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ABSTRACT

This paper introduces a novel method to identify inspiratory
and expiratory phases from single channel tracheal breath
sound (TBS) of different types, by proposing a new anno-
tating index name as “mixing index” (MI). An alignment
scheme based on phase shift difference information has been
firstly introduced to align the consecutive respiratory phase
segments. MI is then proposed based on similarity mea-
surements to annotate the respective inspiration/expiration in
each aligned respiratory phase segment pair. By incorporat-
ing the novel alignment scheme, the presented index over-
comes the problem of phase cancellation which affects the
cross-coherence of the input segment pairs. As Ml is invari-
ant to spectral content and amplitude dynamics, the proposed
method maintains a good performance even in the presence
of adventitious sounds. A high averaged accuracy of 97.4%
for adventitious sounds and 100% for normal TBS have been
thereby achieved. The proposed method has been a success-
ful attempt to solve the clinical application challenge faced
by the existing phase identification methods in terms of res-
piratory dysfunctions.

1. INTRODUCTION

Respiratory phase information is essential for the automa-
tion of respiratory signal analysis. In the studies of flow
in heart [1] and adventitious sounds quantification [2], it
is crucial to correctly differentiate individual respiratory
phases as inspiration/expiration. Conventionally, direct air-
flow measurements such as chest movement measurements
and mouthpiece pneumotachograph, are widely used for res-
piration monitoring. To perform the TBS segmentation into
respective inspiration and expiration, the measured Forced
Expiratory Volume (FEV) readings [3] have been used. How-
ever, direct flow measurements would be difficult when
studying patients with high obstruction in tracheal [4] or chil-
dren with neurological impairments [5].

Indirect respiration monitoring methods by acoustical
analysis of TBS have therefore been recently proposed. Res-
piratory phase identification methods based on spectral and
temporal analysis of the transformed TBS have been sug-
gested in [6][7][8]. As presented in [6] and [7], lung sound
information instead of TBS has been used to distinguish in-
spiration from expiration. The phase identification accura-
cies depend solely on the distinct amplitude and spectral dif-
ferences between inspiration and expiration of lung sounds.
However, compare to lung sound, TBS as a more appropriate
source for adventitious sound analysis, is having less distinc-
tive respiratory phases with inconsistent spectral differences
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between inspiration and expiration. In [8], the respective res-
piratory phases are distinguished by the combined features
of sound envelope, frequency content as well as disturbance
characteristics of TBS, but an extra microphone is used to
capture the ambient noise. In order to solve the above men-
tioned problem, a triplet Markov chain in wavelet packet do-
main is adopted by [9] to improve accuracy of identifying
inspiration and expiration by removing its dependency on
signal amplitude. However, priors on the respiratory cycle
structure for normal respiratory sounds have been exploited
for chain adaptation that makes this method not robust for
adventitious TBS.

As the presence of adventitious sounds affects the am-
plitude and energy distribution of the TBS signals to a large
extend, the aim of this paper is to propose a method which
is able to identify inspiration and expiration from single
channel TBS recordings. The proposed method therefore
should be independent of amplitude variation between these
two respiratory phases and able to perform accurate anno-
tation without knowing the structures of the respiratory cy-
cles. The presented method is applied on the consecutive
inspiration/expiration segments as obtained by using the seg-
mentation method presented in [10]. Each pair of consecu-
tive respiratory phase segments are first aligned using phase
shift information. A frequency domain MI based on cross-
segment similarity measurements is lastly proposed for inspi-
ratory/expiratory phase identification within each segments
pair. The performances of the proposed MI are compared for
different types of real TBS recordings to show its robustness.

2. METHODOLOGY

The overall structure of our respiratory phase identification
scheme is shown in Fig. 1. The input noisy TBS sequence is
indicated by y(n) and y; »(n) denote the consecutive respira-
tory phase segments pair. The proposed phase identification
scheme consists of a respiratory phase segment alignment
sub-scheme and a phase identification sub-scheme based on
the newly proposed MI calculation. The sub-schemes to-
gether with the notations used in the block diagram are de-
scribed in Section 2.2 and 2.3 respectively. Here, phase seg-
mentation method which has been proposed in our previous
paper [10] is used for the correct localization of the respira-
tory phase segments.

2.1 Data Acquisition

The recording environment and equipments are chosen based
on the standard given by [11]. Recordings were done in au-
dio laboratory with the subjects in sitting position. Single
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Figure 1: A overall block diagram of the proposed respiratory phase identification scheme.

electret condenser microphone (ECM-77B, Sony Inc., Japan)
was inserted into a hemispherical rubber chamber of 2 cm
in diameter, and placed over suprasternal notch. Recording
software WAVEPAD (V3.05, NCH Swift Sound Software)
was used and the TBS recordings have been saved as mono-
channel “*.wav’ files with sampling frequency Fs = 11025
Hz. Test subjects were asked to breathe normally and 600
seconds recording was saved for each subjects.

TBS is chosen due to its distinct respiratory phases
and close relationship with respiratory flow. The origin of
TBS is the vibrations in tissues caused by the turbulence
occurred during the airflow into or out of the lungs. A
small time delay is present related to the distance between
sound source and microphone (typically 0.03 ms) [12]. TBS
can be segmented into four successive phases: inspiratory
phase, end-inspiratory pause, expiratory phase, and end-
expiratory pause. In this paper, only respiratory phases (in-
spiratory/expiratory phases) are involved in phase identifica-
tion.

2.2 Respiratory Phase Segment Alignment Scheme

As consecutive inspiration/expiration segments pairs are
used as the input of the presented method, the effective-
ness of the proposed annotating index depends on the cor-
rect boundary locations of segmented respiratory phases (in-
spiratory/expiratory phases). Although segmentation method
with high accuracy in [10] is adopted here to obtain the inspi-
ration/expiration segments pairs, any other suitable methods
can also be used. Therefore, respiratory phase segment align-
ment scheme is introduced as signal conditioning in order to
make the annotation index independent of respiratory phase
segmentation accuracy.

As the proposed MI in Section 2.3 is calculated based
on Fourier transform of the windowed signal, we define the
alignment in terms of the phase shift of the signal in fre-
quency domain. The unwrapped phase ¢Y(k) of the win-
dowed signal is calculated in frequency domain with k as the
frequency index and w being the windowed frame index.

Fast Fourier transform (FFT) is first applied to every win-
dowed frame y{'(n) and y%'(n) of the adjacent respiratory
phase segments y1(n) and y>(n) to obtain Y;"(k) and Y,Y(K).
A rectangular window with minimum length of N = 1250 is
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used to ensure uniform energy distribution within each win-
dowed frame for accurate phase approximation based on av-
eraging. 1 <w < W and W indicates the total number of
frames of 1250 samples. Also, the choice of window length
is required to be large enough to maintain a low time resolu-
tion for reducing the inter-segment variance due to the pres-
ence of possible discontinuous adventitious sounds. Y;"(k) or
Y3"(Kk) consists of W complex numbers that are represented as
magnitude and phase pairs. Factors of 2 are added or sub-
tracted to obtain the unwrapped phases of ¢;"(k) and ¢5'(k).

The phase shift difference ®(7) between two consecutive
respiratory phase segments with a varying time delay © = [1,

N] is then calculated as @(7) = & Sw_, ®"(), where

1 N-1

oM7) = kza 1201 (k) — 293 (k, 7)] 1)

with A¢% = ¢¥(k+ 1) — ¢™(K) being the phase shift and
||- || indicating the L, norm. A¢(k, 7) represents the phase
shift of y5'(n— 7).

Since the resulting phase shift difference ®(t) is very
spiky, the idea of empirical mode decomposition (EMD) has
been adopted here to extract the underlying phase shift dif-
ference information. EMD being a general nonlinear, nonsta-
tionary signal processing technique, is suitable for biomed-
ical signal analysis. As the basis functions (intrinsic mode
functions, Sj|j=0...J with J being the total number of func-
tions) are directly derived from the signal, the analysis is
adaptive instead of being combinations of fixed sinusoids.
The s;j functions are calculated according to [13] and the fil-
tered phase shift difference ®(7) = Zle sj(t). | =6is used
in this paper as higher | is not able to approximate the signal
for maintaining the trend, while lower | values capture more
irregularity information.

_ Fig. 2 shows the plots of the filtered phase shift difference
®(7) extracted by EMD and that by conventional low-pass
filtering together with the raw ®(t) between two consecu-
tive respiratory phase segments of a normal TBS recording.
It is shown that low-pass filtering makes the analysis of ®(t)
inaccurate, while EMD enables the tracking of the underly-
ing information through ﬁ)(r) for misalignment estimation.



The relative time shift T = M between the misaligned signals
y1'(n) and y¥'(n) is estimated as the first local minima of the
extracted phase shift difference ®(7) as illustrated in Fig. 2.

And the aligned consecutive segments yy'(n) and y§'(n— M)
are then used in M1 calculation.
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Figure 2: Illustrative plots of the filtered ﬁ)(r) extracted by
EMD with | = 6 and that by conventional low-pass filtering
displayed together with ®(1).

2.3 Mixing Index (M1)

This section introduces a frequency domain annotating in-
dex as named by the mixing index (M) for respiratory phase
identification, based on inter-segment similarity measure-
ments. For each frequency bin, Ml is having values [—1,
1] centered at 0. The basic idea behind MI is to compare
the consecutive phase segment signals in the time-frequency
plane to derive an time-averaged mixing gain associated with
each frequency bin. The final MI values for each pair of sig-
nals are then obtained by taking the mean over the selected
frequency bins.

Similarity between Y;"(k) and Y;(k), which are the FFT
of yy'(n) and y¥'(n— M), can therefore be defined as

2

2 Y2 (K)Y2" ()|
W = YR 2+ ()2

W

(k) = )

with “x” indicating complex conjugate. Also, we defined
another set of partial similarities based on cross-correlation
function of the phase aligned signals to avoid ambiguity:

wi)  — MR
Ii1 (k) - \Ylw(k)\z (3)
YV (K) Y2V (k)|
H¥V(k) = z‘yzva(&)‘z)

The annotating index MI(k) at frequency bin k can be then

obtained as A
u(k)] x D(k) 4)

where D(k) is a mapped version of the difference D(k) =

MI(K) = [1 -

sz 1 17 (K) — w3’ (k) between the partial similarities:
R +1 forD(k)>0
Dk)=¢ 0 forD(k)=0 (5)
—1 forD(k) <0
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Therefore, the averaged MI for each pair of consecutive
phase segments is:

1 K2

Ml = Y Mi(k
K2-K1,4,

(6)

with K1 and K2 being the frequency bin indices. As an in-
herent property of respiratory sounds, the inspiration seg-
ments have stronger frequency components than expiration
segments. Therefore, the partial similarity p}¥(k)<uy'(k)
and thus M1<0 for y{'(n) being annotated as inspiration and
y5'(n— M) being annotated as expiration. It is vice versa for
MI>0.

The proposed annotating index is useful since Ml be-
ing the relative index, is not affected by any spectral con-
tent or amplitude dynamics. Thereby, any amplitude changes
or even complete modification of spectra to both respiratory
phases (as long as the changes are proportional to the simi-
larity coefficient), do not affect the Ml values.

3. RESULTS

3.1 Experimental Dataset

In this study, the real recording dataset consists of TBS from
7 healthy subjects and 14 subjects with different degrees of
airway obstructions (8 males/13 females, 15+ 9 years old).
The characteristics due to sex, age, weight were not taken
into consideration. Also, preclassified and preprocessed nor-
mal/wheezing respiratory sound recordings were drawn from
2 databases [14][15]. A total of 60 normal TBS inspria-
tion/expiration (IE) pairs, 40 wheezing IE pairs, 32 stridor
IE pairs, and 45 IE pairs from mixture of wheeze and pleural
sounds (WNP) recordings were available.

3.2 Experimental Results

The performance of the proposed method is depicted in terms
of the quantitative measure of accuracy (%). The accuracy of
the proposed method relies on the choice of frequency bins
(K1 and K2) and the incorporation of the alignment scheme.

3.2.1 The Role of Respiratory Phase Segment Alignment
Scheme

Fig. 3 indicates the performance of the proposed phase seg-
ment identification method on different types of TBS with
and without the incorporation of respiratory phase segment
alignment. The significance of the alignment scheme can be
realized in terms of the improved results by temporally shift-
ing the consecutive respiratory phase segments for achieving
minimum phase shift difference. Since the similarity mea-
surements p (k) and I-’-\1A,Iz(k) in (2) and (3) are affected by the
presence of undesired phase shift due to the segmentation
method adopted, misalignment would result in inaccurate
MI calculation and thus inaccurate respiratory phase identi-
fication. Therefore,the incorporation of this phase alignment
scheme minimizes the effect of phase cancellation to ensure
an accurate annotation as well as identification.

Since time shifting yj(n — M) which implies
el®M)y}(k) is applied, the presented scheme improves
the performance for TBS signals interfered by the intermit-
tent discontinuous adventitious sounds of broad band nature.
However, continuous adventitious sounds interfere with nor-
mal TBS by having additional frequency components. These



frequency components enlarge the phase misalignments for
the interfered frequency bins. Therefore, being frequency
invariant, the phase shift ®(M) might not be sufficient to
compensate these frequency varying misalignments caused
by the presence of continuous adventitious sounds. In
general, the presence of the alignment scheme makes the
proposed MI less sensitive to the accuracy of segmentation
method.

3.2.2 Choice of the Frequency Bins

The effectiveness of the proposed annotating index MI is
shown by Fig. 4 with K1 varies in (6). As the presence
of heart sound is mainly dominated within the frequency
band of 20-200 Hz for Fs = 11025 Hz [11], and would be
even higher when being captured over suprasternal notch, the
analysis of TBS signals is confined within [300, 1000] Hz
to minimize the effects of heart sounds and high-frequency
noise. Therefore, with K2 =113 (1000 Hz) at Fs = 11025
Hz (K2 = 1250) have been selected for Ml calculation. At
the same time, K1 varies from K1 = 34 (300 Hz) to 68 (600
Hz) to show the effect of frequency bins selection.

As average phase shift @ (M) is used for respiratory phase
alignment scheme, it can be a good approximation of instan-
taneous phase shift for narrow band signals. Also, since the
MI measurement is computed as an average value over all
selected frequency bins of [K1, K2], the choice of K1 should
be small enough to include all desired frequency components
for an unbiased average MI. Therefore, it is noticed that the
performance has been improved when K2 reduces from 45
(400 Hz) to 34 and from 68 to 56.

On the other hand, considerable improvements as ob-
served for wheeze, stridor and WNP at K1 =56 (500 Hz) in-
dicate the significance of the narrow bandwidth used. As the
energy distribution for normal TBS is more uniform within
each windowed frame Y% (k), average phase shift can be a
good approximation of its instantaneous value for relatively
larger frequency bandwidth. Thus K1 = 34, 45, 56 are all
producing accurate results. Since both stridor and wheeze
are characterized by the periodic waveforms having domi-
nant frequency over 100 Hz and pleural sounds are charac-
terized by transient waveforms, their presence can affect the
uniform energy distribution within the windowed frames. In
such cases, narrow bandwidth should be used to ensure ac-
curate average phase shift approximation and thereby good
performances have been observed with K1 = 56.
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Figure 3: Performance of the proposed phase identification
method with and without alignment scheme for Ml calcula-
tion.
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Figs. 5 and 6 illustrate the performance of the proposed
phase identification method on a preprocessed normal res-
piratory sound and a real wheeze recording. As shown by
Fig. 5, normal TBS is having stronger inspiration than ex-
piration. While on the other hand, wheeze signal is having
opposite amplitude dynamics as depicted by Fig. 6(b). De-
spite this large diversity in amplitude dynamics due to the
presence of adventitious sounds, the proposed Ml is able to
identify the respective respiratory phases correctly.

3.2.3 Comparison with Other Method

A frequency index has been calculated in [8] as the summa-
tion of spectral components within frequency range of [300,
1100] Hz. The respiratory phase identification is therefore
relied on the signal nature of normal TBS such that the cal-
culated index at the beginning of the respiratory phases is
higher for expiration than that for inspiration. Also, the in-
formation including respiratory pause length and the identi-
fication results of previous phase have been incorporated to
improve the reliability of this method. The comparison re-
sults are presented in Table. 1 where the proposed method
outperforms the method in [8]. As the presence of adventi-
tious sounds causes variations in signal nature, the identifica-
tion criteria based on nature of normal TBS signal no longer
sustains. Especially in the presence of stridor which is usu-
ally inspiratory, the frequency index at the beginning of the
inspiratory phases is even higher. Therefore, the method in
[8] is having a much lower identification accuracy for inspi-
ratory adventitious sounds but a high accuracy for expiratory
adventitious sounds (wheeze). Furthermore, due to the ab-
sence of distinct pauses, the existing method does not show
a good performance for signals with high respiratory rate.
Thus, only 86.8% accuracy has been achieved for normal
TBS when infant TBS signals have been included.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a robust method to identify respi-
ratory phases into inspiration/expiration for different types
of TBS. The incorporation of respiratory phase segment
alignment scheme enhances the robustness of the proposed
method by providing consistent high respiratory phase iden-
tification accuracies irrespective of the types of TBS record-
ings. The proposed Ml is insensitive to the amplitude vari-
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Figure 4: Performance of the proposed phase identification
method with K1 = 34, 45, 56, 68 and K2 = 113 for MI cal-
culation.
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Figure 5. Performance of the proposed phase identification
scheme on a preprocessed normal TBS. (a) Waveform of the
signal; (b) The phase identification result (dotted line, inspi-
ration=3, expiration=2, pause=1) along with the signal enve-
lope.
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Figure 6: Performance of the proposed phase identification
scheme on a real wheeze recording. (a) Waveform of the
signal; (b) The phase identification result (dotted line, inspi-
ration=3, expiration=2, pause=1) along with the signal enve-
lope.

ation, and it makes the algorithm automatic even in the ab-
sence of any a priori information of the input signal types.
As the performance of the proposed method still slightly
varies among different types of adventitious sounds, a source
extraction scheme may be incorporated in the future to ex-
tract the underlying normal TBS prior to Ml calculation, for
further improving the robustness of the method.
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