
TWO CLASSES OF FIXED POLARITY LINEARLY INDEPENDENT ARITHMETIC

TRANSFORMS FOR QUATERNARY FUNCTIONS

Cicilia C. Lozano and Bogdan J. Falkowski

School of Electrical and Electronic Engineering

Nanyang Technological University

Block S1, 50 Nanyang Avenue, Singapore 639798

email: cicilia@ntu.edu.sg; efalkowski@ntu.edu.sg

Tadeusz Łuba

Institute of Telecommunications

Warsaw University of Technology

Nowowiejska 15/19, 00-665, Warsaw, Poland

luba@tele.pw.edu.pl

ABSTRACT

Two classes of fixed polarity linearly independent arithmetic trans-

forms (FPQLIA) for quaternary functions are introduced in this

paper. These transforms are Kronecker-based and therefore can be

calculated efficiently by fast transforms. Their basic definitions and

fast flow graphs are shown. Relations between the different

FPQLIA transforms are also presented and an algorithm for the

optimization of FPQLIA is described which utilizes the given rela-

tion to reduce the computational cost. Experimental results for the

transforms in terms of the number of nonzero spectral coefficients

in the optimal FPQLIA transforms have also been given for several

quaternary test functions and compared to the corresponding num-

bers for the optimal fixed polarity quaternary arithmetic (FPQA)

transforms. The results show that for the set of quaternary test

functions the numbers for FPQLIA transforms are on average 32%

smaller than the ones for the FPQA transforms.

1. INTRODUCTION

Spectral expansions are alternative representations of logic func-

tions/signals in which the information are redistributed and pre-

sented differently in terms of spectral coefficients [1]−[3]. The use

of spectral representations often allows certain operations or analy-

sis to be performed more efficiently on the data. In general each

spectral expansion has an associated pair of forward and inverse

transforms which can be used to transform the truth vector repre-

sentation of a particular function to the equivalent spectral expan-

sion and vice versa. Among the existing spectral expansions, sev-

eral pairs of spectral transforms can be found where they have the

same forward transforms but different inverse transforms due to the

different operators used to define the transforms. One example of

such pair is the well-known binary Reed-Muller (RM) transform

which uses GF(2) operators and Arithmetic transform [1]−[3]

which uses standard arithmetic operators. The reason for this is

because the use of different operators may lead to advantages for

different applications. In particular, transforms employing stan-

dard/decimal arithmetic operations have been found to be advanta-

geous for analysis of circuits, verification, testability, as well as

reliability analysis. Such arithmetic transforms are also useful for

efficient representation and parallel calculation of multi-output

functions [1]. Linearly independent (LI) and linearly independent

arithmetic (LIA) transforms [4], which can be thought of as the

broadest generalization of RM and Arithmetic transforms, respec-

tively, are another example of transform pair whose definitions are

identical except for the employed arithmetic operators, and there-

fore the operational domains. LI and LIA transforms can be

thought of as the RM and Arithmetic transforms in which the basis

functions are not restricted to be conjunctive of input literals but

are allowed to be replaced by any set of linearly independent binary

functions. Since RM and Arithmetic transforms are merely special

cases of LI and LIA transforms, the performance of LI and LIA

transforms are never worse than the RM and Arithmetic trans-

forms, respectively. It has been shown in [4] that for detection of

stuck-at and bridging faults some fast LIA transforms outperform

the Arithmetic transform in terms of the number of spectral coeffi-

cients that need to be tested.

The concept of LI and LIA transforms have been extended for

the case of quaternary functions, called quaternary linearly inde-

pendent (QLI) and quaternary linearly independent arithmetic

(QLIA) transforms. Some classes of fast QLI and QLIA transforms

have been defined in [5] and [6], where the transforms in [5] are

derived from the recursive definitions of four fast binary LI trans-

forms. Similar to the binary case, the broad definition of the QLI

and QLIA transforms also cover the various quaternary extensions

of the RM and Arithmetic expansions, respectively, such as the

fixed polarity RM over GF(4) [7] and quaternary fixed polarity

Arithmetic (QFPA) transforms [1], [8]. In this paper, two new

classes of fast FPQLIA transforms are introduced where the basic

forward transforms for the first 1-variable FPQLIA transform in the

two classes are the same as the forward transforms of the first trans-

forms of Class 3 and 2 QLI transforms in [5]. Basic definitions, fast

flow graph, and several relations for the FPQLIA transforms are

given. An algorithm to find the optimal FPQLIA expansion for a

quaternary function is also presented. Finally, experimental results

of the FPQLIA transforms are given for several quaternary test

functions and compared with the FPQA transforms [8]. The results

show that the introduced FPQLIA transforms are more advanta-

geous as they can give more compact representation in terms of

smaller number of nonzero spectral coefficients.

2. BASIC DEFINITIONS FOR THE NEW FPQLIA

TRANSFORMS

The new transforms that are introduced in this paper belong to the

broad class of QLIA transforms. In the following, Definitions 1−3

give the general basic definitions for any QLIA transform whereas

Definitions 4−6 describe the notations used in this paper.

Definition 1. Let nT be a n4 × n4 matrix with rows correspond-

ing to minterms and columns corresponding to some n-variable

quaternary switching functions. If the set of columns is linearly

independent with respect to standard arithmetic algebra, then nT has

only one arithmetic inverse and is said to be a QLIA matrix.

Definition 2. Let nT be a QLIA matrix as given in Definition 1.

Also, let F
r

 = []TnFFF
1410 ,,,

−
K be the truth vector of an n-

variable quaternary switching function ()nXf =

()11 ,,, XXXf nn K− where T denotes transpose operator. Then, the

spectrum of nT for ()nXf , denoted by A
r

 = [] ,,,,
1410

T
nAAA

−
K

can be obtained by

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 421

 FTA n

rr
1−= (1)

where 1−
nT is the arithmetic inverse of nT .

Conversely,

 ATF n

rr
= . (2)

Definition 3. Given a particular QLIA transform nT , any n-

variable quaternary switching function ()nXf can be represented

by QLIA polynomial expansion as follows:

 () ∑
−

=

=
14

0

n

j

jjn gAXf ,

where jg)140(−≤≤ n
j denotes the n-variable quaternary

switching function whose truth vector is equal to the j-th column

of nT and jA denotes the j-th QLIA spectral coefficient for

()nXf based on nT . All the additions and multiplications inside

the QLIA expansion are performed in standard arithmetic algebra.

Definition 4. Let a matrix nT be recursively partitioned into six-

teen submatrices 1−nT of size 14 −n × 14 −n each as follows:

















=

−−

−−

)4,4(
1

)1,4(
1

)4,1(
1

)1,1(
1

nn

nn

n

TT

TT

T

L

LLL

L

.

Then, the operation EHµ on nT is defined as recursively grouping

the submatrices vertically and interchanging them horizontally:

















=

−−

−−

)1,4(
1

)4,4(
1

)1,1(
1

)4,1(
1

)(

nn

nn

nEH

TT

TT

T

L

LLL

L

µ .

Similarly, the operation EVµ on nT is defined as recursively group-

ing the submatrices horizontally and interchanging them vertically:

















=

−−

−−

)4,1(
1

)1,1(
1

)4,4(
1

)1,4(
1

)(

nn

nn

nEV

TT

TT

T

L

LLL

L

µ .

Definition 5. A quaternary variable iX may assume the value of 0,

1, 2, or 3. In polynomial expansions, the literals of iX are denoted

by iS

iX where iS ⊆ {0, 1, 2, 3} is said to be the true set of the

variable iX and





∉
∈

=
. if 0

 if 1

ii

iiS
i SX

SX
X i

Definition 6. In binary function representation, applying the com-

plement operator to a variable changes the value of the variable

from 0 to 1 and vice versa. In multiple-valued logic, similar map-

ping can be performed through the application of cycle and nega-

tion/complement unary operators [1]. Let iX be a quaternary vari-

able, then the cycle and complement operations on iX are denoted

by
k

iX (}3,2,1,0{∈k) and iX , respectively, where
k

iX =

)(kX i + mod 4 and iX = 3 − iX .

Two classes of FPQLIA transforms are introduced in this pa-

per. They are classified into Class 1 and Class 2 and their forward

transforms are denoted by
ω
nT ,1 and

ω
nT ,2 , respectively where

ω
α nT ,

})2,1{(∈α is a n4 × n4 matrix which is obtained from Kronecker

product on n basic matrices
ω

α 1,T as follows:

 11

1,1,1,

1

1,,
ω

α
ω

α
ω

α
ω

α
ω

α TTTTT nni

ni

n ⊗⊗⊗=⊗= −∏
=

L . (3)

Their inverse transforms are denoted by () 1

,

−ω
α nT and are similarly

defined as

 () () () () () 1

1,

1

1,

1

1,

1
1

1,

1

,
11

−−−

=

−−
⊗⊗⊗=⊗= −∏ ω

α
ω

α
ω

α
ω

α
ω

α TTTTT nni

ni

n L . (4)

In both (3) and (4), the symbol ω denotes the polarity number

of
ω

α nT , where ω is the decimal equivalent of the n-digit quaternary

number 11 ,,, ωωω K−nn , i.e., 41110 ,,, ><=>< − ωωωω Knn . In

addition,
ω

α 1,T and () 1

1,

−ω
αT are the basic forward and inverse trans-

forms for the FPQLIA of the respective class where they are of size

44× .

All the
ω

α 1,T and () 1

1,

−ω
αT matrices are listed in Table 1 together

with the fast flow graphs for () 1

1,

−ω
αT . Since there are four basic

transforms in each class, for an n-variable quaternary function there

are n4 possible FPQLIA expansions of each class where each ex-

pansion is uniquely identified by its polarity number ω (0 ≤ ω ≤

14 −n). Different FPQLIA expansions may have different number

of nonzero elements in their spectral coefficient vectors. The one

with the minimum number of nonzero elements is called the optimal

FPQLIA expansion and its polarity number is said to be the optimal

polarity number, denoted by optω .

Among the transforms given in Table 1, it should be mentioned

that the transforms
0
1,1T and

0
1,2T correspond to the forward matrix

of the first transforms in Class 3 and 2 fast QLI transforms given in

[5], respectively. In addition, they also coincide with the forward

transforms of the 2-variable binary fixed polarity arithmetic (FPA)

transforms [1]−[3] in polarity zero and three. Due to this, the trans-

form matrices for an n-variable Class 1 (2) FPQLIA transforms in

polarity zero are identical to the transform matrices of a 2n-variable

binary FPA transforms in polarity zero (122 −n).

The FPQLIA expansion representations for a quaternary func-

tion ()nXf can be generated using the general equation for QLIA

expansion given in Definition 3. Due to the fact that the FPQLIA

transforms are built from Kronecker product, their basis functions

jg)140(−≤≤ n
j have regular structure and can be obtained by:

 i
n ggggg

ni
n

ω
α

ω
α 1,

1

1410,][
=−
⊗== K

where ig
ω
α 1, is the row matrix whose columns are the basis functions

of the FPQLIA transform iT
ω

α 1, for a single quaternary variable iX

(recall that 41110 ,,, ><=>< − ωωωω Knn). Let ig
ω
α 1, =

][3210 gggg . Then from Table 1 it can be seen that for 1=α

and 0=iω ig
ω
α 1, =]1[

}3{}3,2{}3,1{
iii XXX whereas for 1=α and

iω = 1, 2, and 3 the ig
ω
α 1, are the same as

0
1,αg except that cycle

operations should be applied on iX so that iX is replaced by
1

iX ,

2
iX , and

3
iX , respectively. Similarly, for 2=α their correspond-

ing basis function row matrices ig
ω
α 1, can also be obtained from the

basis function row matrix
0
1,1g by replacing iX with iX , ()1iX ,

422

()2

iX , and ()3

iX for iω = 0, 1, 2, and 3, respectively. As a result,

all FPQLIA expansions have the same product terms except that

appropriate cycle and complement operations need to be applied to

the variables based on the polarity number of the expansion.

Owing to the fact that all the forward transforms given in Table

1 contain only 0 and 1 elements, the basis functions for the FPQLIA

transforms can also be represented as two-variable binary functions.

Thus, the given FPQLIA transforms can also be used to generate

binary polynomial expansions for a binary function. This can be

done by pairing up every two binary input variables in the binary

function and encoding them to form quaternary input variables,

obtaining the FPQLIA expansion for the resulting quaternary func-

tion, and finally replacing the quaternary basis functions in the

FPQLIA expansion with the corresponding binary functions to get

the binary expansion in terms of the binary input variables. For ex-

ample, if the encoding 00→0, 01→1, 10→2, and 11→3 is used to

map the binary input variables 122 −iixx values to the quaternary

variable iX values, then the basis function row matrices ig
ω
1,1 can

be alternatively represented as]1[12222 −− iiiii xxxx ,

]1[12212212 −−− ⊕ iiiii xxxxx ,]1[122212 −− iiii xxxx , and

]1[12212212 −−− ⊕ iiiii xxxxx for iω = 0, 1, 2, and 3, respectively.

Furthermore, by replacing the binary variables in ig
ω
1,1 with their

complements we can get the corresponding binary basis function

row matrices ig
ω

1,2 .

3. RELATIONS, ALGORITHM, AND

COMPUTATIONAL COSTS

Property 1. All the FPQLIA transform matrices in the same class

are related by row permutations to each other. Let 0ρ , 1ρ , 2ρ , and

3ρ be four permutation matrices of size 44× given by

















=

1000
0100
0010
0001

0ρ ,

















=

0001
1000
0100
0010

1ρ ,

















=

0010
0001
1000
0100

2ρ , and

















=

0100
0010
0001
1000

3ρ .

Then, for 1=α and any two polarities aω and bω

,,,,(41110 >=<>< − aanana ωωωω K),,, 41110 >=<>< − bbnbnb ωωωω K

 ()() b

biai

a

n
ni

n TT
ω

αωω
ω

α ρρ ,
1

1

, ⋅







⋅⊗=

−

=
. (5)

For 2=α
aiωρ and

biωρ in (5) need to be replaced by
)4mod(aiωρ −

and)4mod(biωρ − , respectively.

Property 2. For the same polarity number ω , the Class 1 and Class

2 FPQLIA transforms are related as follows:

 ()ωω µ nEVn TT ,2,1 = and () () 




=

−− 1

,2

1

,1
ωω µ nEHn TT .

Property 3. Let aA
ω
r

and bA
ω
r

be the spectral coefficient vectors of

two FPQLIA transforms of the same class but different polarity

numbers aω and bω . Then, the following relation can be derived

from (1)−(4):

 bbiaia AZA
ni

ωωωω
rr

⋅







⊗= −

=

4mod)(
1

 (6)

where

















=

1000
0100
0010
0001

0Z ,

















−−
−−−=

1200
1100
1110

1111
1

Z ,

















−
−=

1000
0100
1010
0101

2
Z , and

















−−

−=

1200
1100
0110
0011

3Z .

In spectral techniques, one important problem associated with

each class of spectral transforms is on how to obtain the optimal

expansion based on all the transforms in the class. For fixed polarity

transforms, this optimization problem is translated into the problem

of finding the optimal polarity optω . The exhaustive way to do it is

to generate the spectral coefficient vectors of all possible polarities

and identify the optω . Although it is possible to calculate each spec-

tral coefficient vector directly by fast transform [1]−[3], [7] of (1), it

has been shown that it is more computationally efficient to calculate

them using algorithms that utilize the existing relations between the

transforms of different polarities [7]. One example of such algo-

rithm for FPQLIA transforms is described below.

In the algorithm all the n4 polarity numbers are arranged in a

list such that any two consecutive polarity numbers in the list have

only one different digit in their n-digit quaternary number represen-

tations. Such a list is called extended dual polarity route where the

first polarity number in the list is called the initial polarity number.

Given an extended dual polarity route, the algorithm first calculates

the spectral coefficient vector for the initial polarity number from

truth vector by fast transform of (1) and then continues to calculate

the spectrum for the other polarity numbers serially in the order

specified by the route. For each non-initial polarity number, the

algorithm calculates its spectrum from the spectrum of the previous

polarity number in the list using (6). Note that as a result of the re-

quirement that any two consecutive polarity numbers in the route

cannot have more than one different digit, the values of

4 mod)(biai ωω − in (6) are reduced to 0 for all except one particular

i. Since 0
Z is simply an identity matrix, 0

Z does not contribute any

additional computational cost to calculation of (6) which leads to the

smaller computational cost for the algorithm.

From the description of the algorithm above, it is clear that the

computational cost of the algorithm is mostly due to the cost of

performing (6), which in turn is determined by the value of the non-

zero digit of 4 mod)(biai ωω − . Hence, the computational cost of

the algorithm is largely dependent on the used extended dual polar-

ity route. Because of that, the chosen route for the algorithm should

be the one that leads to the minimum computational cost. Fig. 1

shows the pseudocode of the algorithm to calculate all the FPQLIA

spectral coefficients in a particular class where the route that results

in the minimum computational cost is employed.

In order to show that the given algorithm indeed reduces the

computational cost of obtaining the optimal FPQLIA expansion

compared to directly calculating all individual spectral coefficient

vectors by fast transform of (1), in the following their computational

costs are derived.

Let us first derive the computational cost for calculating all

spectral coefficient vector by fast transform of (1). In fast transform

method A
r

 is calculated by

 () FITIA
ni

iin
i

rr
⋅





 ⊗⊗= ∏

=

−

−

−

1

1

1

1,
ω

α

where jI denotes the identity matrix of size jj 44 × and each value

of i corresponds to one stage in the fast flow graph of the inverse

transform. From the fast inverse flow graphs given in Table 1, it can

be seen that the computational cost of (1) for calculating any

() 1

1,

−ω
αT is four subtractions. Hence, for n variables the computa-

tional cost contributed by each fast flow graph stage is nn 444 1 =⋅ −

subtractions. As there are n stages in the fast flow graph, it follows

423

that the total computational cost of (1) by fast transform method is
n

n 4⋅ subtractions for one polarity number and
n

n
2

4⋅ subtractions

for all n4 polarity numbers.

Next, let us derive the computational cost for the algorithm in

Fig. 1. The cost of calculating the FPQLIA spectra for all n4 polar-

ity numbers in a particular class using the algorithm can be divided

into the cost of calculating the spectrum of the initial polarity num-

ber by (1) and the cost of calculating the rest of the spectra by (6).

The former has been derived above to be
n

n 4⋅ subtractions whereas

the latter is dependant upon how many times the 4mod)(biai ωω −

in (6) evaluates to 1, 2, or 3 throughout the algorithm.

It can be observed that inside the algorithm 4mod)(biai ωω −

never evaluates to 1. Instead, its value is always 0, 2, or 3 where

exactly one nonzero value of 4mod)(biai ωω − occurs for each pair

of consecutive transforms. In each recursion level the calculation of

every cycle of one Dir[loop_var] (e.g., 0→2→1→3 for

Dir[loop_var] =’a’) involves two 2
Z and one 3

Z where throughout

the algorithm there are a total of i4 cycles of Dir[loop_var] for

loop_var = i (0 ≤ i ≤ n – 1). Since it can be easily derived from 2
Z

and 3
Z matrices that for an n-variable the computational cost of

performing (6) is 142 −⋅ n additions if the nonzero value of

4mod)(biai ωω − = 2 and nn 444 1 =⋅ − additions/subtractions and

14 −n multiplications if the nonzero value of 4mod)(biai ωω − = 3,

the total cost for calculating the spectra of the nonzero polarity

numbers (the non-initial polarity numbers) is given by

()

() .
tionsmultiplica 4

 nssubtractioadditions/ 48
14

3

1

tionsmultiplica 4

nssubtractioadditions/ 44422
4

1

1

1

111

0

)(










+
⋅−=










+
⋅+⋅⋅














=

−

−

−

−−−

=

∑

n

n
n

n

nnn

i

i
nzalgCost

Adding the cost of calculating the polarity zero spectrum, the total

calculation cost for the algorithm is

()










−+
⋅−+⋅=

+

tionsmultiplica)416(

 nssubtractioadditions/ 4)23(168

12

1 1

nn

nn

alg
n

Cost

which is much smaller than the cost of calculating all n4 spectra by

(1). Note that the number of multiplications in algCost arises due to

the multiplication by −2 inside 3
Z . However, if the multiplications

are performed by simple shifting and sign bit change operations, the

multiplication number is reduced to zero.

4. EXPERIMENTAL RESULTS

The computation of the spectral coefficient vectors of all possible

Class 1 and 2 FPQLIA transforms has been implemented in

MATLAB and run for a set of quaternary test functions as shown

in Table 2. The quaternary test functions xor5, squar5, con1, ex5,

inc, misex1, rd84, z5xp1, 9sym, apex4, clip, ex1010, and z9sym

were obtained by modifying the MCNC IWLS 93 binary bench-

mark files of the same names to represent quaternary functions.

The translation from binary to quaternary functions has been done

by encoding every two input (output) bits in binary files to an input

(output) symbol in the quaternary files. If the number of input

and/or output variables is odd, then a zero bit is added behind the

binary cubes to make it even. For both inputs and outputs the bi-

nary values pairs −−, 00, 01, 10, and 11 are encoded to −, 0, 1, 2,

and 3, respectively. With these conversions, the binary benchmark

files have become an array of quaternary cubes. The other test

functions prodn, sumn, sqsumn, mprodn, msumn, maxn, minn and

avgn were written to represent some simple single output n-

variable quaternary functions. The output of prodn, sumn, and

sqsumn is the GF(4) product, sum, and sum of squares of the in-

puts, respectively. The output of mprodn and msumn is the modulo

4 product and sum of the inputs, whereas the output of maxn, minn

and avgn is the maximum, minimum, and integer part of the arith-

metic average of the inputs, respectively. In addition to them, test

functions countni have also been written where the values of i var-

ies from 0 to 3. They represent n-variable quaternary functions

where the outputs are the quaternary number representations of the

number of occurrence of i in the inputs. Since for n = 3, 4, and 5

the optimal numbers of nonzero spectral coefficients for countni

are the same regardless of i, in Table 2 these functions are simply

represented as count3i, count4i, and count5i.

For comparison purpose, the numbers of nonzero spectral coef-

ficients for optimal QFPA transform have also been given in the

rightmost column of Table 2. It can be seen that for all functions in

the table either opt

nT
ω
,1 , opt

nT
ω
,2 , or in most cases both, give better num-

ber of nonzero spectral coefficients compared to the optimal QFPA.

Also, the number of nonzero spectral coefficients of opt

nT
ω
,1 and opt

nT
ω
,2

are similar for most of the functions but may be quite different for

some cases, such as min4 and max4.

Table 2 − Minimum number of nonzero spectral coefficients

Input
filename

Number of nonzero spectral coefficients

opt

nT
ω
,1 opt

nT
ω
,2 Optimal QFPA

xor5 7 7 18
squar5 21 24 27
con1 14 14 38
ex5 123 116 187
inc 55 49 71
misex1 23 20 40
rd84 55 65 202
z5xp1 42 49 60
9sym 78 78 370
apex4 473 456 481
clip 260 296 383
ex1010 1010 1011 1016
z9sym 78 78 370
prod3 24 24 27
prod4 73 69 73
prod5 218 218 243
sum3 14 15 23
sum4 30 30 76
sum5 62 63 237
sqsum3 39 39 56
sqsum4 111 111 206
sqsum5 351 351 764
mprod3 8 8 10
mprod4 16 16 20
mprod5 32 34 37
msum3 38 39 48
msum4 185 186 219
msum5 704 704 937
avg3 27 20 49
avg4 177 179 215
avg5 704 704 937
min3 21 27 26
max3 28 22 28
min4 47 73 81
max4 73 48 82
count3i 3 3 6
count4i 5 5 24
count5i 11 11 122

Total 5240 5262 7809
Average 137.89 138.47 205.5

424

Figure 1 – Algorithm to calculate FPQLIA spectral coefficients.

5. CONCLUSIONS

Two new classes of FPLIA transforms have been presented. Their

forward and inverse matrices as well as the relations between the

different matrices have been given. An algorithm for generating all

FPQLIA spectra and obtaining the optimal expansion has also been

described based on the existing relations between the FPQLIA

spectra. Its computational cost has been derived and shown to be

more efficient than calculating each FPQLIA spectrum separately.

Experimental results for the FPQLIA transforms have also been

presented in the paper where the result shows that they are able to

provide the quaternary test functions with more compact represen-

tations compared to FPQA transforms.

For n > 2 the introduced FPQLIA transforms are built from

the Kronecker product of its basic transform matrices. As a result

their basis functions have regular structure and can be directly gen-

erated from the basis functions of their basic transform matrices. It

has been shown that the FPQLIA expansion can be directly trans-

formed into binary arithmetic expansion by replacing each n-

variable quaternary basis function with the equivalent 2n-variable

binary basis functions. The resulting expansion is a binary LIA

expansion which corresponds to two- or three-level binary circuits.

Thus, other than for optimization of quaternary function representa-

tion, the new transforms may also be useful for representation and

analysis of binary functions. Similar to other arithmetic transforms,

the FPQLIA transforms are also useful for efficient representation

and parallel calculation of multi-output functions [1].

REFERENCES

[1] M. G. Karpovsky, R. S. Stankovic, and J. T. Astola, Spectral

Logic and its Applications for the Design of Digital Devices.

Hoboken: Wiley-Interscience, 2008.

[2] R. S. Stankovic and J. T. Astola, Spectral Interpretation of

Decision Diagrams. New York: Springer-Verlag, 2003.

[3] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S.

Stankovic, Decision Diagram Techniques for Micro- and

Nanoelectronic Design Handbook. Boca Raton: CRC Press,

2006.

[4] S. Rahardja and B. J. Falkowski, “Application of linearly

independent arithmetic transforms in testing of digital

circuits,” Electron. Lett., vol. 35, pp. 363−364, March 1999.

[5] B. J. Falkowski and C. Fu, “Generation and relation of

quaternary and binary linearly independent transforms,” in

Proc. 36th IEEE Int. Symp. Multiple-Valued Logic,

Singapore, May 2006, CD publication.

[6] B. J. Falkowski and C. Fu, “Classification of fastest

quaternary linearly independent arithmetic transforms,” in

Proc. 38th IEEE Int. Symp. Multiple-Valued Logic, Dallas,

Texas, USA, May 2008, pp. 169−173.

[7] D. H. Green, “Reed-Muller expansions with fixed and mixed

polarities over GF(4),” IEE Proc. Comput. and Digit. Tech.,

vol. 137, pp. 380−388, Sept. 1990.

[8] C. C. Lozano, B. J. Falkowski, and S. Rahardja, “Algorithms

for generation of quaternary fixed polarity arithmetic

spectra,” in Proc. 39th IEEE Int. Symp. Circuits and Systems,

Kos, Greece, May 2006, pp. 803−806.

Table 1 − Forward transforms, inverse transforms, and fast inverse flow graphs for 1-variable FPQLIA

Polarity

number
ω

Class 1 Class 2

ω
1,1T () 1

1,1

−ω
T Fast flow graph for () 1

1,1

−ω
T

ω
1,2T () 1

1,2

−ω
T Fast flow graph for () 1

1,2

−ω
T

0

















1111
0101
0011
0001

















−−
−
−

1111
0101
0011
0001

 















0001
0011
0101
1111

















−−
−
−

1111
1010
1100

1000

1

















0001
1111
0101
0011

















−−
−
−

1111
1010
1001

1000

 















0011
0101
1111
0001

















−−
−
−

1111
0101
1001
0001

2

















0011
0001
1111
0101

















−−
−
−

1111
0101
1100
0100

 















0101
1111
0001
0011

















−−
−
−

1111
1010
0011
0010

3

















0101
0011
0001
1111

















−−
−
−

1111
1010
0110
0010

 















1111
0001
0011
0101

















−−
−
−

1111
0101
0110
0100

Void fpqlia(int truth vector[])
{ int W[n] = <0, 0, …., 0>, p[];
 char Dir[n] = ’aa…a’;

 Calculate
0

A
r

 from truth vector by (1) and store the result in p[];
 For(j = 0 to 4n – 2)
 { cont = true;
 loop_var = n;
 while (cont==true)
 { loop_var = loop_var −−;
 cont = false;
 if(Dir[loop_var]==’a’)
 { switch (W[loop_var])
 { case 0: W[loop_var] = 2; break;
 case 1: W[loop_var] = 3; break;
 case 2: W[loop_var] = 1; break;
 case 3: { cont = true; Dir[loop_var] = ‘b’;}} }
 else if(Dir[loop_var]==’b’)
 { switch (W[loop_var])
 { case 0: W[loop_var] = 2; break;
 case 1: W[loop_var] = 0; break;
 case 2: { cont = true; Dir[loop_var] = ‘c’;}
 case 3: W[loop_var] = 1; break;} }
 else if(Dir[loop_var]==’c’)
 { switch (W[loop_var])
 { case 0: W[loop_var] = 3; break;
 case 1: { cont = true; Dir[loop_var] = ‘d’;}
 case 2: W[loop_var] = 0; break;
 case 3: W[loop_var] = 1; break;} }
 else
 { switch (W[loop_var])
 { case 0: { cont=true; Dir[loop_var] = ‘a’;}
 case 1: W[loop_var] = 3; break;
 case 2: W[loop_var] = 0; break;
 case 3: W[loop_var] = 2; break;} }}

 Calculate
W

A
r

from p[] by (6); p[] =
W

A
r

;}}

425

