based
on Gauss-Laguerre CHFs have been already introduced for
Maximum Likelihood orientation invariant pattern recogni-
tion, [3]. However, a rather large number of expansion terms
has to be employed when dealing with large objects contain-
ing many details. Here, to reduce the computational com-
plexity, we propose to partition a region of interest of an im-
age into smaller and smaller square blocks whose content is
approximated by a truncated expansion making use of just a
few Gauss Laguerre CHFs. The block width is controlled by
the norm of the approximation error. To further reduce the
computational complexity of the Maximum Likelihood esti-
mation implementation, the elements of the quadtree blocks

are ranked with respect to their amount of Fisher’s informa-
tion on location and rotation, proportional to the energy of
the low pass filtered gradient. Then, a procedure based on
the sequential matching of each block of the ranked quadtree
list is applied.

2. THE PROPOSED METHOD

2.1 Gauss-Laguerre Transform
Let x = [x1,x2] be the coordinates in the real plane ℜ2 . Any
image f (x) ∈ L2(ℜ2,d2x) admits an orthogonal expansion
under a Gaussian weighting function, w(x) = eπ|x|2 , com-
plete over the entire plane, around any point ξ = (ξ1,ξ2),
[3]:
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and the expansion coefficients are defined as:
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We incidentally observe that the parameter s controls the
width of the weighting function.
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The expansion in terms of Gauss-Laguerre functions can
be derived, for instance, by first applying the Fourier’s se-
ries expansion to the representation of the image f in polar
coordinates with respect to the angular coordinate, and then
expanding the radial profile of each harmonic using the La-
guerre polynomials L(n)

k (t).
The Gauss-Laguerre functions are members of the wider

class of Circular Harmonic Functions (CHFs), successfully
used for many low level vision tasks, thanks to their selec-
tivity with respect to basic visual patterns, [4],[5]. CHFs of
n-th order are, by definition, polar separable functions of the
form h(r)e jnθ .

By virtue of their harmonic angular shape, CHFs are in-
deed natural detectors for different classes of features: CHFs
of order n=1 for example are tuned to edges, n = 2 to lines, n
= 3 to forks, etc..

In addition, every Gauss-Laguerre function generates a
dyadic Circular Harmonic Wavelet. This means that every
image f (x) can be represented by its continuous wavelet
transform WL n

k
[ f ](b,α,σ) where b, α and σ are the pa-

rameters representing respectively the translated, rotated and
scaled version of the mother wavelet L

(n)
k .

With reference to localization of complicated patterns, a
rather relevant property is the following.

PROPERTY I. Given an image f defined over a finite
support I ⊂ ℜ2 and a lattice Ξ = {ξm ∈ I,m = 1, ...,M} the
set of Gauss-Laguerre functions{
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defines a Riesz basis for f .
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Thus in turn implies that the inner product between two

images f and g with expansion coefficients Dn,k (ξm) and
Cn,k (ξm), respectively, satisfies the following condition:

γ
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The magnitude of the approximation error strictly de-
pends on the ratio γ/Γ, that can be a priori computed. More-
over, it could be demonstrated that the more general set of
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it is a Riesz basis too. Since, in order to reduce the com-
putational complexity only a limited number of expansion
coefficients are considered, here we propose the quadtree de-
composition adaptive scheme for choosing the lattice Ξ and
the shape parameters {sk} realizing a good trade off between
accuracy and complexity.

Since the adaptive scheme is applied, here, for pattern
recognition and localization, let us first express the Likeli-
hood functional corresponding to the estimation of pattern
translation, rotation and scale, in terms of the said Riesz ba-
sis.

2.2 Maximum Likelihood Localization
Let now f (x) be the observed region of interest that contains
a noisy, translated, rotated and scaled copy of a given tem-
plate pattern g(x) so that we have:

w[Rϕ(x−b)] f (x) = w[Rϕ(x−b)]g
[

Rϕ

(
x−b

a

)]
+ v(x),

where the parameters a, b and ϕ represent respectively scale,
position and rotation of the observed image, v(x) is the obser-
vation noise that can be modeled as a sample function drawn
from a white, zero-mean Gaussian random field with power
density spectrum equal to N0/4 and Rϕ is the rotation matrix
defined as:

Rϕ =
[

cosϕ sinϕ

−sinϕ cosϕ

]
.

Let θ = [b,a,ϕ] be the unknown parameter vector, the
Likelihood functional is given by the conditional probability
of f w.r.t. θ , divided by any arbitrary function that does not
depend on θ :
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Direct evaluation of the Maximum Likelihood solution
presents a rather high computational complexity because the
search of the maximum for b, ϕ and a implies an exhaus-
tive search in a four dimensional space. However the choice
of LG functions as expansion basis and the choice of gaus-
sian window which is rotation invariant leads to a simpler
iterative procedure,[6] requiring an exhaustive search just in
a two dimensional space. In fact, considering that any n-th
order CHF can be steered in any direction ϕ by simple mul-
tiplication by the complex factor e− jnϕ , and denoting with
ηn,k(x;a) the expansion coefficients of g(x/a), we can ap-
proximate the ML functional as follows:
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On the other hand, denoting with Cn,k(x) the expansion
coefficients of g(x) for a = 1 (i.e. Cn,k(x) = ηn,k(x;1) ) the
following interscale relationship holds
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Thus, the ML functional can be further approximated as
follows:
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The maxima of the expression of the above functional
w.r.t. scale a and orientation ϕ represent the Gauss-Laguerre
Likelihood Map (GLLM):

GLLM(b) = max
a,ϕ
{lnΛ[ f (x);a,ϕ,b]}

The local estimate of the maxima can been performed
by means of quasi-Newton maximization procedure as the
Broyden-Fletcher-Goldfarb-Shanno algorithm. The location
of the absolute maximum of this map provides the estimated
position of the pattern. The resulting Gauss-Laguerre Likeli-
hood Map indicates, point by point, the best matches between
the two images under all possible orientations and scales.

2.3 Quadtree Decomposition
Since f (x) may contain multiple objects with arbitrary shape,
direct use of Gauss Laguerre expansion as well of other
CHFs expansions, as those in Zernike’s moments,for com-
puting the ML functional would require a larger and larger
number of expansion terms. Thus,in order to reduce the
computational complexity, we resort to the hypercomplete
Riesz basis that allows to partition the region of interest into
smaller squares, so that for each of them a truncated Gauss-
Laguerre expansion with a reduced number of terms can be
utilized. Using a quadtree decomposition, a block is further
subdivided if the norm of the approximation error between
the reconstructed image and the image itself exceeds a prede-
fined threshold. In fact, the smaller is the support, the smaller
is the approximation error when a finite number of terms is
employed.

More in detail, let R represent the region of interest, even-
tually coincident with the whole image, and let P be a predi-
cate equal to True whenever the accuracy of the approxima-
tion of the current Riesz basis can be considered satisfactory.
R is partitioned into smaller and smaller square regions R(i),
so that for each R(i), P(R(i)) = True. Initially the basis set

is empty and the current region R(0) is set equal to the given
ROI. At the i-th step of the recursion, the center ξi of the
current region R(i) is evaluated and the subset of functions{
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}
is added to the current basis set as a potential candidate. Then
the predicate P is computed. If P(R) = False the current can-
didate subset is removed from the basis set, the current region
is split into four squares and the quadtree decomposition is
recursively applied to each of them. If P is True the current
candidate subset is definitively added to the basis and the cur-
rent region is not split anymore.

In order to control the computational complexity of the
whole procedure, we chose as predicate P the comparison of
the L2 norm of the approximation error in the reconstruction
of a square block of the image with a predefined number of
Gauss Laguerre coefficients with a threshold t. If the norm
of the error between the image itself f (x) and the recon-
structed image f̂ (x) using the current basis exceeds a pre-
defined threshold, P is set to false. Let us denote with δi the
width of R(i), and with wT (x) a square window of unitary
width, then

P(R(i)) =

{∣∣∣∣∣∣∣∣wT

(
x−ξi

δi

)
[ f (x)− f̂ (x)]

∣∣∣∣∣∣∣∣2 < t

}
.

Figure 1: Quadtree structure

Pattern location, rotation and scale estimation accuracy
is strictly related to the Fisher’s information. However, as
demonstrated in [3] this quantity is proportional to the mag-
nitude of the energy of the derivatives along two orthogo-
nal directions and to the energy of the angular derivative, or,
equivalently, to the effective spatial and angular bandwidths.

Therefore, in order to design a sequential detection and
estimation procedure that verifies whether each candidate
image contains each square of the quadtree, in order to re-
duce the search time, we first rank the template quadtree
blocks on the basis of the energy of the mid and high, an-
gular and radial, frequency components, computed directly
from the Gauss Laguerre expansion coefficients.

As an alternative, salient points based on invariants can
be extracted and quadtree blocks can then be ranked based
on the saliency of the key points falling inside them, [7].
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When a ROI of a given image has to be searched in
a database, the first block of the ranked list is considered
and each database candidate image is expanded in Gauss-
Laguerre coefficients using the same base employed for the
current quadtree block.

Since rotation of a pattern simply produces a linear phase
shift of each expansion coefficient proportional to the order
of the angular harmonic, detection of the pattern belonging
to the first square of the ranked quadtree list can be per-
formed by means of a quasi-Newton maximization procedure
as the Broyden-Fletcher-Goldfarb-Shanno algorithm maxi-
mizing, for each b the quantity
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where ξc denotes the center of the current region.
Thus, for each discrete location of a grid, the rotation and

the scale maximizes the GLLF(1) functional are determined
and then a discrete direct search is performed to determine
its absolute maximum. Thus, at the first step the parameter
estimate is

[b̂(1)
, â(1), ϕ̂(1)] = Arg

{
max
b,a,ϕ

[
GLLF(1)(b,a,ϕ)

]}
Once for each image of the dataset the local maximum of

GLLF(1) has been computed, the images are ranked on the
basis of this absolute maximum. Then the image correspond-
ing to the highest GLLF(1) is selected as the potential can-
didate for image matching, and [b̂(1)

, â(1), ϕ̂(1)] is employed
as coarse estimate in order to verify whether the candidate
image contains the second block of the rank ordered list of
quadtree elements, too.

With respect to the first block, the GLLF(2) map is built
only for a limited set of possible locations, falling inside a
small neighbor of the site predicted on the basis of the coarse
estimates. In addition, the quasi-Newton procedure utilized
to maximize GLLF(2) is initialized using the coarse estimate
too.

If the energy of the difference between the subset of the
reference template, constituted by the first and the second
square of the quadtree and the current image falls below a
predefine threshold, location and rotation of the image are
refined and the next square analyzed.

In general, at the h-th stage the GLLF(h) map is computed
using the first h points of the lattice, ranked according to the
saliency indicator, i.e.,
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The procedure ends when the last block in the list has
been processed. If at some stage the energy of the differ-
ence exceeds a predefined threshold, the current image is

discarded and the next item of the dataset corresponding to
the highest GLLF(1) is considered as candidate for pattern
matching.

3. EXPERIMENTAL RESULTS

The proposed method has been tested on a 52 images
database. For each grey-level image, we have 4 different
views (256x256 pixels) corresponding to different orienta-
tions and scales, the first one is the original image, the sec-
ond image is scaled, the third one is rotated and the last one
is scaled and rotated. See fig.2. In the performed simula-

Figure 2: Three database samples with different orientations

tions, the Gauss-Laguerre expansion has been truncated to
the (angular) order n=6, and to the (radial) order k=7. This
gives, for each quadtree block a descriptor array of 173 el-
ements. The value sm of the weighting gaussian window is
matched to quadtree block size. In fig.(3) an example of the
Likelihood map for the ”Einstein” image is showed. In table
(1) some results on angle and scale estimate error for some
images from the multimedia database are showed. The angle
and scale estimate errors are quite low and the algorithm is
capable to find the searched points in the candidate image,
estimating rotation and scale of the image with a low error
rate.

Figure 3: Gauss-Laguerre Likelihood map of ”Einstein” ima-
ge
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Angle Scale
Image Estimate Estimate

Error [deg] Error

airplane 0 0

airplane-rot10-scal90 0.19 0.01

airplane-rot15 0.58 0.01

airplane-scal92 0.07 0.02

einstein 0 0

einstein-rot40-scal97 2.58 0.03

einstein-rot220 3.13 0

einstein-scal97 0 0.03

tree 0 0

tree-rot195-scal87 0.38 0.01

tree-rot35 0.09 0.01

tree-scal80 0.11 0.01

peppers 0 0

peppers-rot78-scal95 5.81 0.07

peppers-rot98 1.65 0.01

peppers-scal82 0.78 0.07

clock 0 0

clock-rot90-scal92 0.05 0.01

clock-rot85 0.22 0.08

clock-scal98 0.59 0.01

Table 1: Angle and scale estimate error for some images from
the database

4. CONCLUSIONS

In this paper a novel technique for template matching based
on Laguerre-Guass Transform and on a Quadtree decom-
position has been presented. The Gauss-Laguerre Trans-
form allows a simpler iterative Likelihood functional esti-
mate compared to the traditional Maximum Likelihood based
on searching the image with the whole set of rotated and
scaled images. In particular, it allows an approximated ML
solution with not an expensive computational cost. Thanks
to the Gaussian windowing, this method is well suited for lo-
calization of patterns of complex objects. The experimental
results show an high detection rate and an accurate location
estimate and show how this class of Circular Harmonic filters
performs very well in presence of scaling and rotation.
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